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Abstract: In this paper, by adopting the classical method of proofs, we establish certain new Cheby-
shev and Grüss-type inequalities for unified fractional integral operators via an extended generalized
Mittag-Leffler function. The main results are more general and include a large number of available
classical fractional integral inequalities in the literature. Furthermore, some new fractional integral
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1. Introduction

Let f and g be two continuous and synchronous functions on [a, b], that is, the two
continuous functions f and g satisfying ( f (x)− f (y))(g(x)− g(y)) ≥ 0 for x, y ∈ [a, b].
Then the following inequality holds

∫ b

a
f (x)g(x)dx ≥

∫ b

a
f (x)dx

∫ b

a
g(x)dx. (1)

The reverse inequality holds always whenever f and g are two continuous and asyn-
chronous functions. The foregoing inequality (1) is called as the well-known Chebyshev
integral inequality. Over the last several years, by employing various kinds of fractional in-
tegral operators, many researchers have extended the classical inequalities to fractional inte-
gral inequalities at home and abroad, we refer the reader to [1–6] and the references quoted
therein. For example, using the Saigo fractional integral operators, Khan et al. [7] presented
some inequalities for a class of n-decreasing positive functions. With the help of fixed-
point theorems and inequalities analysis techniques, Baleanu et al. [8] and Khan et al. [9]
investigated the existence results for hybrid fractional differential equation boundary value
problems, respectively. At present, there have been a great deal of fractional integral op-
erators and their applications introduced in the books [10,11]. Furthermore, Belarbi and
Dahmani [12] used the Riemann-Liouville fractional integrals to present the Chebyshev-
type integral inequalities. In other words, if f and g are two synchronous functions on
C[0,+∞), then, for x > 0 and α > 0, the following two inequalities hold

Rα( f g)(x) ≥ Γ(α + 1)
xα

Rα f (x)Rαg(x), (2)
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and for x > 0 and α, β > 0,

xα

Γ(α + 1)
Rβ( f g)(x) +

xβ

Γ(β + 1)
Rα( f g)(x) ≥ Rα f (x)Rβg(x) +Rβ f (x)Rαg(x), (3)

where Rα and Rβ denote the Riemann-Liouville fractional integrals of order α and β,
respectively. Similar to the inequalities (2) and (3), Öğünmez and Özkan [13], Chinchane
and Pachpatte [14], Purohit and Raina [15], Habib et al. [16] and Set et al. [17] investigated
the Chebyshev-type inequalities for the Riemann-Liouville fractional q-integral operators,
the Hadamard fractional integral operators, the Saigo fractional integral and q-integral
operators, and generalized k-fractional conformable integrals, respectively. Here it is easy
to see that the Riemann-Liouville fractional integral and q-integral operators can be seen as
the special case of the Saigo fractional integral and q-integral operators, respectively.

By applying the Riemann-Liouville fractional integral operators, Dahmani [18] ob-
tained the following weighted fractional Chebyshev-type integral inequalities, which are
the extensions of inequalities (2) and (3). Under the same conditions of inequalities (2)
and (3), furthermore, let u, v : [0, ∞)→ [0, ∞) be continuous. Then we have

Rαu(x)Rα(v f g)(x) +Rαv(x)Rα(u f g)(x)

≥ Rα(u f )(x)Rα(vg)(x) +Rα(v f )(x)Rα(ug)(x), (4)

and

Rαu(x)Rβ(v f g)(x) +Rβv(x)Rα(u f g)(x)

≥ Rα(u f )(x)Rβ(vg)(x) +Rβ(v f )(x)Rα(ug)(x) (5)

for x > 0 and α, β > 0. Similar to inequalities (4) and (5), Chinchane and Pachpatte [19,20],
Brahim and Taf [21], Yang [22,23] and Liu et al. [24] studied the weighted fractional
Chebyshev-type integral inequalities for Hadamard and Saigo fractional integral oper-
ators, fractional integral operators with two parameters of deformation q1 and q2, fractional
q-integral operators, Saigo fractional integral and q-integral operators, and generalized
fractional integral operators involving the Gaüss hypergeometric function. respectively.

In the book [25], the following inequality is provided:∣∣∣∣ 1
b− a

∫ b

a
f (x)g(x)dx−

(
1

b− a

∫ b

a
f (x)dx

)(
1

b− a

∫ b

a
g(x)dx

)∣∣∣∣
≤ 1

4
(Φ2 −Φ1)(Ψ2 −Ψ1), (6)

where f and g are two integrable functions on [a, b] satisfying the following conditions

Φ1 ≤ f (x) ≤ Φ2 and Ψ1 ≤ g(x) ≤ Ψ2, Φ1, Φ2, Ψ1, Ψ2 ∈ R, x ∈ [a, b]. (7)

Here inequality (6) is well-known Grüss inequality. It has attracted extensive attention
of scholars all over the world. For example, Elezović et al. [26] derived some Grüss type
inequalities related to Chebyshev functional under the function spaces Lp with weight
function and exponents. Liu and Ngô [27] gave the inequality of Ostrowski-Grüss type
on time scales, which unified corresponding continuous, discrete and quantum calculus
versions. Dragomir [28] established some sharp Grüss type inequalities for functions with
bounded variation and selfadjoint operators in Hilbert space. Furthermore, Dragomir [29]
obtained some Grüss type inequalities for the complex integral under various assumptions.

When f , g satisfy the conditions (7), Dragomir [30] proved the following inequality

|S( f , g, u)| ≤ 1
4
(Φ2 −Φ1)(Ψ2 −Ψ1)

( ∫ b

a
u(x)dx

)2

, (8)
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where u and v are two nonnegative continuous functions on [a, b] and the Chebyshev
functionals were defined as

S( f , g, u) =
1
2

T( f , g, u, u)

=
∫ b

a
u(x)dx

∫ b

a
u(x) f (x)g(x)dx−

∫ b

a
u(x) f (x)dx

∫ b

a
u(x)g(x)dx, (9)

and

T( f , g, u, v) =
∫ b

a
v(x)dx

∫ b

a
u(x) f (x)g(x)dx +

∫ b

a
u(x)dx

∫ b

a
v(x) f (x)g(x)dx

−
∫ b

a
v(x) f (x)dx

∫ b

a
u(x)g(x)dx−

∫ b

a
u(x) f (x)dx

∫ b

a
v(x)g(x)dx. (10)

When f ′, g′ ∈ L∞(a, b), Dragomir [30] had the following inequality

|S( f , g, u)| ≤ ‖ f ′‖∞‖g′‖∞

( ∫ b

a
u(x)dx

∫ b

a
x2u(x)dx−

( ∫ b

a
xu(x)dx

)2)
. (11)

Furthermore, let f be M-g-Lipschitzian on [a, b], i.e.,

| f (x)− f (y)| ≤ M|g(x)− g(y)|, M > 0, x, y ∈ [a, b], (12)

then the following inequality holds [30]

|S( f , g, u)| ≤ M
( ∫ b

a
u(x)dx

∫ b

a
u(x)g2(x)dx−

( ∫ b

a
u(x)g(x)dx

)2)
. (13)

Let f and g be L1 and L2-lipschitzian functions on [a, b], respectively; Dragomir [30]
provided the inequality

|S( f , g, u)| ≤ L1L2

( ∫ b

a
u(x)dx

∫ b

a
x2u(x)dx−

( ∫ b

a
xu(x)dx

)2)
. (14)

Similar to inequality (6), Dahmani et al. [31] and Zhu et al. [32] studied the Grüss
type inequality for Riemann-Liouville fractional integral and q-integral operators satisfying
the conditions (7), respectively. Similar to inequality (8), Dahmani and Benzidane [33]
gave the Riemann-Liouville fractional q-integral inequality satisfying the conditions (7).
Dahmani [34] obtained the fractional integral inequalities (11), (13) and (14) for the ex-
tended Chebyshev functional (10) based on the Riemann-Liouville fractional integrals.
Based on the Riemann-Liouville fractional q-integral and integral operators, Brahim and
Taf [21,35] established the fractional q-integral and integral inequalities (11), (13) and (14)
for the extended Chebyshev functional (10) with two parameters of deformation q1 and
q2, respectively. By using the Saigo fractional integral and q-integral operators, the author
obtained the Saigo fractional integral and q-integral inequalities (8), (11), (13) and (14) for
the extended Chebyshev functional (10), respectively. Akdemir et al. [36] gave the general
variants of Chebyshev type inequalities using the generalized fractional integral operators.

In 2020, Yang et al. [37] obtained the unified fractional generalized Hadamard and
Fejér-Hadamard inequalities for m-convex functions containing extended generalized
Mittag-Leffler function. In 2021, Zhang et al. [38] investigated some inequalities for unified
fractional integral operators via strongly (α, h−m)-convex function. In 2021, Jung et al. [39]
studied the refinements of some integral inequalities for unified fractional integral operators.
Motivated by the works mentioned earlier, the main aim of this paper is to establish certain
new Chebyshev and Grüss-type inequalities for unified fractional integral operators via an
extended generalized Mittag-Leffler function by using the classical method of proofs In
Section 2. In Section 3, we show that the unified fractional integral operators contains a lot
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of existing fractional integral operators. We also introduce two newly generalized fractional
integral operators involving the Mittag-Leffler-like function and weighted function. Using
the newly introduced generalized fractional integral operators, some new fractional integral
inequalities can be also obtained. Furthermore, their relevance with known inequalities
for different kinds of fractional integral operators are pointed out. The main results of this
paper are more general and include a great number of available classical inequalities in
the literature.

2. Unified Fractional Chebyshev and Grüss-Type Integral Inequalities

In this section, we firstly introduce the definitions of the extended generalized Mittag-
Leffler function E

γ,δ,k,c
µ,α,l (t; p) and unified fractional integral operator

(
ξF

φ,γ,δ,k,c
µ,α,l,a+ ψ

)
(x; p)

as follows.

Definition 1 (See [40,41]). Let µ, α, l, γ, c ∈ C, R(µ),R(α),R(l) > 0, R(c) > R(γ) > 0 with
p ≥ 0, δ > 0 and 0 < k ≤ δ +R(µ). Then the extended generalized Mittag-Leffler function
E

γ,δ,k,c
µ,α,l (t; p) is defined by

E
γ,δ,k,c
µ,α,l (t; p) =

∞

∑
n=0

Bp(γ + nk, c− γ)

B(γ, c− γ)

(c)nk
Γ(nµ + α)

tn

(l)nδ
, (15)

where R(µ) denotes the real part of complex number, Γ and B represent the Gamma and Beta
functions, respectively. Here the generalized Pochhammer symbol (c)nk and an extension of the beta
function Bp are defined as follows:

(c)nk =
Γ(c + nk)

Γ(c)
and Bp(x, y) =

∫ 1

0
tx−1(1− t)y−1e−

p
t(1−t) dt, (16)

where R(x),R(y),R(p) > 0.

