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Abstract: Many problems in practical engineering can be simplified as the cantilever beam model,
which is generally studied by theoretical analysis, experiment, and numerical simulation. This paper
discusses the local activity of the nonlinear nonplanar motion of a cantilever beam at the equilibrium
point. Firstly, the equilibrium point of the model and the Jacobian matrix have been calculated. The
stability of the characteristic root corresponding to the characteristic polynomial has been analyzed.
Secondly, the corresponding complexity function of the model at the equilibrium point has been
given. Then, the local activity region of the model at the equilibrium point can be obtained by using
the theory of the local activity. Based on the actual engineering research background, the damping
coefficient is generally taken as 0 < c < 1. The cantilever beam model is the local activity at the
equilibrium point only if the parameters of the model satisfy a certain condition. In the numerical
simulation, it is found that when the proper parameters are selected in the local activity region, the
cantilever beam can exhibit different types of chaotic motion. The local activity theory provides a
theoretical basis for the parameter selection of the chaotic motion in the cantilever beam.

Keywords: cantilever beam; local activity; chaotic motion; nonlinear dynamic

1. Introduction

Many engineering problems can be simplified to cantilever beam models, such as
satellite antennas, piezoelectric energy harvesters [1], engine blades [2,3]. With the devel-
opment of science and technology, modern engineering structures have developed in the
direction of large, high-speed, light structures. Therefore, it is of great significance to study
the nonlinear dynamic properties of cantilever beams.

The research on the nonlinear nonplanar motion of the cantilever beam mainly focuses
on the analysis of complex nonlinear dynamic characteristics and the control of vibration
and chaos of the cantilever beam. Nayfeh and Pai [4] used the Galerkin method and
multiscale method to analyze the nonlinear planar and nonplanar vibration responses of
non-elongated cantilever beams. It was found that the geometric nonlinearity has hard
characteristics, which is the main factor of nonplanar response. They [5] utilized two
nonlinear coupled integral differential equations to study the nonplanar response of a
cantilever beam subjected to harmonic forced excitation. Dwivedy and Kar [6] applied
multiscale method to analyze periodic and chaotic responses of a cantilever beam under
parametric excitation with a mass block. Young and Juan [7] exploited Ritz Galerkin
method to discretize the governing equation to study the nonlinear response of a fluttering
cantilever beam subjected to random loads at the free end. Ma et al. [8] employed the
finite element method to analyze dynamic characteristics of a cantilever beam with oblique
cracks. Anderson et al. [9] studied the response of the cantilever beam from both theoretical
and experimental aspects. The responses of the first, third, and fourth modes are also
observed. Some results of the nonlinear dynamics [10,11] of thin flexible cantilever beams
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with rectangular cross sections are given by Cusumano and Moon Arafat et al. [12]. They
studied the nonlinear nonplanar response of the non-elongated metal cantilever beam
under parametric excitations, in which bifurcations and chaotic motions were found. Yao
and Zhang et al. [13] studied the multi-pulse Shilnikov orbit and chaotic dynamics of the
nonlinear nonplanar oscillation of the cantilever beam. Yao [14] took an extended Melnikov
method in the resonant case to investigate the multi-pulse global bifurcations and chaotic
dynamics of the high-dimension nonlinear system for a laminated composite piezoelectric
rectangular plate. Yao and Niu [15] established a rotating pre-twisted cylindrical shell
model with a presetting angle to investigate nonlinear dynamic responses of the aero-
engine compressor blade, and found the nonlinear steady-state response through numerical
simulations. Yao et al. [16] studied the nonlinear dynamic response of rotating blades
with variable speed under high-temperature supersonic gas flow, which considered the
change of rotating speed and the influence of centrifugal force. Dick et al. [17] investigated
the dynamic behavior of cantilever beam-impactor systems at macro and micro scales
numerically and experimentally. Yu et al. [18] studied the nonlinear dynamic response
of an inner cantilever beam system by establishing a nonlinear dynamic model, which
obtained the numerical solution of the exact governing equation by the shooting method.
Francesco [19] studied the random bending vibration of a small-scale Bernoulli-Euler
beam with external damping using a stress-driven nonlocal mechanics method. The
damping effect between the beam and surrounding environment is simulated, and the
closed expressions of power spectral density, correlation function, stationary variance, and
non-stationary variance of displacement field are obtained.

