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Abstract: In this work, the F-expansion method is used to find exact solutions of the space-time
fractional modified Benjamin Bona Mahony equation and the nonlinear time fractional Schrödinger
equation with beta derivative. One of the most efficient and significant methods for obtaining new
exact solutions to nonlinear equations is this method. With the aid of Maple, more exact solutions
defined by the Jacobi elliptic function are obtained. Hyperbolic function solutions and some exact
solutions expressed by trigonometric functions are gained in the case of m modulus 1 and 0 limits of
the Jacobi elliptic function.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are essential in a variety of domains,
including engineering, mathematics, fluid dynamics, and physics. NPDEs have been used
to model a variety of real-life challenges. Exact solutions to NPDEs have been obtained
using a variety of various and reliable mathematical approaches [1–11]. Fractional calculus
is a relatively new field that has gained interest in recent decades. Different physical
phenomena, such as viscoelasticity, plasma, solid mechanics, optical fibers, signal process-
ing, electromagnetic waves, fluid dynamics, biomedical sciences, and diffusion processes,
are made easily solvable in fractional partial differential equations (FPDEs). Researchers
have used numerous ways to acquire exact solutions to FPDEs to make these equations
appealing. Many articles have been made recently about obtaining analytical, numeri-
cal exact solutions of mathematical problems and some physical phenomena that can be
mathematically formed and described using fractional derivatives [12–16]. It seems that
these are similar events are often stated in nonlinear fractional partial differential equations.
The fractional derivative operator has been defined in many different ways. Some of
these are frequently used ones are as follows: Caputo derivative [17], Riemann-Liouville
derivative [18], Caputo-Fabrizro [19], Jumarie’s modifies Riemann-Liouville derivative [20],
Atangana-Baleanu derivative [21]. By aid of these derivative operator, some of the various
techniques developed that provide analytical, approximate and exact solution of nonlinear
fractional partial differential equations can be listed as sub-equation method [22], the first in-
tegral method [23], auxiliary equation method [24], the modified trial equation method [25],
the variational iteration method [26], natural transform decomposition method [27].

A new fractional derivative, called conformable derivative, has been described in [28].
Then, using this derivative, exact solution of the time-heat differential equation has been
obtained [29]. Moreover Atangana et al. have revealed some definitions, theorems and
properties about the conformable derivative [30]. Eventually, a new definition of a fractional
derivative called the beta-derivative has been given by Atangana et al. In their paper,
the solution of the Hunter-Saxton equation has been obtained using this derivative [31].
In addition, the solutions of the fractional Sharma-Tasso-Oliver, space-time fractional
modified Benjamin Bona-Mahony, time fractional Schrödinger equations, which are also
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given with this derivative, have been obtained by the first integral method [32]. Many
aspects of the recommended version have been used to model various physical difficulties
and have acted as fractional derivative restrictions. They are not fractional, but they can be
regarded an natural extension of the classical derivative. Recently, studies defined with this
derivative have gained importance. The interval on which the function is differentiated
determines this derivative. It possesses characteristics that the well-known fractional
derivatives lack, including the following.

Definition 1. Suppose that F(ω) is a function. The beta derivative of F(ω) is defined by [31]

ADβ
ω{F(ω)} = lim

γ→0

F[ω + γ(ω + 1
Γ(β)

)1−β]− F(ω)

γ
, ω > 0, β ∈ (0, 1]. (1)

There are some important properties for this derivative [32].

1. ADβ
ω(a0F(ω) + a1G(ω)) = a0

ADβ
ω + a1

ADβ
ωG(ω), ∀a0, a1 ∈ R,

2. ADβ
ω(c0) = 0, ∀c0 ∈ R,

3. ADβ
ω(F(ω).G(ω)) = G(ω)ADβ

ω(F(ω)) + F(ω)ADβ
ω(G(ω),

4. ADβ
ω(F(ω)/G(ω)) = G(ω)ADβ

ω(F(ω))−F(ω)ADβ
ω(G(ω))

[G(ω)]2
, (G 6= 0),

5. ADβ
ω(F(G(ω)) =

(
ω + 1

Γ(β)

)1−β
G′(ω)F′(G(ω)),

where F and G two functions β differentiable and β ∈ (0,1].
The proofs of these properties are given in [30–32].

2. F-Expansion Method

In this section, a detailed explanation of the F-expansion method will be given to
obtain the exact solutions of fractional partial differential equations (FPDEs) defined by
beta derivative.