Definition 2 (See [40,41]). Let ψ, ξ : [a, b] → R, 0 < a < b, be the functions such that ψ be
positive and ψ ∈ L1[a, b], and ξ be differentiable and strictly increasing. Also let φ be a positive
function such that φ/x is an increasing on [a,+∞) and ω, µ, α, l, γ, c ∈ C, R(µ),R(α),R(l) > 0,
R(c) > R(γ) > 0 with p ≥ 0, δ > 0 and 0 < k ≤ δ +R(µ). Then for x ∈ [a, b], the left and
right unified fractional integral operators are defined by

(
ξF

φ,γ,δ,k,c
µ,α,l,a+ ψ

)
(x; p) =

∫ x

a

φ(ξ(x)− ξ(t))
ξ(x)− ξ(t)

E
γ,δ,k,c
µ,α,l (ω(ξ(x)− ξ(t))µ; p)ψ(t)d(ξ(t)), (17)

(
ξF

φ,γ,δ,k,c
µ,α,l,b− ψ

)
(x; p) =

∫ b

x

φ(ξ(t)− ξ(x))
ξ(t)− ξ(x)

E
γ,δ,k,c
µ,α,l (ω(ξ(t)− ξ(x))µ; p)ψ(t)d(ξ(t)). (18)

Here we can also define the operators
(

ζG
ϕ,γ̂,δ̂,k̂,ĉ

ν,β,ι,a+ ψ
)
(x; p) and

(
ζG

ϕ,γ̂,δ̂,k̂,ĉ
ν,β,ι,b− ψ

)
(x; p) simi-

lar to the operators in (3) and (4). For convenience, in the section,
(

ξF
φ,γ,δ,k,c
µ,α,l,a+ ψ

)
(x; p) and(

ζG
ϕ,γ̂,δ̂,k̂,ĉ

ν,β,ι,a+ ψ
)
(x; p) are abbreviated as (Fφψ)(x) and (Gϕψ)(x), respectively. Let ( f g)(x) =

f (x)g(x) and i(t) = t denote the identity operator throughout this paper and the kernel
function K t

x (E
γ,δ,k,c
µ,α,l , ξ; φ) be defined by

K t
x (E

γ,δ,k,c
µ,α,l , ξ; φ) =

φ(ξ(x)− ξ(t))
ξ(x)− ξ(t)

E
γ,δ,k,c
µ,α,l (ω(ξ(x)− ξ(t))µ; p). (19)

Remark 1. From the paper [42], the kernel function K t
x (E

γ,δ,k,c
µ,α,l , ξ; φ) given in (19) have the

following properties:
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(P1) Let ξ and φ/x be increasing functions. Then for x < z < t, x, t ∈ [a, b], the kernel
function K t

x (E
γ,δ,k,c
µ,α,l , ξ; φ) satisfies the following inequality K x

z (E γ,δ,k,c
µ,α,l , ξ; φ)ξ ′(z) ≤

K x
t (E γ,δ,k,c

µ,α,l , ξ; φ)ξ ′(z). The reverse of the foregoing inequality holds when ξ and φ/x
are decreasing.

(P2) Let ξ and φ/x be increasing functions. If φ(0) = φ′(0) = 0, then for x, t ∈ [a, b],
K t

x (E
γ,δ,k,c
µ,α,l , ξ; φ) ≥ 0.

(P3) For $, σ ∈ R, K t
x (E

γ,δ,k,c
µ,α,l , ξ; $φ1 + σφ2) = $K t

x (E
γ,δ,k,c
µ,α,l , ξ; φ1) + σK t

x (E
γ,δ,k,c
µ,α,l , ξ; φ2).

In this section, we nextly give some new Chebyshev-type integral inequalities for the
synchronous functions involving the left unified fractional integral operators.

Lemma 1. Suppose that f , g are two synchronous functions on [a, b] and let u, v be two nonnegative
continuous functions on [a, b]. Then the following inequality holds(

Fφu
)
(x)
(
Fφv f g

)
(x) +

(
Fφv

)
(x)
(
Fφu f g

)
(x)

≥
(
Fφu f

)
(x)
(
Fφvg

)
(x) +

(
Fφv f

)
(x)
(
Fφug

)
(x). (20)

Proof. Since f and g are two synchronous functions on [a, b], then for all τ > 0 and ρ > 0,
we have

( f (τ)− f (ρ))(g(τ)− g(ρ)) ≥ 0. (21)

It follows from (21) that we write

f (τ)g(τ) + f (ρ)g(ρ) ≥ f (τ)g(ρ) + f (ρ)g(τ). (22)

Multiplying both sides of (22) by v(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the obtained
inequality with regard to τ from a to x, we get(

Fφv f g
)
(x) + f (ρ)g(ρ)

(
Fφv

)
(x) ≥ g(ρ)

(
Fφv f

)
(x) + f (ρ)

(
Fφvg

)
(x). (23)

Multiplying both sides of (23) by u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the obtained
inequality with regard to ρ from a to x, we obtain(

Fφu
)
(x)
(
Fφv f g

)
(x) +

(
Fφv

)
(x)
(
Fφu f g

)
(x)

≥
(
Fφu f

)
(x)
(
Fφvg

)
(x) +

(
Fφv f

)
(x)
(
Fφug

)
(x), (24)

which implies (20).

Theorem 1. Suppose that f , g are two synchronous functions on [a, b] and let u,v,w be three
nonnegative continuous functions on [a, b]. Then the following inequality holds

2
(
Fφ
u

)
(x)
((
Fφ
v

)
(x)
(
Fφ
w f g

)
(x) +

(
Fφ
w

)
(x)
(
Fφ
v f g

)
(x)
)

+ 2
(
Fφ
v

)
(x)
(
Fφ
w

)
(x)
(
Fφ
u f g

)
(x)

≥
(
Fφ
u

)
(x)
((
Fφ
v f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
vg
)
(x)
)

+
(
Fφ
v

)
(x)
((
Fφ
u f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
ug
)
(x)
)

+
(
Fφ
v

)
(x)
((
Fφ
u f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
ug
)
(x)
)
. (25)

Proof. Putting u = v, v = w and using Lemma 1, we can write(
Fφ
v

)
(x)
(
Fφ
w f g

)
(x) +

(
Fφ
w

)
(x)
(
Fφ
v f g

)
(x)

≥
(
Fφ
v f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
vg
)
(x). (26)
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Multiplying both sides of (26) by
(
Fφ
u

)
(x), we obtain

(
Fφ
u

)
(x)
((
Fφ
v

)
(x)
(
Fφ
w f g

)
(x) +

(
Fφ
w

)
(x)
(
Fφ
v f g

)
(x)
)

≥
(
Fφ
u

)
(x)
((
Fφ
v f
)
(x)
(
Fφ
wg
)
(x; p) +

(
Fφ
w f
)
(x)
(
Fφ
vg
)
(x)
)
. (27)

Putting u = u, v = w and using Lemma 1, we can write(
Fφ
u

)
(x)
(
Fφ
w f g

)
(x) +

(
Fφ
w

)
(x)
(
Fφ
u f g

)
(x)

≥
(
Fφ
u f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
ug
)
(x). (28)

Multiplying both sides of (28) by
(
Fφ
v

)
(x), we obtain

(
Fφ
v

)
(x)
(
Fφ
u

)
(x)
(
Fφ
w f g

)
(x) +

(
Fφ
w

)
(x)
(
Fφ
u f g

)
(x)
)

≥
(
Fφ
v

)
(x)
((
Fφ
u f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
ug
)
(x)
)
. (29)

With the same arguments as before, we can get(
Fφ
v

)
(x)
(
Fφ
u

)
(x)
(
Fφ
w f g

)
(x) +

(
Fφ
w

)
(x)
(
Fφ
u f g

)
(x)
)

≥
(
Fφ
v

)
(x)
((
Fφ
u f
)
(x)
(
Fφ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Fφ
ug
)
(x)
)
. (30)

The required inequality (25) follows on adding the inequalities (27), (29) and (30).

Lemma 2. Suppose that f , g are two synchronous functions on [a, b] and let u, v be two nonnegative
continuous functions on [a, b]. Then the following inequality holds(

Fφu
)
(x)
(
Gϕv f g

)
(x) +

(
Fφv

)
(x)
(
Gϕu f g

)
(x)

≥
(
Fφu f

)
(x)
(
Gϕvg

)
(x) +

(
Fφv f

)
(x)
(
Gϕug

)
(x). (31)

Proof. Multiplying both sides of (22) by v(τ)ζ ′(τ)K τ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) (K τ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) is
defined similarly in (19)) and integrating the obtained inequality with regard to τ from a to
x, we get (

Gϕv f g
)
(x) + f (ρ)g(ρ)

(
Gϕv

)
(x) ≥ g(ρ)

(
Gϕv f

)
(x) + f (ρ)

(
Gϕvg

)
(x). (32)

Multiplying both sides of (32) by u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the obtained
inequality with regard to ρ from a to x, we obtain(

Fφu
)
(x)
(
Gϕv f g

)
(x) +

(
Fφv

)
(x)
(
Gϕu f g

)
(x)

≥
(
Fφu f

)
(x)
(
Gϕvg

)
(x) +

(
Fφv f

)
(x)
(
Gϕug

)
(x), (33)

which implies (31).

Theorem 2. Suppose that f , g are two synchronous functions on [a, b] and let u,v,w be three
nonnegative continuous functions on [a, b]. Then the following inequality holds(

Fφ
u

)
(x)
((
Fφ
w

)
(x)
(
Gϕ
v f g

)
(x) + 2

(
Fφ
v

)
(x)
(
Gϕ
w f g

)
(x) +

(
Fφ
v f g

)
(x)
(
Gϕ
w

)
(x)
)

+
(
Fφ
u f g

)
(x)
((
Fφ
v

)
(x)
(
Gϕ
w

)
(x) +

(
Fφ
w

)
(x)
(
Gϕ
v

)
(x)
)

≥
(
Fφ
u

)
(x)
((
Fφ
v f
)
(x)
(
Gϕ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Gϕ
vg
)
(x)
)

+
(
Fφ
v

)
(x)
((
Fφ
u f
)
(x)
(
Gϕ
wg
)
(x) +

(
Fφ
w f
)
(x)
(
Gϕ
ug
)
(x)
)

+
(
Fφ
w

)
(x)
((
Fφ
u f
)
(x)
(
Gϕ
vg
)
(x) +

(
Fφ
v f
)
(x)
(
Gϕ
ug
)
(x)
)
. (34)
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Proof. Putting u = v, v = w and using Lemma 2, we can write(
Fφ
v

)
(x)
(
Gϕ

w f g
)
(x) +

(
Fφ
w

)
(x)
(
Gϕ

v f g
)
(x)

≥
(
Fφ
v f
)
(x)
(
Gϕ

wg
)
(x) +

(
Fφ
w f
)
(x)
(
Gϕ

vg
)
(x). (35)

Multiplying both sides of (35) by
(
Fφ
u

)
(x), we obtain

(
Fφ
u

)
(x)
((
Fφ
v

)
(x)
(
Gϕ

w f g
)
(x) +

(
Fφ
w

)
(x)
(
Gϕ

v f g
)
(x)
)

≥
(
Fφ
u

)
(x)
((
Fφ
v f
)
(x)
(
Gϕ

wg
)
(x) +

(
Fφ
w f
)
(x)
(
Gϕ

vg
)
(x)
)
. (36)

Putting u = u, v = w and using Lemma 2, we can write(
Fφ
u

)
(x)
(
Gϕ

w f g
)
(x) +

(
Fφ
w

)
(x)
(
Gϕ

u f g
)
(x)

≥
(
Fφ
u f
)
(x)
(
Gϕ

wg
)
(x) +

(
Fφ
w f
)
(x)
(
Gϕ

ug
)
(x). (37)

Multiplying both sides of (37) by
(
Fφ
v

)
(x), we obtain

(
Fφ
v

)
(x)
((
Fφ
u

)
(x)
(
Gϕ

w f g
)
(x) +

(
Fφ
w

)
(x)
(
Gϕ

u f g
)
(x)
)

≥
(
Fφ
v

)
(x)
((
Fφ
u f
)
(x)
(
Gϕ

wg
)
(x) +

(
Fφ
w f
)
(x)
(
Gϕ

ug
)
(x)
)
. (38)

With the same arguments as before, we can get(
Fφ
w

)
(x)
((
Fφ
u

)
(x)
(
Gϕ

v f g
)
(x) +

(
Fφ
v

)
(x)
(
Gϕ

u f g
)
(x)
)

≥
(
Fφ
w

)
(x)
((
Fφ
u f
)
(x)
(
Gϕ

vg
)
(x) +

(
Fφ
v f
)
(x)
(
Gϕ

ug
)
(x)
)
. (39)

The required inequality (34) follows on adding the inequalities (36), (38) and (39).