It can be seen that theoretical analysis, numerical simulations, or experiments are
generally used to study nonlinear nonplanar cantilever beams. In the process of numerical
simulations and experiments, the phenomena of the period, quasi-periodicity, and chaos are
observed by adjusting parameters, but whether the selection of parameters follows certain
rules or not. That is to say, if the parameters satisfy certain conditions in numerical simula-
tions, the nonlinear dynamic system is more likely to appear complexity phenomenon.

The passivity theory is widely used to analyze the stability of dynamical systems [20],
and is a powerful tool to analyze signal processing [21], chaos control and synchroniza-
tion [22,23], fuzzy control [24], etc. Chua [25] firstly used the passivity theory to study the
complexity of systems. The results show that the theory of the local passivity can provide
an effective and unified framework to determine whether a dynamical system coupled with
cells has complex behavior. Yang and Chua [26] studied the local activity, the local passivity,
and the edge of chaos of the Convolutional Neural Networks (CNN) equation with the
reaction-diffusion in different port vectors and gave a method to determine parameters of
chaotic edges. The system cannot show any form of complexity with local passivity [27].
That is, local activity is the origin of the complexity of the system.

At the same time, an explicit mathematical criterion or the edge of the chaos criteria
for identifying relatively small subsets in local active parameter regions is given. In order
to study the local active characteristics of memristors, Ying et al. [28] proposed a tristable
voltage-controlled local active memristor model with three asymptotic equilibrium points
and three local active regions based on Chua’s unfolding theorem. Itoh [29] proved that in
some asymptotically stable nonlinear dynamical systems, oscillation in the system could
be induced when the dissipation is introduced into the chaotic edge region, where the
system is locally active. Hopf bifurcation would occur if the parameters of the CNN
system were chosen in the chaotic edge region [30]. Matsuki and Shibata [31] studied
neural network exploration learning driven by chaotic internal dynamics and proved that
a chaotic reservoir network could learn without external noise. In addition, a nonlinear
dynamic system, which satisfies the edge of the chaos criteria, can bifurcate from a stable
equilibrium regime to a chaotic regime by periodic forcing excitation [32]. Chua [33] found
that the Hodgkin–Huxley equation would produce a peak when the excitation current
approached the edge of chaos, which would lead to the sub-critical Hopf bifurcation.
Dong [34] proposed a nonvolatile local active memristor model based on Chua’s expansion
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theorem, which discussed the influence of local activity on the complexity of nonlinear
systems. The dynamics of nonlinear systems can be simulated or modeled by dynamics of
memristor circuits [35], which exhibit complex behavior, such as chaos and non-periodic
oscillation, when an external source is applied to these memristor circuits.

It is well known that the nonlinear nonplanar motion of a cantilever beam can exhibit
chaotic oscillation. However, how to choose the appropriate parameters in the process
of numerical simulations has always been a puzzling problem. The local activity is the
origin of the complexity. If a nonlinear dynamics system is the local passivity at all possible
equilibrium points, it cannot exhibit any form of complexity. In this paper, local activity
theory is used to analyze the nonlinear nonplanar motion in the cantilever beam. The
local active region of the cantilever beam at the equilibrium point has been calculated.
In the process of numerical simulations, it was found that chaos is more likely to occur
in the cantilever beam when parameters are selected to satisfy the local activity theory.
Waveform, phase diagrams and Poincare maps were used to analyze chaotic motion in the
cantilever beam.

This paper is organized as follows. In Section 2, the equations of the cantilever
beam are established, including the solution of the variational equation at the equilibrium
point, the Laplace transformation for the variational equation, and the definition of the
complexity function. In Section 3, the theory of local activity for cantilever beams is studied.
The precondition is discussed on the occurrence of the complex phenomena by the local
activity theory. In Section 4, the simulation and research of the fractal chaotic motion of
the cantilever beam are carried out with previously established equations. The cantilever
beam is shown different chaotic motions with the value of the external excitation changed.
Finally, several conclusions are drawn in Section 5.

2. Equations of Cantilever Beam

The average equation [13] of the nonlinear nonplanar motion in the cantilever beam is
defined by the following expressions:

.
x1 = − 1

2 cx1 − (σ1 + α1F1)x2 +
1

16 (2α2 − 3α3)x2
(
x2

1 + x2
2
)
− β1x2

(
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4
)
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where c is the damping coefficient, σ1, σ2 are tuning parameters, respectively, F1 is paramet-
ric excitation, f2 is external excitation, α1, α2, α3, β1, β2 are constants and

.
x1 = dx1

dt ,
.
x2 = dx2

dt ,
.
x3 = dx3

dt ,
.
x4 = dx4

dt .
For the convenience of writing, we use j(t) = f cos(wt) instead of − 1

2 f2, where j(t)
denotes a periodic forcing (where w = 0). Then, Equation (1) can be written as follows:
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2.1. Solution of Equilibrium Point