Let us consider the space-time FPDE with a beta derivative for a function of two real
variables x and t:

H(p, ADβ
t p, ADβ

x p, AD2β
t p, AD2β

x p, ...) = 0, (0 < β ≤ 1) (2)

1. Firstly, the following travelling wave transformation should be used to transform (2)
into an ordinary differential equation

p(x, t) = U(ε),

ε =
k
β

(
x +

1
Γ(β)

)β
− c

β

(
t +

1
Γ(β)

)β
,

(3)

where k and c arbitrary constant. Substituting (3) into (2), a nonlinear ordinary
differential equation (ODE) can be obtain as

N(U,
dU
dε

,
d2U
dε2 , ..) = 0 (4)

2. Assume that, the solution U(ε) of (4) can be described as

U(ε) = a0 +
M

∑
i=1

(
aiKi(ε) +

bi

Ki(ε)

)
(5)

where a0 and ai, bi (i = 1, 2,..., M) are constants to be determined, K(ε) is a solution
of ODE

[K′(ε)]2 = f2[K(ε)]4 + f1[K(ε)]2 + f0 (6)
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where f2, f1 and f0 are custom values in the Table 1 [33,34]. M is positive integer
which can be determined from Equation (4) as follows where deg(U(ε)) = M is degree
of U(ε)

deg
[

dqU
dεq

]
= M + q,

deg
[

Ur
(

dqU
dεq

)s]
= Mr + s(q + M).

Table 1. Jacobi elliptic function solutions.

Case f0 f1 f2 K(ε)

1 1 −(1 + m2) m2 sn(ε) or cd(ε)
2 1−m2 2m2 − 1 −m2 cn(ε)
3 m2 − 1 2−m2 −1 dn(ε)
4 m2 −(1 + m2) 1 ns(ε) or dc(ε)
5 −m2 2m2 − 1 1−m2 nc(ε)
6 −1 2−m2 −(1−m2) nd(ε)
7 1 2−m2 1−m2 sc(ε)
8 1 2m2 − 1 1−m2 sc(ε)
9 1−m2 2−m2 1 cs(ε)
10 −m2(1−m2) 2m2 − 1 1 ds(ε)
11 1−m2

4
1+m2

2
−1
4 nc(ε) ± sc(ε) or cn(ε)

1±sn(ε)

12 −(1−m2)2

4
1+m2

2
−1
4 mcn(ε) ± dn(ε)

13 1
4

1−2m2

2
1
4

sn(ε)
1±cn(ε)

14 1
4

1+m2

2
(1−m2)2

4
sn(ε)

cn(ε)±dn(ε)

3. By substituting (5) with (6) into (4) and collecting the coefficients of K j(ε) (j = 0,±1,±2, ...),
a set of specified algebraic equations consisting of a0, ai, bi (i = 1, 2, ..., M). By solving
these algebraic equations, these parameters can be clearly determined.

4. Equation (6) will have Jacobi elliptic function solutions in Table 1. In Table 1, sn(ε) = sn(ε,m),
cd(ε) = cd(ε,m), cn(ε) = cd(ε,m), dn(ε) = dn(ε), ns(ε) = ns(ε,m), cs(ε) = cs(ε,m),
ds(ε) = ds(ε,m), sc(ε) = sc(ε,m), sd(ε) = sd(ε,m) are the Jacobi elliptic functions with
the modulus 0 ≤ m ≤ 1. These functions transform into trigonometric and hyperbolic
functions when m→ 0 and m→ 1 as Table 2 shows [34].

Table 2. Transformation of Jacobian elliptic functions to trigonometric and hyperbolic functions.

m→ 0 m→ 1

sn(ε) = sin(ε) sn(ε) = tanh(ε)
cd(ε) = cos(ε) cn(ε) = sech(ε)
cn(ε) = cos(ε) dn(ε) = sech(ε)
ns(ε) = csc(ε) ns(ε) = coth(ε)
cs(ε) = cot(ε) cs(ε) = csch(ε)
ds(ε) = csc(ε) ds(ε) = csch(ε)
sc(ε) = tan(ε) sc(ε) = sinh(ε)
sd(ε) = sin(ε) sd(ε) = sinh(ε)
nc(ε) = sec(ε) ns(ε) = cosh(ε)

dn(ε) = 1 cd(ε) = 1

5. By substituting the parameters found in step3 and the known values in step4 into (5),
the solutions of (2) are found.
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3. Applications to Fractional Equations with Beta Derivatives

In this section, the exact solutions of the space-time fractional modified Benjamin
Bona Mahony equation and the nonlinear time fractional Schrödinger equation with beta-
derivative will be investigated by F-expansion method.