Remark 2. The reverse of the inequalities (25) and (34) hold under the following three cases: (I) The
functions f and g asynchronous on [a, b]. (II) The weight functions u,v and w are negative on
[a, b]. (III) Two of the weight functions u,v andw are positive and the third one is negative on [a, b].

Remark 3. Let ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ, then
Lemma 2 and Theorem 2 reduce to Lemma 1 and Theorem 1, respectively.

Theorem 3. Suppose that f , g are two synchronous functions on [a, b] and let h, u be two nonneg-
ative continuous functions on [a, b]. Then the following inequality holds(

Fφu f gh
)
(x)
(
Gϕu

)
(x) +

(
Gϕu f gh

)
(x)
(
Fφu

)
(x) +

(
Fφu f g

)
(x)
(
Gϕuh

)
(x)

+
(
Gϕu f g

)
(x)
(
Fφuh

)
(x) ≥

(
Fφu f h

)
(x)
(
Gϕug

)
(x) +

(
Gϕu f h

)
(x)
(
Fφug

)
(x)

+
(
Fφugh

)
(x)
(
Gϕu f

)
(x) +

(
Gϕugh

)
(x)
(
Fφu f

)
(x). (40)

Proof. Since f and g are two synchronous functions on [a, b] and let h and u be two
nonnegative continuous functions on [a, b], then for all τ > 0 and ρ > 0, we have

( f (τ)− f (ρ))(g(τ)− g(ρ))(h(τ) + h(ρ)) ≥ 0. (41)

Expanding the left hand side of (41) that we write

h(τ) f (τ)g(τ) + h(τ) f (ρ)g(ρ) + h(ρ) f (τ)g(τ) + h(ρ) f (ρ)g(ρ)

≥ h(τ) f (τ)g(ρ) + h(τ) f (ρ)g(τ) + h(ρ) f (τ)g(ρ) + h(ρ) f (ρ)g(τ). (42)
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Multiplying both sides of (42) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the obtained
inequality with regard to τ from a to x, we get(

Fφu f gh
)
(x) + f (ρ)g(ρ)

(
Fφuh

)
(x) + h(ρ)

(
Fφu f g

)
(x) + h(ρ) f (ρ)g(ρ)

(
Fφu

)
(x)

≥ g(ρ)
(
Fφu f h

)
(x) + f (ρ)

(
Fφugh

)
(x) + h(ρ)g(ρ)

(
Fφu f

)
(x) + h(ρ) f (ρ)

(
Fφug

)
(x). (43)

Multiplying both sides of (43) by u(ρ)ζ ′(ρ)K ρ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) and integrating the obtained
inequality with regard to ρ from a to x, we obtain(

Gϕu
)
(x)
(
Fφu f gh

)
(x) +

(
Gϕu f g

)
(x)
(
Fφuh

)
(x) +

(
Gϕuh

)
(x)
(
Fφu f g

)
(x)

+
(
Gϕu f gh

)
(x)
(
Fφu

)
(x) ≥

(
Gϕug

)
(x)
(
Fφu f h

)
(x) +

(
Gϕu f

)
(x)
(
Fφugh

)
(x)

+
(
Gϕugh

)
(x)
(
Fφu f

)
(x) +

(
Gϕu f h

)
(x)
(
Fφug

)
(x), (44)

which implies (40).

Let ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ, then we have the
following corollary.

Corollary 1. Let f , g be two synchronous functions on [a, b] and let h, u be two nonnegative
continuous functions on [a, b]. Then the following inequality holds(

Fφu
)
(x)
(
Fφu f gh

)
(x) +

(
Fφuh

)
(x)
(
Fφu f g

)
(x)

≥
(
Fφu f

)
(x)
(
Fφugh

)
(x) +

(
Fφug

)
(x)
(
Fφu f h

)
(x). (45)

Remark 4. The reverse of the inequalities (40) and (45) hold under the following two cases: (I) The
functions f and g asynchronous on [a, b]. (II) The function h is negative on [a, b].

Theorem 4. Let f , g and h be three monotonic functions on [a, b] satisfying the condition

( f (τ)− f (ρ))(g(τ)− g(ρ))(h(τ)− h(ρ)) ≥ 0 for τ, ρ ∈ [a, b], (46)

and let u be a nonnegative continuous function on [a, b]. Then the following inequality holds(
Fφu f gh

)
(x)
(
Gϕu

)
(x)−

(
Gϕu f gh

)
(x)
(
Fφu

)
(x)−

(
Fφu f g

)
(x)
(
Gϕuh

)
(x)

+
(
Gϕu f g

)
(x)
(
Fφuh

)
(x) ≥

(
Fφu f h

)
(x)
(
Gϕug

)
(x)−

(
Gϕu f h

)
(x)
(
Fφug

)
(x)

+
(
Fφugh

)
(x)
(
Gϕu f

)
(x)−

(
Gϕugh

)
(x)
(
Fφu f

)
(x). (47)

Proof. The proof is similar to that given in Theorem 3.

Theorem 5. Let f , g be two integrable functions on [a, b] and let u be a nonnegative continuous
function on [a, b]. Then the following inequality holds(

Fφu f 2)(x)
(
Gϕu

)
(x) +

(
Fφu

)
(x)
(
Gϕug2)(x) ≥2

(
Fφu f

)
(x)
(
Gϕug

)
(x), (48)(

Fφu f 2)(x)
(
Gϕug2)(x) +

(
Gϕu f 2)(x)

(
Fφug2)(x) ≥2

(
Fφu f g

)
(x)
(
Gϕu f g

)
(x). (49)

Proof. Since ( f (τ)− g(ρ))2 ≥ 0 for any τ, ρ ∈ [a, b], then

f 2(τ) + g2(ρ) ≥ 2 f (τ)g(ρ) for τ, ρ ∈ [a, b], (50)

Multiplying both sides of (50) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)u(ρ)ζ ′(ρ)K ρ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) and
integrating the obtained inequality with regard to τ and ρ from a to x, respectively, we get(

Fφu f 2)(x)
(
Gϕu

)
(x) +

(
Fφu

)
(x)
(
Gϕug2)(x) ≥ 2

(
Fφu f

)
(x)
(
Gϕug

)
(x), (51)
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which implies (48). Since ( f (τ)g(ρ)− f (ρ)g(τ))2 ≥ 0 for any τ, ρ ∈ [a, b], then

f 2(τ)g2(ρ) + f 2(ρ)g2(τ) ≥ 2 f (τ)g(τ) f (ρ)g(ρ) for τ, ρ ∈ [a, b], (52)

Multiplying both sides of (52) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)u(ρ)ζ ′(ρ)K ρ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) and
integrating the obtained inequality with regard to τ and ρ from a to x, respectively, we get(

Fφu f 2)(x)
(
Gϕug2)(x) +

(
Fφug2)(x)

(
Gϕu f 2)(x) ≥ 2

(
Fφu f g

)
(x)
(
Gϕu f g

)
(x), (53)

which implies (49).

Let ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ, then we have the
following corollary.

Corollary 2. Let f , g be two integrable functions on [a, b] and let u be a nonnegative continuous
function on [a, b]. Then the following inequality holds(

Fφu
)
(x)
((

Fφu f 2)(x) +
(
Fφug2)(x)

)
≥ 2

(
Fφu f

)
(x)
(
Fφug

)
(x), (54)(

Fφug2)(x)
(
Fφu f 2)(x) ≥

((
Fφu f g

)
(x)
)2 (Cauchy-Schwartz type inequality). (55)

Theorem 6. Suppose that f , g are two integrable functions satisfying the condition (7) on [a, b]
and let u, v be two nonnegative continuous functions on [a, b]. Then the following inequality holds∣∣(Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤
(
Fφu

)
(x)
(
Gϕv

)
(x)(Φ2 −Φ1)(Ψ2 −Ψ1). (56)

Proof. Let H(τ, ρ) be defined by

H(τ, ρ) = ( f (τ)− f (ρ))(g(τ)− g(ρ)), ∀τ, ρ ∈ [a, b]. (57)

Multiplying (57) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) and inte-
grating the resulting result with respect to τ and ρ from a to x, respectively, we can get∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)H(τ, ρ)dτdρ

=
(
Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x). (58)

According to the condition (7), we have

|H(τ, ρ)| = | f (τ)− f (ρ)||g(τ)− g(ρ)| ≤ (Φ2 −Φ1)(Ψ2 −Ψ1), ∀τ, ρ ∈ [a, b]. (59)

Combining (58) and (59), we obtain that∣∣(Fφu
)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)|H(τ, ρ)|dτdρ

≤
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)(Φ2 −Φ1)(Ψ2 −Ψ1)dτdρ

=
(
Fφu

)
(x)
(
Gϕv

)
(x)(Φ2 −Φ1)(Ψ2 −Ψ1). (60)

This ends the proof.

Theorem 7. Suppose that f , g are two integrable functions satisfying the condition (12) and let
u, v be two nonnegative continuous functions on [a, b]. Then the following inequality holds



Fractal Fract. 2022, 6, 182 10 of 27

∣∣(Fφu
)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤ M
(
Fφu

)
(x)
(
Gϕvg2)(x) +

(
Gϕv

)
(x)
(
Fφug2)(x)− 2

(
Fφug

)
(x)
(
Gϕvg

)
(x)
)

. (61)

Proof. From the condition (12), we have

| f (τ)− f (ρ)| ≤ M|g(τ)− g(ρ)|, ∀τ, ρ ∈ [a, b]. (62)

According to (57) and (62), we obtain

|H(τ, ρ)| = | f (τ)− f (ρ)||g(τ)− g(ρ)| ≤ M(g(τ)− g(ρ))2. (63)

Combining (58) and (63), we get that∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)|H(τ, ρ)|dτdρ

≤
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)M(g(τ)− g(ρ))2dτdρ

= M
(
Fφu

)
(x)
(
Gϕvg2)(x) +

(
Gϕv

)
(x)
(
Fφug2)(x)− 2

(
Fφug

)
(x)
(
Gϕvg

)
(x)
)

. (64)

This completes the proof.

Theorem 8. Suppose that f , g are two integrable functions satisfying the lipschitzian condition
with the constants L1, L2 and let u, v be two nonnegative continuous functions on [a, b]. Then
we have∣∣(Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤ L1L2

((
Fφu

)
(x)
(
Gϕi2v

)
(x) +

(
Gϕv

)
(x)
(
Fφi2u

)
(x)− 2

(
Fφiu

)
(x)
(
Gϕiv

)
(x)
)

. (65)

Proof. From the conditions of Theorem 8, we have

| f (τ)− f (ρ)| ≤ L1|τ − ρ| and |g(τ)− g(ρ)| ≤ L2|τ − ρ|, τ, ρ ∈ [a, b], (66)

which implies that

|H(τ, ρ)| = | f (τ)− f (ρ)||g(τ)− g(ρ)| ≤ L1L2(τ − ρ)2. (67)

Combining (58) and (67), we get that∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)|H(τ, ρ)|dτdρ

≤
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)L1L2(τ − ρ)2dτdρ

= L1L2

((
Fφu

)
(x)
(
Gϕi2v

)
(x) +

(
Gϕv

)
(x)
(
Fφi2u

)
(x)− 2

(
Fφiu

)
(x)
(
Gϕiv

)
(x)
)

. (68)

This ends the proof of Theorem 8.

