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Abstract: Various function theorists have successfully defined and investigated different kinds of
analytic functions. The applications of such functions have played significant roles in geometry
function theory as a field of complex analysis. In this work, therefore, a certain subclass of univalent
[w(2+B) +cy —0]Cn

mo — cw(2+ B) + cy] K"
using a generalized differential operator. Furthermore, some geometric properties for the class

analytic functions of the form f(z) =z — Y}, _, [ 2" =Y a,ZF is defined

were established.
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1. Introduction and Preliminaries

Let U be the unit disk, thatis, U = {z € C : |z| < 1}, A be the class of functions
analytic in U satisfying the conditions f(0) = 0 and f/(0) = 1 and of the form

f@)=z+ ) at (1)
k=2
We denote T the subclass of A analytic in U of the form
flz) =z—=Y ", ap >0. ()
k=2

Differential operator is one of the tools used in geometric functions theory. Various

authors have used different operators in literature. See [1-7] for instance. Differential
n,A

operator D7g defined as
S (at (@ —B)(At+pa—p)(k—=1) +b\"
DZ,'glm,yzf(Z) =z+ Z( ( ﬁ)( al’fi 7 ]/ll)( ) ) aka, (3)
k=2

wherea,b > 0,a+b#0,a > >0,A > pup < puj and n € Ny was used to define a certain
class of univalent functions. See [2,6].
In this work, we set

K:<a+(ac—[i)(/\%—a;fi;yl)(k—l)—kb) )

in (3) above.
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Lemma 1 ([6]). Let the function f € A. Then Q' g;’a('y, c) if and only if

ika—cw 2+/3)+cy]<”+(“_ﬁ)(/\tfzb_”l)(k_l)+b>nak<w(2+ﬁ)+cry—o—. ®)

See [6] for the proof.

Silverman in [8] was the first to pave way for the study of functions with negative
coefficients of the form (2), after which various forms of such functions have been opened
up by many researchers in the field of geometric functions theory. Rather than fixing the
negative coefficients from the second coefficients in (2), Owa in [9] considered fixing more
coefficients, which motivated the work of Aouf and Darwish in [10] and gave birth to the
investigation of univalent functions f(z) with fixed finitely many negative coefficients and
the behaviors of such kinds of functions. In [4-7,11-18], for instance, various classes of
univalent functions with finitely many fixed coefficients were investigated.

Motivated by the work of Oluwayemi and Faisal in [6], the following class of functions

QZ%;"U(%C Cm) C ngz’g('y, ¢) is introduced.

Definition 1. Let f € T be defined by (2). Then, f(z) is in the class Q"> (vy,c,Cy) if it is of

o,Bu,0
the form
L [w@AB) ey —0lCn S &
z)=2z— z" - ayz 6
f( ) - [ma—cw(2+/3)+c'y]1<" k:Zt—%_l k (6)
where
_ [mo—cw(2+B) +cy]K” _ w@+B) +ey—0a](1 - 35 Cm)
Cm = W2+ B) +ey—o] ™ and. aj = ko — cw(2 + B) + cy]K" - D
Notethat: 0 >1, 0< ¢y <1, 1<w< L and ¢y —o > 0.
2. Main Results
Theorem 1. Let the function f € T. Then ng‘;a(’y, ¢,Cm) if
ko —cw(2+ B) + c'y]K” f
<1-) C (8)
L et p g st Lo
Proof. Let f € QZQ;U(Y,C Cm). From (7),

[mo — cw(2+ B) + cy]K"'

Then, f € Q"3 (7,¢,Cw) C Q"3 (7,¢) if and only if

& B0 o B0
i [ma—cw(2+ﬁ)+c7 N i cw(2+ﬁ)+c'y]K”a 1
o weHBp tey—o] T A WA B Fey—o] 7

which also implies from (7) that,

ko —cw(@+p)+er]K
k:Zt-&l-l W2t rey—o *=! mZ::sz

which completes the proof. [
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Corollary 1. Let f € Q¥ g;"a('y, ¢,Cm) for k > t + 1. Then, we have that

o < [w(2+B) +cy —0](1 — Y u—p C)
k= [ko — cw(2+ B) + cy] K™

The best possible result is of the function

_ Zt‘, . w2+p)+ey—a] i [w+p)+er—ol(1-¥2Cn) &

B ko — cw (2 + B) + cy]K"