Example 1. Let us consider the space-time fractional modified Benjamin Bona Mahony equa-
tion [32,35,36]

ADβ
t p(x, t) + ADβ

x p(x, t)− ap(x, t)2 ADβ
x p(x, t) + AD3β

x p(x, t) = 0, 0 < β ≤ 1. (7)

Let us assume the travelling wave solution of (7) has the form

p(x, t) = U(ε), ε =
k
β

(
x +

1
Γ(β)

)β
− c

β

(
t +

1
Γ(β)

)β
. (8)

Substituting (8) into (7), we have

− c
dU
dε

+ k
dU
dε
− akU2 dU

dε
+ k3 d3U

dε3 = 0 (9)

Integrating this equation with respect to ε and neglecting the constant of integration we obtain

k3 d2U
dε2 + (k− c)U − ak

3
U3 = 0 (10)

Using the balancing principle between d2U
dε2 and U3(ε) in (10) gives M = 1. Thus, from (5),

the solution of (10) can be written

U(ε) = a0 + a1K(ε) +
b1

K(ε)
, (11)

where a0,a1,b1 are constant to be specified and K(ε) fulfills the elliptic Equation (6). Substituting (11)
and (6) into (10), sixth order polynomial in K(ε) is found. By equating all coefficients of K(ε) to
zero, the following nonlinear system of equations is found.

2k3 f2a1 −
ak
3

a3
1 = 0

−aka0a2
1 = 0

k3 f1a1 + (k− c)a1 − aka2
0a1 − aka2

1b1 = 0

(k− c)a0 −
ak
3

a3
0 − 2aka0a1b1 = 0

k3 f1b1 + (k− c)b1 − aka0b1 − aka1b2
1 = 0

−aka0b2
1 = 0

2k3 f0b1 −
ak
3

b3
1 = 0

Solving this system with the help of Maple, we can get the following three sets of solutions for
unknown coefficients.

set1 set2 set3

c = f1k3 + k c = f1k3 + k± 6k3
√

f2 f0 c = f1k3 + k
a0 = 0 a0 = 0 a0 = 0

a1 = ±
√

6 f2
a k a1 = ±

√
6 f2

a k a1 = 0

b1 = 0 b1 = ±
√

6 f0
a k b1 = ±

√
6 f0

a k
(*) (**) (***)
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Substituting (*)–(***) into (11) with (8), we have the following exact solutions for Equation (7):

ps1(x, t) = ±
√

6
f2

a
kK(ε); ε =

k
β

(
x +

1
Γ(β)

)β
− f1k3 + k

β

(
t +

1
Γ(β)

)β
(12)

ps2(x, t) = ±
√

6
f2

a
K(ε)±

√
6

f0

a
K−1(ε);

ε =
k
β

(
x +

1
Γ(β)

)β
−

k3 f1 + k± 6k3
√

f0. f2

β

(
t +

1
Γ(β)

)β
(13)

ps3(x, t) = ±
√

6
f0

a
kK−1(ε); ε =

k
β

(
x +

1
Γ(β)

)β
− f1k3 + k

β

(
t +

1
Γ(β)

)β
(14)

Combining (12)–(14) with Tables 1 and 2, the exact solutions of (7) are gained. Let us express
some of them below for set1:

case 1. f2 = m2, f1 = −(1 + m2), f0 = 1, K(ε) = sn(ε), U1(ε) = ±
√

6 m2

a k sn(ε);

ε =
k
β

(
x +

1
Γ(β)

)β
− k3(−1 + m2) + k

β

(
t +

1
Γ(β)

)β
(15)

when m→ 1, the exact solution of (7) is

p1(x, t) = ±
√

6
a

k tanh(ε); ε =
k
β

(
x +

1
Γ(β)

)β
(0 < a) (16)

case 2. f2 = −m2, f1 = 2m2 − 1, f0 = 1−m2, K(ε) = cn(ε), U2(ε) = ±
√

6 m2

a k cn(ε);

ε =
k
β

(
x +

1
Γ(β)

)β
− k3(2m2 − 1) + k

β

(
t +

1
Γ(β)

)β
(17)

when m→ 1, the exact solution of (7) is

p2(x, t) = ±
√
−6
a

k sech(ε); ε =
k
β

(
x +

1
Γ(β)

)β
− k3 + k

β

(
t +

1
Γ(β)

)β
, (a < 0) (18)

In Figure 1, the solitary wave solution p2(x, t) in (18) with some special parameters are showed.