Corollary 3. Let f , g be two differentiable functions on [a, b] and let u, v be two nonnegative
continuous functions on [a, b]. Then the following inequality holds∣∣(Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤ ‖ f ′‖∞‖g′‖∞

((
Fφu

)
(x)
(
Gϕi2v

)
(x) +

(
Gϕv

)
(x)
(
Fφi2u

)
(x)− 2

(
Fφiu

)
(x)
(
Gϕiv

)
(x)
)

. (69)
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Proof. We have f (τ)− f (ρ) =
∫ τ

ρ f ′(t)dt and g(τ)− g(ρ) =
∫ τ

ρ g′(t)dt. That is, | f (τ)−
f (ρ)| ≤ ‖ f ′‖∞|τ − ρ|, |g(τ)− g(ρ)| ≤ ‖g′‖∞|τ − ρ|, τ, ρ ∈ [0, ∞), and the result follows
from Theorem 8. This completes the proof.

Theorem 9. Suppose that f , g are two integrable functions satisfying f ′ ∈ Lp[a, b], g′ ∈ Lq[a, b]
and let u be a nonnegative continuous function on [a, b], p,q, r > 1 with 1/p+ 1/p′ = 1, 1/q+
1/q′ = 1 and 1/r+ 1/r′ = 1. Then the following weighted fractional integral inequality holds

2
∣∣(Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣

≤ ‖ f ′‖p‖g′‖q
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)|τ − ρ|

1
p′ +

1
q′ dτdρ. (70)

Proof. Multiplying both sides of (57) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ;
φ) and integrating the given result with respect to τ and ρ from a to x, we can state that

∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)H(τ, ρ)dτdρ

= 2
((
Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
)
. (71)

On the other hand, from (57), we have

H(τ, ρ) =
∫ τ

ρ

∫ τ

ρ
f ′(θ)g′(ϑ)dθdϑ, ∀τ, ρ ∈ [a, b]. (72)

By employing the Hölder inequality, we obtain

| f (τ)− f (ρ)| ≤ |τ − ρ|
1
p′
∣∣∣∣∫ τ

ρ
| f ′(θ)|pdθ

∣∣∣∣ 1
p

and |g(τ)− g(ρ)| ≤ |τ − ρ|
1
q′
∣∣∣∣∫ τ

ρ
|g′(θ)|qdθ

∣∣∣∣ 1
q

. (73)

Combining (72) and (73), we get

|H(τ, ρ)| ≤ |τ − ρ|
1
p′ +

1
q′
∣∣∣∣∫ τ

ρ
| f ′(θ)|pdθ

∣∣∣∣ 1
p

∣∣∣∣∫ τ

ρ
|g′(θ)|qdθ

∣∣∣∣ 1
q

. (74)

According to inequalities (71) and (74), we can write

2
∣∣(Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣ ≤ ∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)

× u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ; φ)|τ − ρ|
1
p′ +

1
q′
∣∣∣∣∫ τ

ρ
| f ′(θ)|pdθ

∣∣∣∣ 1
p

∣∣∣∣∫ τ

ρ
|g′(θ)|qdθ

∣∣∣∣ 1
q

dτdρ. (75)

Applying the double integral Hölder inequality to (75), we obtain

2
∣∣(Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣

≤
( ∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)|τ − ρ|

1
p′ +

1
q′
∣∣∣∣∫ τ

ρ
| f ′(θ)|pdθ

∣∣∣∣ rp dτdρ

) 1
r

×
( ∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)|τ − ρ|

1
p′ +

1
q′
∣∣∣∣∫ τ

ρ
|g′(θ)|qdθ

∣∣∣∣ r
′
q

dτdρ

) 1
r′

. (76)

Using the following properties∣∣∣∣∫ τ

ρ
| f ′(θ)|pdθ

∣∣∣∣ 1
p

≤ ‖ f ′‖pp and
∣∣∣∣∫ τ

ρ
|g′(θ)|qdθ

∣∣∣∣ 1
q

≤ ‖g′‖qq, (77)

then (76) can be rewritten as
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2
∣∣(Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣

≤
(
‖ f ′‖rp

∫ x

a

∫ x

a
u(τ)ξ ′(τ)u(ρ)ξ ′(ρ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)K

ρ
x (E γ,δ,k,c

µ,α,l , ξ; φ)|τ − ρ|
1
p′ +

1
q′ dτdρ

) 1
r

×
(
‖g′‖r′q

∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)|τ − ρ|

1
p′ +

1
q′ dτdρ

) 1
r′

=‖ f ′‖p‖g′‖q ×
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)|τ − ρ|

1
p′ +

1
q′ dτdρ, (78)

which completes the desired proof.

Now we follow the proof of Theorems 6 and 9, we can get the following result.

Theorem 10. Suppose that f , g are two integrable functions satisfying f ′ ∈ Lp[a, b], g′ ∈ Lq[a, b]
and let u, v be two nonnegative continuous functions on [a, b], p,q, r > 1 with 1/p+ 1/p′ =
1, 1/q + 1/q′ = 1 and 1/r + 1/r′ = 1. Then the following weighted fractional integral
inequality holds∣∣(Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤ ‖ f ′‖p‖g′‖q
∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ

x (E γ̂,δ̂,k̂,ĉ
ν,β,ι , ζ; ϕ)|τ − ρ|

1
p′ +

1
q′ dτdρ. (79)

Remark 5. Let ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ, then
Theorem 10 reduces to Theorem 9. Let p = q = 2 in Theorem 10, (79) can give the similar result
with the inequality (69).

Nextly, we establish some new Grüss-type integral inequalities involving the left
unified fractional integral operators.

Lemma 3. Let f be an integrable function satisfying the condition (7) and let u be a continuous
function on [a, b]. Then we have the following equation(

Fφu
)
(x)
(
Fφu f 2)(x)−

((
Fφu f

)
(x)
)2

=
(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)

−
(
Fφu

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x). (80)

Proof. Since f is an integrable function satisfying the condition Φ1 ≤ f (x) ≤ Φ2 for all
x ∈ [a, b]. For any ρ, τ ∈ [a, b], we have

(Φ2 − f (ρ))( f (τ)−Φ1) + (Φ2 − f (τ))( f (ρ)−Φ1)− (Φ2 − f (τ))( f (τ)−Φ1)− (Φ2 − f (ρ))( f (ρ)−Φ1)

= f 2(τ) + f 2(ρ)− 2 f (ρ) f (τ). (81)

Multiplying both sides of (81) by u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the ob-
tained equality with regard to ρ from a to x, we have

( f (τ)−Φ1)
(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)
+ (Φ2 − f (τ))

((
Fφu f

)
(x)−Φ1

(
Fφu

)
(x)
)
− (Φ2 − f (τ))( f (τ)−Φ1)

(
Fφu

)
(x)

−
(
Fφu(Φ2 − f )( f −Φ1)

)
(x) = f 2(τ)

(
Fφu

)
(x) +

(
Fφu f 2)(x)− 2 f (τ)

(
Fφu f

)
(x). (82)

Multiplying both sides of (82) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the ob-
tained equality with regard to τ from a to x, we have((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)(

Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)
+
(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)
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−
(
Fφu(Φ2 − f )( f −Φ1)

)
(x)
(
Fφu

)
(x)−

(
Fφu

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x)

=
(
Fφu f 2)(x)

(
Fφu

)
(x) +

(
Fφu

)
(x)
(
Fφu f 2)(x)− 2

(
Fφu f

)
(x)
(
Fφu f

)
(x), (83)

which gives (80).

Theorem 11. Suppose that f , g are two integrable functions satisfying the condition (7) and let u
be a nonnegative continuous function on [a, b]. Then we have the following inequality∣∣(Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣ ≤ 1

4
(Φ2 −Φ1)(Ψ2 −Ψ1)

((
Fφu

)
(x)
)2. (84)

Proof. Multiplying both sides of (57) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ;
φ) and integrating the resulting identity with respect to τ and ρ from a to x, we can state

∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)H(τ, ρ)dτdρ

= 2
((
Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
)
. (85)

Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we
can write that( ∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)H(τ, ρ)dτdρ

)2

≤
( ∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)( f (τ)− f (ρ))2dτdρ

)
×
( ∫ x

a

∫ x

a
u(τ)ξ ′(τ)K τ

x (E γ,δ,k,c
µ,α,l , ξ; φ)u(ρ)ξ ′(ρ)K ρ

x (E γ,δ,k,c
µ,α,l , ξ; φ)(g(τ)− g(ρ))2dτdρ

)
= 4

((
Fφu

)
(x)
(
Fφu f 2)(x)−

((
Fφu f

)
(x)
)2
)((

Fφu
)
(x)
(
Fφug2)(x)−

((
Fφug

)
(x)
)2
)

. (86)

Since (Φ2 − f (τ))( f (τ)−Φ1) ≥ 0 and (Ψ2 − g(τ))(g(τ)−Ψ1) ≥ 0, we have(
Fφu

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x) ≥ 0 and

(
Fφu

)
(x)
(
Fφu(Ψ2 − g)(g−Ψ1)

)
(x) ≥ 0. (87)

Thus, from (87) and Lemma 3, we get(
Fφu

)
(x)
(
Fφu f 2)(x)−

((
Fφu f

)
(x)
)2 ≤

(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)
, (88)(

Fφu
)
(x)
(
Fφug2)(x)−

((
Fφug

)
(x)
)2 ≤

(
Ψ2
(
Fφu

)
(x)−

(
Fφug

)
(x)
)((

Fφug
)
(x)−Ψ1

(
Fφu

)
(x)
)
. (89)

Combining (85), (86), (88) and (89), we deduce that((
Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
)2 ≤

(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)

×
(
Ψ2
(
Fφu

)
(x)−

(
Fφug

)
(x)
)((

Fφug
)
(x)−Ψ1

(
Fφu

)
(x)
)
. (90)

Now using the elementary inequality 4xy ≤ (x + y)2, x, y ∈ R, we can state that

4
(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)
≤
(
(Φ2 −Φ1)

(
Fφu

)
(x)
)2, (91)

4
(
Ψ2
(
Fφu

)
(x)−

(
Fφug

)
(x)
)((

Fφug
)
(x)−Ψ1

(
Fφu

)
(x)
)
≤
(
(Ψ2 −Ψ1)

(
Fφu

)
(x)
)2. (92)

From (90)–(92), we obtain (84). This complete the proof of Theorem 11.

Remark 6. Let ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ in Theorem 6,
then inequality (56) can be rewritten as
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∣∣(Fφu
)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣ ≤ 1

2
(Φ2 −Φ1)(Ψ2 −Ψ1)

((
Fφu

)
(x)
)2. (93)

From (84) and (93), it is easy to see that (84) is better than (93).

Lemma 4. Let f , g be two integrable functions on [a, b] and let u, v be two nonnegative continuous
functions on [a, b]. Then the following inequality holds((

Fφu
)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
)2

≤
((

Fφu
)
(x)
(
Gϕv f 2)(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Fφu f

)
(x)
(
Gϕv f

)
(x)
)

×
((

Fφu
)
(x)
(
Gϕvg2)(x) +

(
Gϕv

)
(x)
(
Fφug2)(x)− 2

(
Fφug

)
(x)
(
Gϕvg

)
(x)
)

. (94)

Proof. Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, it
follows from (58) that we obtain (93).