Setting j(t) = 0, Equation (2) can be written as follows:
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It is obvious that Q(0, 0, 0, 0) is an equilibrium point of Equation (3). The Jacobian
matrix J of the linearized system at this point Q is given by the following expression:

J(Q) =


− 1

2 c − (σ1 + α1F1) 0 0

σ1 − α1F − 1
2 c 0 0

0 0 − 1
2 c − 1

2 σ2

0 0 1
2 σ2 − 1

2 c

 (4)

The characteristic equation associated with J(Q) is expressed as:[
λ2 + cλ +

1
4

c2 +
(

σ2
1 − α2

1F2
1

)]
×
(

λ2 + cλ +
1
4

c2 +
1
4

σ2
2

)
= 0 (5)

Its eigenvalues are given by the equations below:

λ1,2 = −1
2

c± 1
2

σ2, λ3,4 = −1
2

c± 1
2

√
α2

1F2
1 − σ2

1 (6)

If c > 0 and α2
1F2

1 − σ2
1 < 0, then the eigenvalues have the negative real part, and the

equilibrium point Q is locally asymptotically stable.

2.2. Variational Equation

Let δx1, δx2, δx3, δx4 denote infinitesimal variables in the neighborhood of the equilib-
rium point Q(0, 0, 0, 0) in Equation (3), namely as:

x1(t) = x1(0) + δx1(t) = δx1(t)
x2(t) = x2(0) + δx2(t) = δx2(t)
x3(t) = x3(0) + δx3(t) = δx3(t)
x4(t) = x4(0) + δx4(t) = δx4(t)

(7)

From Equation (2), we obtain the variational equation at the equilibrium point as:

d(δx1)
dt = − 1

2 cδx1 − (σ1 + α1F1) δx2
d(δx2)

dt = δx2(σ1 − α1F1) δx1 − 1
2 c

d(δx3)
dt = − 1

2 cδx3 − 1
2 σ2δx4

d(δx4)
dt = 1

2 σ2δx3 − 1
2 cδx4 + j(t)

(8)

2.3. Laplace Transform of Variational Equation

Define Laplace transforms of δx1, δx2, δx3, δx4 and j(t) as follows:

x̂1(s) =
∫ ∞

0 δx1(t)e−stdt

x̂2(s) =
∫ ∞

0 δx2(t)e−stdt

x̂3(s) =
∫ ∞

0 δx3(t)e−stdt

x̂4(s) =
∫ ∞

0 δx4(t)e−stdt

ĵ(s) =
∫ ∞

0 j(t)e−stdt

(9)

where σ + iw ∈ C.
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Applying Laplace transforming to each term in Equation (8), we obtain the following
expressions as:

sx̂1(s) − δx1(0) = − 1
2 cx̂1(s) − (σ1 + α1F1)x̂2(s)

sx̂2(s) − δx2(0) = (σ1 − α1F1)x̂1(s) − 1
2 cx̂2(s)

sx̂3(s) − δx3(0) = − 1
2 cx̂3(s) − 1

2 σ2 x̂4(s)

sx̂4(s) − δx4(0) = 1
2 σ2 x̂3(s) − 1

2 cx̂4(s) + ĵ(s)

(10)

We assumed zero initial conditions. That is δx1(0) = 0, δx2(0) = 0, δx3(0) = 0,
δx4(0) = 0. Then, Equation (10) can be rewritten as the following:

sx̂1(s) = − 1
2 cx̂1(s) − (σ1 + α1F1)x̂2(s)

sx̂2(s) = (σ1 − α1F1)x̂1(s) − 1
2 cx̂2(s)

sx̂3(s) = − 1
2 cx̂3(s) − 1

2 σ2 x̂4(s)

sx̂4(s) = 1
2 σ2 x̂3(s) − 1

2 cx̂4(s) + ĵ(s)

(11)

Let xa = [x1 x2 x3]
T , xb = [x4], the Equation (11) can become the following expressions:

sx̂a(s) = A11 x̂a(s) + A12 x̂b(s)
sx̂b(s) = A21 x̂a(s) + A22 x̂b(s) + j(s)

(12)

where the matrixes are given as:

A11 =

 − 1
2 c − (σ1 + α1F1) 0

σ1 − α1F1 − 1
2 c 0

0 0 − 1
2 c

, A12 =

 0

0

− 1
2 σ2

, A21 =
[

0 0 1
2 σ2

]
, A22 = −1

2
c (13)