10
—cw<2+ﬁ>+cv]1<z . 10)

m=2 =t4+1
1

Corollary 2. Let f(z) be defined by (6). Then f € ngﬁa(% ¢,Cp) forand k > t+1, we

have that

108 ter o)1 - 5 Ca)
£ e —cw(2+ )+ KT

with equality only for the functions f(z) of the form

(11)

i A+ 8 +ey—0a 0 & [+ +er—0](1-XThHCn) 4

f&=2= ¥ e oz s p T erfiis ke —cw @+ B) T cy]K"

k=t+1

Corollary 3. Let f(z) be defined by (6). Then f € QZ:{)\,’;U(% ¢,Cp) forand k > t+1, we
have that
(2w + ¢y = 0)(1 = Y5 Cim)
A <
[ko — cw(2+ B) + cy] K"

with equality only for the functions f(z) of the form

v (2w +cy —0) m_ v Qwtey—0)1-T5Cn) &
flz) = Z_mZ::Z [mo — cw(2 + B) +c'y}K”Z _k:t+1 [ko — cw(2 + B) +c'y]2I<”

Corollary 4. Let f(z) be defined by (6). Then f € Q" (1,1,Cy) for and k > t+1, we

a,0,1,1
have that ,
. 2w(1—Y,—2Cm)
k= "Tk = 2w + 1]K"
with equality only for the functions f(z) of the form
t 2w m o 201 =Yh 5 Cn) g
/() _Z_m; [m — 20 + 1)K - _k:;-»-l k— 2w+ 1]K" -

Corollary 5. Let f(z) be defined by (6). Then f € anm(l 1,Cp) for and k > t+1, we

have that ,
1- Z =2 Cm
< - &m=Z 77
%= Tk — 1)K

with equality only for the functions f(z) of the form

t [=S) t
f(Z — Z Zm 2 M Z 1*Zmzzcmzk'

m—2 k=t+1 <k - 1K"
Theorem 2. Let j € Nand f1(z),. .. fi(z) be defined by
L [w(2+B) +cy—0]Cu m
— 12
m;z ma—cw(Z—i—,B)—i-c'yK” kélak] (12)
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belong to the class QZ g ;’ (7,6, C). Then,

j ] t
z2)=Y ¢gifiand Y ¢i=10< Y Cu<1,0<Cy<1
=2 =2

m=2

also belongs to the class QZ:;;\”;”U(% ¢,Cm).

Proof. Let f; € QZ’g’]‘fU(’y, ¢,Cp). It follows from Theorem 1 that

& ko —cw@+p)+ey]Kt
k:zz [w(2+ﬁ)+C’y—a] ﬂk,]gl mgzcm

foreveryi=1,...j. So that

—j — L [w(2+B)+cy —0]Cu o
_gngi—z— Z [mg'—cw(2+ﬁ)—|—cry]Kn B Z (Zglak])

m=2 k=t+1 \i
Thus, ‘
2 ko — cw (2 + B) + cy]K"
Gilk,j
kzt;1 w2+p)tey—o ;’ ’
i i <ka—cw(2+[3)+c'y]K”)g
i=2 k=t+1 w2+p)+ey—o l
j t t
<Y (1-Y. Culci=1-)_ Cu.
i=2 m=2 m=2
O

Theorem 3. Let
~ [w2+B)+ey—0olCu

ft(z)zz—m 2[m(7—cw(2+/3)+c'y]1<” (13)
and fork >t +1
_ L @B +er—0lCn S W24 B) ey — (1= Ty Cn)
- mzz m‘T—Cw(2+ﬁ)+C'y]K”Z k:;l ko — cw (2 + B) + cy]K" z. (14)

Then the function f(z) € Zg I‘f +(7,¢,Cn) if and only if it can be expressed in the form f(z) =

Yoo Axf(z), where Ay >0, (k> t) and Y32 Ay = 1.