Lemma 5. Let f be an integrable function on [a, b] and let u and v be two nonnegative continuous
functions on [a, b]. Then we have the following equation(

Fφu
)
(x)
(
Gϕv f 2)(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Fφu f

)
(x)
(
Gϕv f

)
(x)

=
(
Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Gϕv f
)
(x)−Φ1

(
Gϕv

)
(x)
)
−
(
Fφu

)
(x)
(
Gϕv(Φ2 − f )( f −Φ1)

)
(x)

+
((
Fφu f

)
(x)−Φ1

(
Fφu

)
(x)
)(

Φ2
(
Gϕv

)
(x)−

(
Gϕv f

)
(x)
)
−
(
Gϕv

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x). (95)

Proof. Multiplying both sides of (82) by v(τ)ζ ′(τ)K τ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι,a+ , ζ; ϕ) and integrating the
obtained equation with respect to τ from a to y, we have((

Gϕv f
)
(x)−Φ1

(
Gϕv

)
(x)
)(

Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)
−
(
Fφu

)
(x)
(
Gϕv(Φ2 − f )( f −Φ1)

)
(x)

+
(
Φ2
(
Gϕv

)
(x)−

(
Gϕv f

)
(x)
)((

Fφu f
)
(x)−Φ1

(
Fφu

)
(x)
)
−
(
Gϕv

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x)

=
(
Gϕv f 2)(x)

(
Fφu

)
(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Gϕv f

)
(x)
(
Fφu f

)
(x). (96)

which gives (95) and proves the Lemma 5.

Remark 7. Let ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ, then
Lemma 5 reduces to Lemma 3.

Theorem 12. Suppose that f , g are two integrable functions on [a, b] satisfying the condition (7)
and let u, v be two nonnegative continuous functions on [a, b]. Then we have((

Fφu
)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
)2

≤
((

Φ2
(
Fφu

)
(x)−

(
Fφu f

)
(x)
)((

Gϕv f
)
(x)−Φ1

(
Gϕv

)
(x)
)
+
(
Φ2
(
Gϕv

)
(x)−

(
Gϕv f

)
(x)
)

×
((
Fφu f

)
(x)−Φ1

(
Fφu

)
(x)
))((

Ψ2
(
Fφu

)
(x)−

(
Fφug

)
(x)
)((

Gϕvg
)
(x)−Ψ1

(
Gϕv

)
(x)
)

+
(
Ψ2
(
Gϕv

)
(x)−

(
Gϕv f

)
(x)
)((

Fφug
)
(x)−Ψ1

(
Fφu

)
(x)
))

. (97)

Proof. Since (Φ2 − f (τ))( f (τ)−Φ1) ≥ 0 and (Ψ2 − g(τ))(g(τ)−Ψ1) ≥ 0, we have

−
(
Fφu

)
(x)
(
Gϕv(Φ2 − f )( f −Φ1)

)
(x)−

(
Gϕv

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x) ≤0, (98)

−
(
Fφu

)
(x)
(
Gϕv(Ψ2 − g)(g−Ψ1)

)
(x)−

(
Gϕv

)
(x)
(
Fφu(Ψ2 − g)(g−Ψ1)

)
(x) ≤0. (99)

Applying Lemma 5 to f and g, and using (98), (99) and Lemma 4, we obtain (97).



Fractal Fract. 2022, 6, 182 15 of 27

Theorem 13. Let f be an integrable function on [a, b] and let u and v be two nonnegative con-
tinuous functions on [a, b]. Suppose that there exist two integrable functions Φ1, Φ2 on [a, b]
such that

Φ1(t) ≤ f (t) ≤ Φ2(t), ∀t ∈ [a, b]. (100)

Then the following inequality holds:(
FφuΦ2

)
(x)
(
Gϕv f

)
(x) +

(
GϕvΦ1

)
(x)
(
Fφu f

)
(x) ≥

(
GϕvΦ1

)
(x)
(
FφuΦ2

)
(x) +

(
Fφu f

)
(x)
(
Gϕv f

)
(x). (101)

Proof. Since Φ1(t) ≤ f (t) ≤ Φ2(t), ∀t ∈ [a, b], we have

(Φ2(τ)− f (τ))( f (ρ)−Φ1(ρ)) ≥ 0, ∀τ, ρ ∈ [a, b]. (102)

This implies that

Φ2(τ) f (ρ) + Φ1(ρ) f (τ) ≥ Φ1(ρ)Φ2(τ) + f (τ) f (ρ), ∀τ, ρ ∈ [a, b]. (103)

Multiplying (103) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ
y (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) and inte-
grating the given inequality with respect to τ and ρ from a to x and a to y, respectively, we
can get(

FφuΦ2
)
(x)
(
Gϕv f

)
(x) +

(
GϕvΦ1

)
(x)
(
Fφu f

)
(x) ≥

(
GϕvΦ1

)
(x)
(
FφuΦ2

)
(x) +

(
Fφu f

)
(x)
(
Gϕv f

)
(x), (104)

which gives (101).

Let Φ1(t) = Φ1 and Φ2(t) = Φ2 in Theorem 13, we have the following corollary.

Corollary 4. Let f be an integrable function on [a, b] satisfying the condition (7). Then we have

Φ2
(
Fφu

)
(x)
(
Gϕv f

)
(x) + Φ1

(
Gϕv

)
(x)
(
Fφu f

)
(x) ≥ Φ1Φ2

(
Gϕv

)
(x)
(
Fφu

)
(x) +

(
Fφu f

)
(x)
(
Gϕv f

)
(x). (105)

Theorem 14. Let f , g be two integrable functions on [a, b] and let u, v be two nonnegative contin-
uous functions on [a, b]. Suppose that there exist two integrable functions Φ1, Φ2, Ψ1, Ψ2 on [a, b]
such that

Φ1(t) ≤ f (t) ≤ Φ2(t) and Ψ1(t) ≤ g(t) ≤ Ψ2(t), ∀t ∈ [a, b]. (106)

Then the following inequalities hold:

(A1)
(
FφuΦ2

)
(x)
(
Gϕvg

)
(x) +

(
GϕvΨ1

)
(x)
(
Fφu f

)
(x) ≥

(
GϕvΨ1

)
(x)
(
FφuΦ2

)
(x) +

(
Fφu f

)
(x)
(
Gϕvg

)
(x).

(A2)
(
Fφu f

)
(x)
(
GϕvΨ2

)
(x) +

(
Gϕvg

)
(x)
(
FφuΦ1

)
(x) ≥

(
GϕvΨ2

)
(x)
(
FφuΦ1

)
(x) +

(
Fφu f

)
(x)
(
Gϕvg

)
(x).

(A3)
(
FφuΦ2

)
(x)
(
GϕvΨ2

)
(x) +

(
Gϕvg

)
(x)
(
Fφu f

)
(x) ≥

(
GϕvΨ2

)
(x)
(
Fφu f

)
(x) +

(
FφuΦ2

)
(x)
(
Gϕvg

)
(x).

(A4)
(
Fφu f

)
(x)
(
Gϕvg

)
(x) +

(
GϕvΨ1

)
(x)
(
FφuΦ1

)
(x) ≥

(
Gϕvg

)
(x)
(
FφuΦ1

)
(x) +

(
Fφu f

)
(x)
(
GϕvΨ1

)
(x).

Proof. Since Φ1(t) ≤ f (t) ≤ Φ2(t) and Ψ1(t) ≤ g(t) ≤ Ψ2(t), ∀t ∈ [a, b], we have

(Φ2(τ)− f (τ))(g(ρ)−Ψ1(ρ)) ≥ 0, ∀τ, ρ ∈ [a, b]. (107)

This implies that

Φ2(τ)g(ρ) + Ψ1(ρ) f (τ) ≥ Ψ1(ρ)Φ2(τ) + f (τ)g(ρ), ∀τ, ρ ∈ [a, b]. (108)

Multiplying (108) by u(τ)ξ ′(τ)K τ
x (E γ,δ,k,c

µ,α,l , ξ; φ)v(ρ)ζ ′(ρ)K ρ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι , ζ; ϕ) and inte-
grating the resulting result with regard to τ and ρ from a to x and a to y, respectively, we
can get
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(
FφuΦ2

)
(x)
(
Gϕvg

)
(x) +

(
GϕvΨ1

)
(x)
(
Fφu f

)
(x) ≥

(
GϕvΨ1

)
(x)
(
FφuΦ2

)
(x) +

(
Fφu f

)
(x)
(
Gϕvg

)
(x), (109)

which gives (A1). To prove (A2)-(A4), we follow the proof of (A1) by letting (A2) ( f (τ)−
Φ1(τ))(Ψ2(ρ)− g(ρ)) ≥ 0, ∀τ, ρ ∈ [a, b]; (A3) (Φ2(τ)− f (τ))(Ψ2(ρ)− g(ρ)) ≥ 0, ∀τ, ρ ∈
[a, b]; (A4) ( f (τ)−Φ1(τ))(g(ρ)− Ψ1(ρ)) ≥ 0, ∀τ, ρ ∈ [a, b]. This completes the proof of
Theorem 14.

Let Φ1(t) = Φ1, Φ2(t) = Φ2, Ψ1(t) = Ψ1 and Ψ2(t) = Ψ2 in Theorem 14, we have the
following corollary.

Corollary 5. Let f , g be two integrable functions on [a, b] satisfying the condition (7) and let u, v
be two nonnegative continuous functions on [a, b]. Then the following inequalities hold:

(B1) Φ2
(
Fφu

)
(x)
(
Gϕvg

)
(x) + Ψ1

(
Gϕv

)
(x)
(
Fφu f

)
(x) ≥ Ψ1Φ2

(
Gϕv

)
(x)
(
Fφu

)
(x) +

(
Fφu f

)
(x)
(
Gϕvg

)
(x).

(B2) Ψ2
(
Fφu f

)
(x)
(
Gϕv

)
(x) + Φ1

(
Gϕvg

)
(x)
(
Fφu

)
(x) ≥ Φ1Ψ2

(
Gϕv

)
(x)
(
Fφu

)
(x) +

(
Fφu f

)
(x)
(
Gϕvg

)
(x).

(B3) Φ2Ψ2
(
Fφu

)
(x)
(
Gϕv

)
(x) +

(
Gϕvg

)
(x)
(
Fφu f

)
(x) ≥ Ψ2

(
Gϕv

)
(x)
(
Fφu f

)
(x) + Φ2

(
Fφu

)
(x)
(
Gϕvg

)
(x).

(B4)
(
Fφu f

)
(x)
(
Gϕvg

)
(x) + Φ1Ψ1

(
Gϕv

)
(x)
(
Fφu

)
(x) ≥ Φ1

(
Gϕvg

)
(x)
(
Fφu

)
(x) + Ψ1

(
Fφu f

)
(x)
(
Gϕv

)
(x).