Figure 1. (a) The hyperbolic solution of p2(x, t) when β = 0.5, a = −6, k = 1. (b) The hyperbolic
solution of p2(x, t) when β = 0.75, a = −6, k = 1.
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case 5. f2 = 1−m2, f1 = 2m2 − 1, f0 = −m2, K(ε) = nc(ε), U5(ε) = ±
√

6 1−m2

a k nc(ε);

ε =
k
β

(
x +

1
Γ(β)

)β
− k3(2m2 − 1) + k

β

(
t +

1
Γ(β)

)β
(19)

when m→ 0, the exact solution of (7) is

p5(x, t) = ±
√

6
a

k sec(ε); ε =
k
β

(
x +

1
Γ(β)

)β
− −k3 + k

β

(
t +

1
Γ(β)

)β
(20)

In Figure 2, the periodic wave solution p5(x, t) in (2) with some special parameters is demonstrated.

Figure 2. (a) The trigonometric solution of p5(x, t) when β = 0.5, a = 6, k = 2. (b) The trigonometric
solution of p5(x, t) when β = 0.75, a = 6, k = 2.

case 9. f2 = 1, f1 = 2−m2, f0 = 1−m2, K(ε) = cs(ε), U9(ε) = ±
√

6
a k cs(ε);

ε =
k
β

(
x +

1
Γ(β)

)β
− k3(2−m2) + k

β

(
t +

1
Γ(β)

)β
(21)

when m→ 1, the exact solution of (7) is

p9a(x, t) = ±
√

6
a

k csch(ε); ε =
k
β

(
x +

1
Γ(β)

)β
− k3 + k

β

(
t +

1
Γ(β)

)β
, (22)

when m→ 0, the exact solution of (7) is

p9b(x, t) = ±
√

6
a

k cot(ε); ε =
k
β

(
x +

1
Γ(β)

)β
− 2k3 + k

β

(
t +

1
Γ(β)

)β
(23)

The remaining solutions can also be found similarly.

Example 2. Let us regard the nonlinear time fractional Schrödinger equation [32,37]

iADβ
t {p(x, t)}+ ap(x, t)xx + b | p(x, t) |2 p(x, t) = 0, 0 < β ≤ 1, (24)
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where p(x, t) is a complex value function. We get the travelling wave solution of (24) and we apply
the transformation as follows:

p(x, t) = U(ε).eiϕ, ε = kx− 2cv
β

(
t +

1
Γ(β)

)β
, ϕ = ωx +

v
β

(
t +

1
Γ(β)

)β
(25)

where k, c, v and ω are constants. Substituting (25) into (24) we get

i
(
− 2cv

dU
dε

+ 2akω
dU
dε

)
+ ak2 d2U

dε2 − (v + aω2)U(ε) + bU3(ε) = 0 (26)

From the imajinary part of (26), we obtain

c =
akω

v
(27)

From the real part of (26), by using the balancing principle between dU2

dε2 and U3(ε), we get
M = 1. Therefore, the solution of

aK2 d2U
dε2 − (v + aw2)U(ε) + bU3(ε) = 0 (28)

can be written
U(ε) = a0 + a1K(ε) +

b1

K(ε)
, (29)

where a0, a1, b1 are constants to be defined and K(ε) satisfies the elliptic Equation (6). Substitut-
ing (29) and (6) into (28), sixth order polynomial in K(ε) is obtained. By equating all coefficients to
zero in this polynomial, the following nonlinear system equations is gained.

2ak2a1 f2 + ba3
1 = 0

3a0a2
1b = 0

ak2 f1a1 − ak2(v + aω2)a1 − 3a2
0a1b− 3a2

1b1b = 0

−ak2(v + aw2)a0 + ba3
0 − 6a0a1b1b = 0

ak2 f1b1 − ak2(v + aω2)b1 + 3a2
0b1b−+a1b2

1b = 0

3a0b2
1b = 0

2ak2 f0b1 + b3
1b = 0

Resolving this system by aid of Maple, we can obtain the following three sets of solutions for
unknown coefficients.

set1 set2 set3

a0 = 0 a0 = 0 a0 = 0

a1 = ±
√
−2 f2a

b k a1 = ±
√
−2 f2a

b k a1 = 0

b1 = 0 b1 = ±
√
−2 f0a

b k ±
√

6 f0a
b k

c = c c = c c = c
v = −aω2 + f1 v = ±6

√
f0 f2 − aω2 + f1 v = −aω2 + f0

(*) (**) (***)

Substituting (*)–(***) into (29) with (25), we have the following exact solutions for (24):

ps1(x, t) =
[
±
√
−2 f2a

b
kK(ε)

]
e

i
[

wx+−aω2+ f1
β

(
t+ 1

Γ(β)

)β]
;

ε = kx− 2a
kω

β

(
t +

1
Γ(β)