Proof. Let -
Y Afil(z) + Adfi(2)

k=t+1

L [w(24 B) 4+ ¢y — 0]Ch
=AMz =M Z ) [mo — cw(2+ B) + cy]K"

< Lo [w@+B)+cy—alCn
7kz+ L ma—cw(Z—l—,B)—i-C'y}K”Z >

m:Z

[e]
Y Mz
k=t+1

- i Ak([w(2+ﬁ) ey =0l - T Cm)zk>

k=t+1 ko — cw(2+ B) + cy]K"
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i . o L w2+ B)+cy—alCun
— (At"‘ Y. )‘k)z_<)\t+ L A) 2 ma—cw(2+ﬁ)+c7]1<nz

k=t+1 k=t+1 2

= (w24 ) +ey — o] (1= Y Cn)
k;1 [ko — cw (2 + B) + cy] K" 2 Azt
oy W@ ter—0lCu P [w@tB)+er—ol(l- Ty Cu)

[moe —cw(2+B) +cy]K™ | (ko — cw(2 + B) + cy]K"

/\ka.
m=2 =t+1

We can further write that

2 ko —cw(24B) + cvl[w2+ B) + ey —a](1 = £3— Ci)
orall [w(2+ B) + ¢y —o][ko — cw (2 + B) + cy]K"

K"

t

SN G D A= (- Y G- A) <1- Y G

m=2 k=t+1 m=2 m=2

Therefore f(z) € QZg;}U(%C Cm)-

Conversely, suppose f(z) € ng;’ »(7,¢,Cn). From Definition 1 and (6),

! 2_'_.8)"_67 U]Cm 2 - k
Y mU—cw(Z—i-ﬁ)—l-cﬂK” _k; ez

m=2

Set
(ko — cw (2 + B) + c¢y]K"

g
[w(2+B) +cy —0](1 = =2 Ci)
then Ay > 0and for Ay =1 — Y32, ; At; we have that

Ay =

vy wCH+Brer—elCu u > [w@+P)+er—0o](1- T5unCn)
fle)=z2- 2, [ma—cw(Z—i—ﬁ)—i—c'y]K”Z _kz [kU—Cw(2+ﬁ)+C’Y]K"2 Mt

m=2 =t+1
_ - Lo [w@+B)+cry—0lCu
= Az - k%l( mZ::2 [mo —cw(2+ B) + cy]K" _fk(z)>Ak
— Az - Y (Al2) - )
k=t+1
<1 - Z Ak> Z Aifi(z i ArAefi(z)
k=F+1 k=t41 et

O

Integral Operator

We now consider the effect of the Alexander operator, defined as

1= Wy (15)

n,\,w

for the functions in the class S on the class Q * B

(7, ¢, Cp) through the following theorem.

Theorem 4. Let f(z), defined by (6), belong to the class Q"> (7y,c,Cy,). Then, I(f) is also in

o,B,u,0
the class Q' g;’a(% ¢,Cm).
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Proof. Assume f(z) € Q" (y,¢,Cy)

o,Bu,0
L [w(24 B) 4+ ¢y — o]Ch >k k.
16
mZZ ma—cw(2+l3)+C’YK” k%l 16)
Now
© 1
Y [k —cw(@+p) +er]K"E < ke —cw(2+ ) + ek

k=t+1

1 t t "
1(1‘,;20") 1 Zk ;W

which implies that I(f) € Q’;g;fa('y, ¢,Cpm). O

Remark 1 ([18]). The operator maps the class of starlike functions onto the class of convex functions.
The class of functions studied in [19] consists of the convex function with x = 1.

3. Conclusions

The class of functions considered in the work add to the existing knowledge in the
investigation of properties of univalent functions with negative coefficients. Furthermore,
the class of functions (6) reduces to (2) with w = 0 and ¢y = 0.
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