Let φ(x) = xα and ψ(t) = (ξ(t)− ξ(a))κ−1 in Definition 2 for κ > 0, then we have the
following equation:

(
Fφψ

)
(x) =

∫ x

a

φ(ξ(x)− ξ(t))
ξ(x)− ξ(t)

E
γ,δ,k,c
µ,α,l (ω(ξ(x)− ξ(t))µ; p)ψ(t)d(ξ(t))

=
∫ x

a
(ξ(x)− ξ(t))α−1E

γ,δ,k,c
µ,α,l (ω(ξ(x)− ξ(t))µ; p)(ξ(t)− ξ(a))κ−1d(ξ(t))

u=ξ(t)
=====

∫ ξ(x)

ξ(a)
(ξ(x)− u)α−1(u− ξ(a))κE

γ,δ,k,c
µ,α,l (ω(ξ(x)− u)µ; p)du

=
∫ ξ(x)

ξ(a)
(ξ(x)− u)α−1(u− ξ(a))κ−1

∞

∑
n=0

Bp(γ + nk, c− γ)

B(γ, c− γ)

(c)nk
Γ(nµ + α)

ωn

(l)nδ
(ξ(x)− u)nµdu

=
∞

∑
n=0

Bp(γ + nk, c− γ)

B(γ, c− γ)

(c)nk
Γ(nµ + α)

ωn

(l)nδ

∫ ξ(x)

ξ(a)
(ξ(x)− u)nµ+α−1(u− ξ(a))κ−1du. (110)

Here we use the substitution u = ξ(x)− s(ξ(x)− ξ(a)) to obtain

∫ ξ(x)

ξ(a)
(ξ(x)− u)nµ+α−1(u− ξ(a))κ−1du =(ξ(x)− ξ(a))nµ+α+κ−1

∫ 1

0
snµ+α−1(1− s)κ−1ds

=(ξ(x)− ξ(a))nµ+α+κ−1B(nµ + α, κ). (111)

Based on the inequalities (110) and (111), we can get

(
Fφψ

)
(x) =

∞

∑
n=0

Bp(γ + nk, c− γ)

B(γ, c− γ)

(c)nk
Γ(nµ + α)

ωn

(l)nδ
(ξ(x)− ξ(a))nµ+α+κ−1B(nµ + α, κ)

=(ξ(x)− ξ(a))α+κ−1
∞

∑
n=0

Bp(γ + nk, c− γ)

B(γ, c− γ)

(c)nk
Γ(nµ + α)

ωn(ξ(x)− ξ(a))nµ

(l)nδ

Γ(nµ + α)Γ(κ)
Γ(nµ + α + κ)

=Γ(κ)(ξ(x)− ξ(a))α+κ−1E
γ,δ,k,c
µ,α+κ,l(ω(ξ(x)− ξ(a))µ; p). (112)
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Letting u(t) = v(t) = 1, ζ(x) = ξ(x), φ(x) = xα, ϕ(x) = xβ, ψ1(t) = (ξ(t) −
ξ(a))κ−1 and ψ2(t) = (ξ(t)− ξ(a))η−1 in Theorems 13 and 14, according to the inequalities
(110)–(112), we obtain the following equations:(

Fφψ1
)
(x) =Γ(κ)(ξ(x)− ξ(a))α+κ−1E

γ,δ,k,c
µ,α+κ,l(ω(ξ(x)− ξ(a))µ; p), (113)

(
Gϕψ1

)
(x) =Γ(κ)(ξ(x)− ξ(a))β+κ−1E

γ̂,δ̂,k̂,ĉ
ν,β+η,ι(ω(ξ(x)− ξ(a))ν; p), (114)

(
Gϕψ2

)
(x) =Γ(η)(ξ(x)− ξ(a))β+η−1E

γ̂,δ̂,k̂,ĉ
ν,β+η,ι(ω(ξ(x)− ξ(a))ν; p). (115)

Based on Theorems 13 and 14, we give directly the following corollaries.

Corollary 6. Let f be an integrable function on [a, b] satisfying

Φ1(ξ(t)− ξ(a))κ−1 ≤ f (t) ≤ Φ2(ξ(t)− ξ(a))κ−1 (116)

for ∀t ∈ [a, b], κ > 0 and Ψ1, Ψ2 ∈ R. Then the following inequality holds:

Φ2
(
Fφψ1

)
(x)
(
Gϕ f

)
(x) + Φ1

(
Gϕψ1

)
(x)
(
Fφ f

)
(x) ≥ Φ1Φ2

(
Fφψ1

)
(x)
(
Gϕψ1

)
(x) +

(
Fφ f

)
(x)
(
Gϕ f

)
(x). (117)

Corollary 7. Suppose that there exist two integrable functions Φ1, Φ2 on [a, b] such that

Φ1(t) ≤ (ξ(t)− ξ(a))κ−1 ≤ Φ2(t), ∀t ∈ [a, b]. (118)

Then the following inequality holds:(
Fφψ1

)
(x)
(
GϕΦ1

)
(x) +

(
Gϕψ1

)
(x)
(
FφΦ2

)
(x) ≥

(
GϕΦ1

)
(x)
(
FφΦ2

)
(x) +

(
Fφψ1

)
(x)
(
Gϕψ1

)
(x). (119)

Corollary 8. Let f and g be two integrable functions on [a, b] satisfying (116) and

Ψ1(ξ(t)− ξ(a))η−1 ≤ f (t) ≤ Ψ2(ξ(t)− ξ(a))η−1 (120)

for ∀t ∈ [a, b], η > 0 and Ψ1, Ψ2 ∈ R. Then the following inequalities hold:

(C1) Φ2
(
Fφψ1

)
(x)
(
Gϕg

)
(x) + Ψ1

(
Gϕψ2

)
(x)
(
Fφ f

)
(x) ≥ Ψ1Φ2

(
Fφψ1

)
(x)
(
Gϕψ2

)
(x) +

(
Fφ f

)
(x)
(
Gϕg

)
(x).

(C2) Ψ2
(
Gϕψ2

)
(x)
(
Fφ f

)
(x) + Φ1

(
Fφψ1

)
(x)
(
Gϕg

)
(x) ≥ Φ1Ψ2

(
Fφψ1

)
(x)
(
Gϕψ2

)
(x) +

(
Fφ f

)
(x)
(
Gϕg

)
(x).

(C3) Φ2Ψ2
(
Fφψ1

)
(x)
(
Gϕψ2

)
(x) +

(
Gϕg

)
(x)
(
Fφ f

)
(x) ≥ Ψ2

(
Gϕψ2

)
(x)
(
Fφ f

)
(x) + Φ2

(
Fφψ1

)
(x)
(
Gϕg

)
(x).

(C4)
(
Fφ f

)
(x)
(
Gϕg

)
(x) + Φ1Ψ1

(
Fφψ1

)
(x)
(
Gϕψ2

)
(x) ≥ Φ1

(
Fφψ1

)
(x)
(
Gϕg

)
(x) + Ψ1

(
Gϕψ2

)
(x)
(
Fφ f

)
(x).

Corollary 9. Suppose that there exist two integrable functions Φ1, Φ2 on [a, b] such that

Φ1(t) ≤ (ξ(t)− ξ(a))κ−1 ≤ Φ2(t) and Ψ1(t) ≤ (ξ(t)− ξ(a))η−1 ≤ Ψ2(t) (121)

for ∀t ∈ [a, b]. Then the following inequalities hold:

(D1)
(
Gϕψ2

)
(x)
(
FφΦ2

)
(x) +

(
Fφψ1

)
(x)
(
GϕΨ1

)
(x) ≥

(
GϕΨ1

)
(x)
(
FφΦ2

)
(x) +

(
Fφψ1

)
(x)
(
Gϕψ2

)
(x).

(D2)
(
Fφψ1

)
(x)
(
GϕΨ2

)
(x) +

(
Gϕψ2

)
(x)
(
FφΦ1

)
(x) ≥

(
GϕΨ2

)
(x)
(
FφΦ1

)
(x) +

(
Fφψ1

)
(x)
(
Gϕψ2

)
(x).

(D3)
(
FφΦ2

)
(x)
(
GϕΨ2

)
(x) +

(
Fφψ1

)
(x)
(
Gϕψ2

)
(x) ≥

(
Fφψ1

)
(x)
(
GϕΨ2

)
(x) +

(
Gϕψ2

)
(x)
(
FφΦ2

)
(x).

(D4)
(
Fφψ1

)
(x)
(
Gϕψ2

)
(x) +

(
GϕΨ1

)
(x)
(
FφΦ1

)
(x) ≥

(
Gϕψ2

)
(x)
(
FφΦ1

)
(x) +

(
Fφψ1

)
(x)
(
GϕΨ1

)
(x).

Lemma 6. Let f be an integrable function on [a, b] satisfying the condition (100) and let u and v
be two nonnegative continuous functions on [a, b]. Then the following equation holds(

Fφu
)
(x)
(
Gϕv f 2)(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Fφu f

)
(x)
(
Gϕv f

)
(x)
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=
((
FφuΦ2

)
(x)−

(
Fφu f

)
(x)
)((

Gϕv f
)
(x)−

(
GϕvΦ1

)
(x)
)
−
(
Fφu(Φ1 + Φ2)

)
(x)
(
Gϕv f

)
(x)

+
((
Fφu f

)
(x)−

(
FφuΦ1

)
(x)
)((

GϕvΦ2
)
(x)−

(
Gϕv f

)
(x)
)
−
(
Gϕv(Φ1 + Φ2)

)
(x)
(
Fφu f

)
(x)

+
(
Fφu

)
(x)
(
Gϕv(Φ1 + Φ2) f

)
(x) +

(
Gϕv

)
(x)
(
Fφu(Φ1 + Φ2) f

)
(x) +

(
FφuΦ1

)
(x)
(
GϕvΦ2

)
(x)

+
(
GϕvΦ1

)
(x)
(
FφuΦ2

)
(x)−

(
Fφu

)
(x)
(
Gϕv(Φ2 − f )( f −Φ1)

)
(x)−

(
Fφu

)
(x)
(
GϕvΦ1Φ2

)
(x)

−
(
Gϕv

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x)−

(
Gϕv

)
(x)
(
FφuΦ1Φ1

)
(x). (122)

Proof. Since f is an integrable function on [a, b] satisfying the condition (100), for ∀τ, ρ ∈ [a, b],
we have

(Φ2(ρ)− f (ρ))( f (τ)−Φ1(τ)) + (Φ2(τ)− f (τ))( f (ρ)−Φ1(ρ))

− (Φ2(τ)− f (τ))( f (τ)−Φ1(τ))− (Φ2(ρ)− f (ρ))( f (ρ)−Φ1(ρ))

= f 2(τ) + f 2(ρ)− 2 f (ρ) f (τ) + (Φ1(ρ) + Φ2(ρ)) f (τ) + (Φ1(τ) + Φ2(τ)) f (ρ)−Φ1(τ)Φ2(ρ)−Φ1(ρ)Φ2(τ)

− (Φ1(τ) + Φ1(τ)Φ2(τ)− (Φ1(ρ) + Φ2(ρ)) f (ρ) + Φ2(τ)) f (τ) + Φ1(ρ)Φ2(ρ). (123)

Multiplying both sides of (123) by u(ρ)ξ ′(ρ)K ρ
x (E γ,δ,k,c

µ,α,l , ξ; φ) and integrating the ob-
tained equality with regard to ρ from a to x, we have

( f (τ)−Φ1(τ))
((
FφuΦ2

)
(x)−

(
Fφu f

)
(x)
)
+
((
Fφu f

)
(x)−

(
FφuΦ1

)
(x)
)
(Φ2(τ)− f (τ))

− (Φ2(τ)− f (τ))( f (τ)−Φ1(τ))
(
Fφu

)
(x)−

(
Fφu(Φ2 − f )( f −Φ1)

)
(x)

= f 2(τ)
(
Fφu

)
(x) +

(
Fφu f 2)(x)− 2 f (τ)

(
Fφu f

)
(x) + f (τ)

(
Fφu(Φ1 + Φ2)

)
(x) + (Φ1(τ) + Φ2(τ))

(
Fφu f

)
(x)

−Φ1(τ)
(
FφuΦ2

)
(x)−Φ2(τ)

(
FφuΦ1

)
(x)− (Φ1(τ) + Φ2(τ)) f (τ)

(
Fφu

)
(x)−

(
Fφu(Φ1 + Φ2) f

)
(x)