)β
(30)
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ps2(x, t) = ±
√

2
f2a
b

kK(ε)±
√

2
f0a
b

K−1(ε)e
i
[

wx+
±6
√

f2 f0
β
−aω2+ f1

β

(
t+ 1

Γ(β)

)β]
;

ε = kx− 2akω

β

(
t +

1
Γ(β)

)β
(31)

ps3(x, t) = ±
√

2
f0a
b

kK−1(ε)e
i
[

wx+−aω2+ f1
β

(
t+ 1

Γ(β)

)β]
;

ε = kx− 2akω

β

(
t +

1
Γ(β)

)β
(32)

Combining (30)–(32) with Tables 1 and 2, the exact solutions of (24) are found. Let us define
some of them below for set1:

case 1. f2 = m2, f1 = −(1 + m2), f0 = 1, K(ε) = sn(ε), U1(ε) = ±
√
−2a m2

b k sn(ε);

ϕ = i
[
wx− aω2 + 1 + m2

β

(
t +

1
Γ(β)

)β]
(33)

when m→ 1, the exact solution of (24) is

p1(x, t) = U1(ε)ei ϕ =
[
±
√
−2a

b
k tanh(ε)

]
e

i
[

wx− aω2+2
β

(
t+ 1

Γ(β)

)β]
;

ε = kx− 2akω

β

(
t +

1
Γ(β)

)β
, (ab < 0)

(34)

In Figure 3, the solitary wave solution p1(x, t) in (3) with some special parameters is displayed.

Figure 3. (a) The hyperbolic solution of p1(x, t) when β = 0.5, a = −8, b = 1, k = 1, ω = 1. (b) The
hyperbolic solution of p1(x, t) when β = 0.75, a = −8, b = 1, k = 1, ω = 1.

case 4. f2 = 1, f1 = −(1 + m2), f0 = m2, K(ε) = ns(ε), U4(ε) =
[
±
√
−2a

b k ns(ε)
]
;

ϕ = i
[
wx− aω2 + 1 + m2

β

(
t +

1
Γ(β)

)β]
(35)
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when m→ 0, the exact solution of (24) is

p4a(x, t) = U4a(ε)ei ϕ = ±
√
−2a

b
k csc(ε)e

i
[

wx− aω2+1
β

(
t+ 1

Γ(β)

)β]
(36)

when m→ 1, the exact solution of (24) is

p4b(x, t) = U4b(ε)eiϕ = ±
√
−2a

b
k coth(ε)e

i
[

wx− aω2+2
β

(
t+ 1

Γ(β)

)β]
(37)

where ε = kx− 2akω
β

(
t + 1

Γ(β)

)β
, (ab < 0)

case 7. f2 = 1−m2, f1 = 2−m2, f0 = −1, K(ε) = sc(ε), U7(ε) =
[
±
√
−2(1−m2)a

b k sc(ε)
]
;

ϕ = i
[
wx +

2− aω2 −m2

β

(
t +

1
Γ(β)

)β]
(38)

when m→ 0, the exact solution of (24) is

p7(x, t) = ±
√
−2a

b k tan(ε)e
i
[

wx+ 2−aω2
β

(
t+ 1

Γ(β)

)β]
; ε = kx− 2akω

β

(
t + 1

Γ(β)

)β
, (ab < 0) (39)

In Figure 4, the periodic wave solution p7(x, t) in (4) with some special parameters is showed.

Figure 4. (a) The trigonometric solution of p1(x, t) when β = 0.5, a = −8, b = 1, k = 1, ω = 1. (b) The
trigonometric solution of p1(x, t) when β = 0.75, a = −8, b = 1, k = 1, ω = 1.

The remaining solutions can also be found similarly.

4. Conclusions

In this study, we used the F-expansion method to solve fractional partial differential
equations with beta-derivative. We applied this method to find the exact solution of the
space-time fractional modified Benjamin-Bona-Mahory equation and the nonlinear time
fractional Schrödinger equation.These solutions were validated by symbolic computing
system. This study showed that the F-expansion method was an effective way, dependable
and powerful to find new exact solutions.
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When the results of this method are compared to previous publications, it is clear that
they are novel. One of the important features of this method that we use is its diversity
compared to other methods [32,35–37]. It is clear that we are able to get this. The findings
in this work are valuable for characterizing some nonlinear processes and give good
complements to the current literature. Many more nonlinear evolution problems may be
solved using this approach. It’s worth noting that the suggested approach may be used to
solve various nonlinear evolution problems in mathematical physics. The solutions that
were obtained in this study could be of significance for the meaning of some concerned
physical problems.
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