2.4. Complex Function

Define the complexity function as follows:

YQ(s)
∆
=

ĵ(s)
x̂b(s)

(14)

Then,
YQ(s) = (sI − A22) − A21(sI − A11)

−1 A12 (15)

where I is the identity matrix.
Based on Equations (13) and (15), we can get the following expression as:

YQ(s) =
s4 + Ts3 + Ks2 + Ls + ∆

s3 + K1s2 + L1s + ∆1
(16)

where the parameters are defined as:

T = 2c, K = 3
2 c2 + σ2

1 − α2
1F2

1 + 1
4 σ2

2 , L = 1
2 c3 +

(
σ2

1 − α2
1F2

1 + 1
4 σ2

2

)
c,

∆ = 1
16 c4 + 1

4
(
σ2

1 − α2
1F2

1
)
c2 + 1

16 σ2
2 c4 + 1

4
(
σ2

1 − α2
1F2

1
)
σ2

2 ,

K1 = 3
2 c, L1 = 3

4 c2 + σ2
1 − α2

1F2
1 , ∆1 = 1

8 c3 + 1
2
(
σ2

1 − α2
1F2

1
)
c.

(17)

3. Theory of Local Activity

A nonlinear dynamical system is the local activity at the equilibrium point Q, if and
only if any one of the following conditions holds:

(i) YQ(s) has a zero in Re[s] > 0.
(ii) YQ(s) has a multiple zero on the imaginary axis.
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(iii) If YQ(s) has a simple zero s = iwp on the imaginary axis, then

KQ
(

iwp
) ∆

= lims→iwp

(
s − iwp

)
YQ(s) is either a negative real number or a com-

plex number.
(iv) Re

⌊
YQ(iw)

⌋
< 0 for some w ∈ (−∞, ∞).

3.1. Zeros of Complex Function YQ(s)
Let s4 + Ts3 + Ks2 + Ls + ∆ = 0, the zeros of the YQ(s) are computed as follows:

s1,2 = −1
2

c± 1
2

σ2i, (18)

s3,4 = −1
2

c±
√

α2
1F2

1 − σ2
1 . (19)

For the condition (i) of the local activity theory, based on Equation (18), the following
expression can be obtained as:

Re[s1,2] = −1
2

c (20)

where c is the damping coefficient that is usually between 0 and 1.
We consider 0 < c < 1 and Re[s1,2] < 0; that is, the zeros s1,2 is on the negative half

axis. If 0 < c < 1 and α2
1F2

1 − σ2
1 < 0 in Equation (19), as can be seen from Section 2.1,

the equilibrium point Q is locally asymptotically stable, which contradicts the first three
conditions of the local activity. So, we consider α2

1F2
1 − σ2

1 > 0 and Re[s3] = − 1
2 c −√

α2
1F2

1 − σ2
1 < 0. If the condition (i) in the local activity theory is to be satisfied, only if

Re[s4] = −1
2

c +
√

α2
1F2

1 − σ2
1 > 0 (21)

Then, it is obtained with
1
4

c2 + σ2
1 − α2

1F2
1 < 0 (22)

Considering the condition (iv) in the local activity theory, we need to calculate the real
part of the complex function YQ(iw), which is described in the next section.

3.2. Real Part of Complex Function YQ(iw)

According to Equation (16), we obtain the following expression as:

Re
[
YQ(iw)

]
= Re

[
(iw)4 + T(iw)3 + K(iw)2 + L(iw) + ∆

(iw)3 + K1(iw)2 + L1(iw) + ∆1

]
=

a1w6 + a2w4 + a3w2 + ∆∆1

(∆1 − K1w2)
2 + (L1w− w3)

2 (23)

where
a1 = T − K1

a2 = ∆1 + KK1 − TL1 − L

a3 = LL1 − K∆1

(24)

Since w = 0, Equation (23) can be written as follows:

Re
[
YQ(iw)

]
=

∆∆1

∆2
1

(25)

Based on Equation (17), we obtain the following expressions as:

∆ = 1
16 c4 + 1

4
(
σ2

1 − α2
1F2

1
)
c2 + 1

16 σ2
2 c4 + 1

4
(
σ2

1 − α2
1F2

1
)
> 0

∆1 = 1
8 c3 + 1

2
(
σ2

1 − α2
1F2

1
)

c > 0
(26)

where 0 < c < 1 and α2
1F2

1 − σ2
1 < 0.
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Thus,

Re
[
YQ(iw)

]
=

∆∆1

∆2
1

> 0. (27)

So, when the damping coefficient is 0 < c < 1, the cantilever beam is locally active at
the equilibrium point Q(0, 0, 0, 0), only if it satisfies the following condition

1
4

c2 + σ2
1 − α2

1F2
1 < 0 (28)

The local activity is the origin of the complexity. In numerical simulations, the system
is more likely to occur in the complexity phenomena when the parameters are chosen to
satisfy the local activity theory.