+ Φ1(τ)Φ2(τ)
(
Fφu

)
(x) +

(
FφuΦ1Φ1

)
(x). (124)

Multiplying both sides of (124) by v(τ)ζ ′(τ)K τ
x (E γ̂,δ̂,k̂,ĉ

ν,β,ι,a+ , ζ; ϕ) and integrating the
established equality with regard to τ from a to y, we have((

Gϕv f
)
(x)−

(
GϕvΦ1

)
(x)
)((

FφuΦ2
)
(x)−

(
Fφu f

)
(x)
)
−
(
Gϕv(Φ2 − f )( f −Φ1)

)
(x)
(
Fφu

)
(x) (125)

+
((
GϕvΦ2

)
(x)−

(
Gϕv f

)
(x)
)((

Fφu f
)
(x)−

(
FφuΦ1

)
(x)
)
−
(
Fφu(Φ2 − f )( f −Φ1)

)
(x)
(
Gϕv

)
(x)

=
(
Gϕv f 2)(x)

(
Fφu

)
(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Gϕv f

)
(x)
(
Fφu f

)
(x) +

(
Gϕv f

)
(x)
(
Fφu(Φ1 + Φ2)

)
(x)

+
(
Gϕv(Φ1 + Φ2)

)
(x)
(
Fφu f

)
(x)−

(
Gϕv(Φ1 + Φ2) f

)
(x)
(
Fφu

)
(x)−

(
Gϕv

)
(x)
(
Fφu(Φ1 + Φ2) f

)
(x)

−
(
GϕvΦ1

)
(x)
(
FφuΦ2

)
(x)−

(
GϕvΦ2

)
(x)
(
FφuΦ1

)
(x) +

(
GϕvΦ1Φ2

)
(x)
(
Fφu

)
(x) +

(
Gϕv

)
(x)
(
FφuΦ1Φ1

)
(x).

which gives the required equality (122).

Remark 8. Let Φ1(t) = Φ1, Φ2(t) = Φ2, Ψ1(t) = Ψ1 and Ψ2(t) = Ψ2, then Lemma 6 reduces
to Lemma 5.

Theorem 15. Let f , g be two integrable functions on [a, b] satisfying the condition (106) and let
u, v be two nonnegative continuous functions on [a, b]. Then the following inequality holds∣∣(Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
∣∣

≤
√

S ( f , Φ1, Φ2)S (g, Ψ1, Ψ2), (126)

where

S (x, Y1, Y2) =
((
FφuY2

)
(x)−

(
Fφux

)
(x)
)((

Gϕvx
)
(x)−

(
GϕvY1

)
(x)
)
+
(
Fφu

)
(x)
(
Gϕv(Y1 +Y2)x

)
(x)

+
((
Fφux

)
(x)−

(
FφuY1

)
(x)
)((

GϕvY2
)
(x)−

(
Gϕvx

)
(x)
)
+
(
Gϕv

)
(x)
(
Fφu(Y1 +Y2)x

)
(x)

−
(
Fφu(Y1 +Y2)

)
(x)
(
Gϕvx

)
(x)−

(
Gϕv(Y1 +Y2)

)
(x)
(
Fφux

)
(x) +

(
FφuY1

)
(x)
(
GϕvY2

)
(x)
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+
(
GϕvY1

)
(x)
(
FφuY2

)
(x)−

(
Fφu

)
(x)
(
GϕvY1Y2

)
(x)−

(
Gϕv

)
(x)
(
FφuY1Y1

)
(x). (127)

Proof. It follows from Lemma 4 that we have((
Fφu

)
(x)
(
Gϕv f g

)
(x) +

(
Gϕv

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv f

)
(x)
(
Fφug

)
(x)
)2

≤
((

Fφu
)
(x)
(
Gϕv f 2)(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Fφu f

)
(x)
(
Gϕv f

)
(x)
)

×
((

Fφu
)
(x)
(
Gϕvg2)(x) +

(
Gϕv

)
(x)
(
Fφug2)(x)− 2

(
Fφug

)
(x)
(
Gϕvg

)
(x)
)

. (128)

Since (Φ2(τ) − f (τ))( f (τ) − Φ1(τ)) ≥ 0 and (Ψ2(τ) − g(τ))(g(τ) − Ψ1(τ)) ≥ 0,
we have

−
(
Fφu

)
(x)
(
Gϕv(Φ2 − f )( f −Φ1)

)
(x)−

(
Gϕv

)
(x)
(
Fφu(Φ2 − f )( f −Φ1)

)
(x) ≤ 0, (129)

−
(
Fφu

)
(x)
(
Gϕv(Ψ2 − g)(g−Ψ1)

)
(x)−

(
Gϕv

)
(x)
(
Fφu(Ψ2 − g)(g−Ψ1)

)
(x) ≤ 0. (130)

From Lemma 6, we can get(
Fφu

)
(x)
(
Gϕv f 2)(x) +

(
Gϕv

)
(x)
(
Fφu f 2)(x)− 2

(
Fφu f

)
(x)
(
Gϕv f

)
(x)

≤
((
FφuΦ2

)
(x)−

(
Fφu f

)
(x)
)((

Gϕv f
)
(x)−

(
GϕvΦ1

)
(x)
)
+
(
Fφu

)
(x)
(
Gϕv(Φ1 + Φ2) f

)
(x)

+
((
Fφu f

)
(x)−

(
FφuΦ1

)
(x)
)((

GϕvΦ2
)
(x)−

(
Gϕv f

)
(x)
)
+
(
Gϕv

)
(x)
(
Fφu(Φ1 + Φ2) f

)
(x)

−
(
Fφu(Φ1 + Φ2)

)
(x)
(
Gϕv f

)
(x)−

(
Gϕv(Φ1 + Φ2)

)
(x)
(
Fφu f

)
(x) +

(
FφuΦ1

)
(x)
(
GϕvΦ2

)
(x)

+
(
GϕvΦ1

)
(x)
(
FφuΦ2

)
(x)−

(
Fφu

)
(x)
(
GϕvΦ1Φ2

)
(x)−

(
Gϕv

)
(x)
(
FφuΦ1Φ1

)
(x) = S ( f , Φ1, Φ2), (131)(

Fφu
)
(x)
(
Gϕvg2)(x) +

(
Gϕv

)
(x)
(
Fφug2)(x)− 2

(
Fφug

)
(x)
(
Gϕvg

)
(x)

≤
(
FφuΨ2

)
(x)−

(
Fφug

)
(x)
)((

Gϕvg
)
(x)−

(
GϕvΨ1

)
(x)
)
+
(
Fφu

)
(x)
(
Gϕv(Ψ1 + Ψ2)g

)
(x)

+
((
Fφug

)
(x)−

(
FφuΨ1

)
(x)
)((

GϕvΨ2
)
(x)−

(
Gϕvg

)
(x)
)
+
(
Gϕv

)
(x)
(
Fφu(Φ1 + Φ2)g

)
(x)

−
(
Fφu(Ψ1 + Ψ2)

)
(x)
(
Gϕvg

)
(x)−

(
Gϕv(Ψ1 + Ψ2)

)
(x)
(
Fφug

)
(x) +

(
FφuΨ1

)
(x)
(
GϕvΨ2

)
(x)

+
(
GϕvΨ1

)
(x)
(
FφuΨ2

)
(x)−

(
Fφu

)
(x)
(
GϕvΨ1Ψ2

)
(x)−

(
Gϕv

)
(x)
(
FφuΨ1Ψ1

)
(x) = S (g, Ψ1, Ψ2). (132)

Equations (131) and (132) together with inequality (128) yield the required
equality (126).

Let u = v, ϕ = φ, γ̂ = γ, δ̂ = δ, k̂ = k, ĉ = c, ν = µ, β = α, ι = l, and ζ = ξ, we can
obtain the following corollary.

Corollary 10. Let f and g be two integrable functions on [a, b] satisfying the condition (106) and
let u be a nonnegative continuous function on [a, b]. Then the following inequality holds∣∣(Fφu

)
(x)
(
Fφu f g

)
(x)−

(
Fφu f

)
(x)
(
Fφug

)
(x)
∣∣ ≤ √S ( f , Φ1, Φ2)S (g, Ψ1, Ψ2), (133)

where

S (x, Y1, Y2) =
((
FφuY2

)
(x)−

(
Fφux

)
(x)
)((

Fφux
)
(x)−

(
FφuY1

)
(x)
)
+
(
Fφu

)
(x)
(
Fφu(Y1 +Y2)x

)
(x)

+
(
FφuY1

)
(x)
(
FφuY2

)
(x)−

(
Fφux

)
(x)
(
Fφu(Y1 +Y2)

)
(x)−

(
Fφu

)
(x)
(
FφuY1Y1

)
(x). (134)

Furthermore, let φ = xα and u(x) = 1 in Corollary 10, we can obtain the following corollary.

Corollary 11. Let f and g be two integrable functions on [a, b] satisfying the condition (106) and
let u be a nonnegative continuous function on [a, b]. Then the following inequality holds∣∣(Fφ1

)
(x)
(
Fφ f g

)
(x)−

(
Fφ f

)
(x)
(
Fφg

)
(x)
∣∣ ≤ √S ( f , Φ1, Φ2)S (g, Ψ1, Ψ2), (135)

where
(

ξF
φ,γ,δ,k,c
µ,α,l,a+ 1

)
(x) = (ξ(x)− ξ(a))αE

γ,δ,k,c
µ,α+1,l(ω(ξ(x)− ξ(a))µ; p) and
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S (x, Y1, Y2) =
((
FφY2

)
(x)−

(
Fφ
x

)
(x)
)((

Fφ
x

)
(x)−

(
FφY1

)
(x)
)
+
(
Fφ1

)
(x)
(
Fφ(Y1 +Y2)x

)
(x)

+
(
FφY1

)
(x)
(
FφY2

)
(x)−

(
Fφ
x

)
(x)
(
Fφ(Y1 +Y2)

)
(x)−

(
Fφ1

)
(x)
(
FφY1Y1

)
(x). (136)

3. Special Cases

Let ξ(x) = x, φ(x) = xα in Definition 2, we define the following fractional integrals.

Definition 3 (See [43]). Let ω, µ, α, l, γ, c ∈ C, R(µ),R(α),R(l) > 0, R(c) > R(γ) > 0 with
p ≥ 0, δ > 0 and 0 < k ≤ δ +R(µ). Furthermore, suppose that f ∈ L1[a, b] and x ∈ [a, b]. Then
the generalized fractional integral operators are defined respectively as follows:

(
F

γ,δ,k,c
µ,α,l,a+ψ

)
(x; p) =

∫ x

a
(x− t)α−1E

γ,δ,k,c
µ,α,l (ω(x− t)µ; p)ψ(t)dt, (137)

(
F

γ,δ,k,c
µ,α,l,b−ψ

)
(x; p) =

∫ b

x
(t− x)α−1E

γ,δ,k,c
µ,α,l (ω(t− x)µ; p)ψ(t)dt. (138)

Remark 9. Fractional integral operators defined as in (137) and (138) particularly produce sev-
eral known fractional integral operators corresponding to different settings of p, µ, k, δ, l, c, γ in
generalized Mittag-Leffler function.

(E1) Let p = 0, fractional integral operators in (137) and (138) coincide with the fractional
integral operators

(
F

γ,δ,k,c
µ,α,l,a+ψ

)
(x) and

(
F

γ,δ,k,c
µ,α,l,b−ψ

)
(x) defined by Salim and Faraj [44].

(E2) Let l = δ = 1, fractional integral operators in (137) and (138) reduce to the fractional
integral operators

(
F

γ,k,c
µ,α,a+ψ

)
(x; p) and

(
F

γ,k,c
µ,α,b−ψ

)
(x; p) defined by Rahman et al. [45].