4. Results and Discussions of Fractal Chaotic Motion

The numerical simulation is carried out with Equation (1) in this section. Figure 1
represents the chaotic motion of the nonlinear nonplanar cantilever beam when the pa-
rameters chosen as c = 0.01, σ1 = 2.0, σ2 = 6.5, α1 = 1.0, α2 = 14.2, α3 = −1.2, β1 = −5.1,
β2 = 2.3, F1 = 49.8, f2 = 116.8. And the initial condition is selected as x1(0) = 0.05,
x2(0) = 0.18, x3(0) = −0.02, x4(0) = 0.03. Based on the above theoretical analysis, the
condition can be calculated as 1

4 c2 + σ2
1 − α2

1F2
1 < 0. In other words, Equation (1) is locally

active at the equilibrium point Q. Figure 1a–f respectively represent the phase portraits on
the planes (x1, x2), (x3, x4), the waveform on the planes (t, x1), (t, x2), the phase portrait in
the three-dimensional space (x1, x2, x3) and the Poincare maps on the plane (x1, x2).

In Figure 2, we choose a parameter variation with c = 0.1, α2 = −4.2, α3 = 0.01,
f2 = 216.8. And the other parameters are the same as in Figure 1. The value of 1

4 c2 + σ2
1 −

α2
1F2

1 is calculated, and it is less than zero. So, the cantilever beam is also local activity at
the equilibrium point. Chaotic motion in the nonlinear nonplanar vibration of a cantilever
beam is found to be in existence. Figure 2a–f respectively indicate the phase portraits on
the planes (x1, x2), (x3, x4), the waveform on the planes (t, x1), (t, x2), the phase portraits
in the three-dimensional space (x1, x2, x3) and the Poincare maps on the plane (x1, x2). The
vibration of the cantilever beam exhibits different types of chaotic motions, as shown in
Figure 2.

In Figure 3, the parameter f is chosen to be 216.8, with the other parameters main-
taining the same as in Figure 1. The nonlinear nonplanar vibration of a cantilever beam is
observed in the chaotic motion. Figure 3a–f respectively describe the phase portraits on
the planes (x1, x2), (x3, x4), the waveform on the planes (t, x1), (t, x2), the phase portraits
in the three-dimensional space (x1, x2, x3) and the Poincare maps on the plane (x1, x2). By
comparing the two-dimensional phase portraits and the three-dimensional phase portraits
in Figures 1 and 3, it is found that the cantilever beam will show different chaotic motions
when the value of the external excitation is changed. The local activity theory provides a
theoretical basis for the parameter selection of the chaotic motion in the cantilever beam.
Thus, the motion in chaos can be controlled to a certain extent.

There are several methods to determine whether the system is chaotic or not, such as
the phase portraits, the waveform, and Poincare maps. When chaotic motion appears in
the system, there are an infinite number of discrete points distributed in the Poincare maps
on the plane. When periodic motion appears in the system, there are countable discrete
distributed points in the Poincare maps on the plane. Since the Poincare maps on the plane
(x1, x2) have an infinite number of discrete points distributed, Figures 1–3 represent the
chaotic motion of the nonlinear nonplanar cantilever beam.
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Figure 1. Chaotic motion in nonlinear nonplanar vibration for the cantilever beam: (a) phase portrait
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Figure 2. Chaotic motion in nonlinear vibration for the cantilever beam with parameter change:
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5. Conclusions

In this paper, the local activity theory is used to analyze the nonlinear nonplanar
motion of the cantilever beam. Based on the theory of local activity, the local active region
of the nonlinear nonplanar motion of a cantilever beam can be calculated. Combined with
the actual engineering background and the damping coefficient 0 < c < 1, the cantilever
beam is locally active at the equilibrium point Q(0, 0, 0, 0) only if it satisfies the condition
of 1

4 c2 + σ2
1 − α2

1F2
1 < 0. Choosing appropriate parameters in the local activity area, the



Fractal Fract. 2022, 6, 181 11 of 12

cantilever beam exhibits different types of chaotic motion. The local activity theory provides
a mathematically theoretical basis for the analysis and control of the chaotic dynamic
behavior of the cantilever beam to a certain extent.
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