(E3) Let p = 0 and l = δ = 1, fractional integral operators in (137) and (138) coincide with the
fractional integral operators

(
F

γ,k,c
µ,α,a+ψ

)
(x) and

(
F

γ,k,c
µ,α,b−ψ

)
(x) defined by Srivastava and

Tomovski [46].
(E4) Let p = 0 and l = δ = k = 1, fractional integral operators in (137) and (138) coincide

with the Prabhakar-type fractional integral operators
(
F

γ,c
µ,α,a+ψ

)
(x) and

(
F

γ,c
µ,α,b−ψ

)
(x)

defined by Parbhakar [47].
(E5) Let p = ω = 0, fractional integral operators in (137) and (138) reduce to the well-known

classical left-sided and right-sided Riemann-Liouville fractional integrals Rα
a+ψ(x) and

Rα
b−ψ(x).

Let p = ω = 0 in Definition 2, we have the following definition.

Definition 4 (See [48]). Let ψ, ξ : [a, b]→ R, 0 < a < b, be the functions such that ψ be positive
and ψ ∈ L1[a, b], and ξ be differentiable and strictly increasing. Also let φ be a positive function
such that φ/x is an increasing on [a,+∞). Then for x ∈ [a, b], the left and right fractional integral
operators are defined as follows:

(
ξF

φ
a+ψ

)
(x) =

∫ x

a

φ(ξ(x)− ξ(t))
ξ(x)− ξ(t)

ψ(t)d(ξ(t)), (139)

(
ξF

φ
b−ψ

)
(x) =

∫ b

x

φ(ξ(t)− ξ(x))
ξ(t)− ξ(x)

ψ(t)d(ξ(t)). (140)

Remark 10. The fractional integral operators defined as in (139) and (140) particularly produce
large amounts of known fractional integral operators corresponding to different settings of the
functions ξ and φ.

(F1) Let φ(x) = xα/k/(kΓk(α)) for α, k > 0, then operators in (139) and (140) reduce to the
generalized Riemann-Liouville k-fractional integrals F α,k

ξ,a+ψ(x) and F α,k
ξ,b−ψ(x) defined by

Kwun et al. [49].
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(F2) Let φ(x) = xα/Γ(α) for α > 0, then operators in (139) and (140) coincide with the
generalized Riemann-Liouville fractional integrals F α

ξ,a+ψ(x) and F α
ξ,b−ψ(x) defined

in [50].
(F3) Let φ(x) = xα/Γ(α) and ξ(x) = x for α > 0, then operators in (139) and (140) coincide

with the well-known Riemann-Liouville fractional integrals Rα
a+ψ(x) and Rα

b−ψ(x) defined
in [50].

(F4) Let φ(x) = xα/k/(kΓk(α)) and ξ(x) = x for α, k > 0, then operators in (139) and (140)
reduce to the Riemann-Liouville k-fractional integrals F α,k

a+ ψ(x) and F α,k
b− ψ(x) defined by

Mubeen and Habibullah et al. [51].
(F5) Let φ(x) = xα/Γ(α) and ξ(x) = xρ/ρ for α, ρ > 0, then operators in (139) and (140)

coincide with the Katugampola fractional integrals ρF α
a+ψ(x) and ρF α

b−ψ(x) defined by
Chen and Katugampola [52].

(F6) Let φ(x) = xα/Γ(α) and ξ(x) = xρ for α, ρ > 0, then operators in (139) and (140) coin-
cide with the ρ-Riemann-Liouville fractional integrals ρRα

a+ψ(x) and ρRα
b−ψ(x) defined

by Dragomir [53].
(F7) Let φ(x) = xα/Γ(α) and ξ(x) = −x−1 for α > 0, then operators in (139) and (140)

coincide with the Harmonic fractional integrals J α
a+ψ(x) and J α

b−ψ(x) defined by
Dragomir [53].

(F8) Let φ(x) = xα/Γ(α) and ξ(x) = xτ+β/(τ + β) for α > 0, τ ∈ R, β ∈ (0, 1] with
τ + β 6= 0, then operators in (139) and (140) coincide with the generalized conformable
fractional integrals τ

βF α
a+ψ(x) and τ

βF α
b−ψ(x) defined by Khan and Khan [54].

(F9) Let φ(x) = xα/k/(kΓk(α)), ξ(x) = (x − a)β/β and ξ(x) = −(b − x)β/β in (139)
and (140) for k, α, β > 0, respectively, then operators in (139) and (140) reduce to the
generalized (k, β)-conformable fractional integrals βF α,k

a+ ψ(x) and βF α,k
b− ψ(x) defined by

Habib et al. [16].
(F10) Let φ(x) = xα/Γ(α), ξ(x) = (x− a)β/β and ξ(x) = −(b− x)β/β in (139) and (140)

for k, α, β > 0, then operators in (139) and (140) coincide with the β-conformable fractional
integrals βF α

a+ψ(x) and βF α
b−ψ(x) defined by Jarad et al. [55]. respectively,

(F11) Let φ(x) = xα/k/(kΓk(α)), and ξ(x) = x1+β/(1+ β) for α > 0, β 6= −1, then operators
in (139) and (140) reduce to the (k, β)-Riemann-Liouville fractional integrals βF α,k

a+ ψ(x)
and βF α,k

b− ψ(x) defined by Sarikaya et al. [56].
(F12) Let ξ(x) = x, then operators in (139) and (140) reduce to the left and right-sided generalized

fractional integral operators F
φ
a+ψ(x) and F

φ
b−ψ(x) defined by Sarikaya et al. [57].

(F13) Let φ(x) = xα/Γ(α) and ξ(x) = ln x for α > 0, then operators in (139) and (140) coincide
with the left and right-sided Hadamard fractional integrals H α

a+ψ(x) and H α
b−ψ(x) defined

by Kilbas [58].
(F14) Let φ(x) = (x/α) exp(−(1− α)x/α) and ξ(x) = x for α ∈ (0, 1), then operators in

(139) and (140) reduce to the left and right-sided proportional fractional integral operators
Eα

a+ψ(x) and Eα
b−ψ(x) with exponential kernel defined by Ahmad et al. [59].

(F15) Let φ(x) = (x/α)ρ exp(−(1− α)x/α)/Γ(α) and ξ(x) = x for α ∈ (0, 1), then operators
in (139) and (140) coincide with the left and right-sided generalized proportional fractional
integral operators Eα,ρ

a+ ψ(x) and E
α,ρ
b− ψ(x) defined by Jarad et al. [60].

(F16) Let φ(x) = (x/α)ρ exp(−(1 − α)x/α)/Γ(ρ) for α ∈ (0, 1), then operators in (139)
and (140) coincide with the left and right-sided Hilfer generalized proportional fractional
integral operator Eα,ρ

ξ,a+ψ(x) and E
α,ρ
ξ,b−ψ(x) defined by Rashid et al. [61].

Definition 5 (See [62]). Let define the following Mittag-Leffler-like function and k-gamma function

Eσ,k
ρ,λ(x) =

∞

∑
n=0

σ(n)
kΓk(ρkn + λ)

xn (ρ, λ > 0; |x| < R), (141)

Γk(α) =
∫ ∞

0
exp

(
− tk

k

)
tα−1dt, (142)
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where the coefficient σ(n) for n ∈ N0 = N∪ {0} is a bounded sequence of positive real number and
R is a positive number. k-gamma function satisfy Γk(α + k) = αΓk(α), Γk(α) = kα/k−1Γk(α/k),
and Γ(α) = limk→1 Γk(α).

Similar to Definition 2, we introduce the following generalized fractional integrals.

Definition 6. Let ψ, ξ : [a, b] → R, 0 < a < b, be the functions such that ψ be positive and
ψ ∈ L1[a, b], and ξ be differentiable and strictly increasing. Also let φ be a positive function such
that φ/x is an increasing on [a,+∞) and ω ∈ R, ρ, λ, µ > 0. Then for x ∈ [a, b], the left and
right generalized fractional integral operators are defined by

Ω
ξ F

φ,σ,k
ρ,λ,a+ψ(x) = Ω−1(x)

∫ x

a

φ(ξ(x)− ξ(t))
ξ(x)− ξ(t)

Ω(t)Eσ,k
ρ,λ(ω(ξ(x)− ξ(t))µ)ψ(t)d(ξ(t)), (143)

Ω
ξ F

φ,σ,k
ρ,λ,b−ψ(x) = Ω−1(x)

∫ b

x

φ(ξ(t)− ξ(x))
ξ(t)− ξ(x)

Ω(t)Eσ,k
ρ,λ(ω(ξ(t)− ξ(x))µ)ψ(t)d(ξ(t)), (144)

where Ω(t) is a weighted function with Ω(t) 6= 0 for any t ∈ [a, b]. When σ(0) = 1, λ = α and
ω = 0, the operators (143) and (144) degenerate into the left and right integral operators defined by

Ω
ξ F

φ
k,a+ψ(x) =

Ω−1(x)
kΓk(α)

∫ x

a

φ(ξ(x)− ξ(t))
ξ(x)− ξ(t)

Ω(t)ψ(t)d(ξ(t)), (145)

Ω
ξ F

φ
k,b−ψ(x) =

Ω−1(x)
kΓk(α)

∫ b

x

φ(ξ(t)− ξ(x))
ξ(t)− ξ(x)

Ω(t)ψ(t)d(ξ(t)). (146)

Remark 11. The fractional integral operators defined as in (143) and (144) particularly produce
several known fractional integral operators corresponding to different settings of the functions ξ
and φ.

(G1) Let Ω(x) = 1 and φ(x) = xλ/k for λ, k > 0, then operators in (143) and (144) reduce
to the generalized k-fractional integrals ξFσ,k

ρ,λ,a+ψ(x) and ξFσ,k
ρ,λ,b−ψ(x) defined by Tunc

et al. [63] and Butt et al. [64].
(G2) Let Ω(x) = 1, φ(x) = xλ for λ > 0, then operators in (143) and (144) reduce to the

generalized fractional integrals ξFσ
ρ,λ,a+ψ(x) and ξFσ

ρ,λ,b−ψ(x) defined by Tunc et al. [63]
and Butt et al. [64].

(G3) Let Ω(x) = 1, φ(x) = xλ and ξ(x) = x for λ > 0, then operators in (143) and
(144) reduce to the generalized Riemann-Liouville fractional integrals Fσ

ρ,λ,a+ψ(x) and
Fσ

ρ,λ,b−ψ(x).

(G4) Let Ω(x) = 1, φ(x) = xλ/k and ξ(x) = x for λ, k > 0, then operators in (143) and
(144) reduce to the generalized Riemann-Liouville k-fractional integrals Fσ,k

ρ,λ,a+ψ(x) and

Fσ,k
ρ,λ,b−ψ(x) defined by Tunc et al. [63] and Butt et al. [64].

(G5) Let Ω(x) = 1, φ(x) = xλ/k and ξ(x) = x1+β/(1 + β) for λ, k > 0, β 6= −1, then oper-
ators in (143) and (144) reduce to the generalized (k, β)-fractional integrals βFσ,k

ρ,λ,a+ψ(x)

and βFσ,k
ρ,λ,b−ψ(x) defined by Tunc et al. [63] and Butt et al. [64].

(G6) Let Ω(x) = 1, φ(x) = xλ/k and ξ(x) = ln x for λ, k > 0, then operators in (143)
and (144) reduce to the generalized Hadamard k-fractional integrals Hσ,k

ρ,λ,a+ψ(x) and

Hσ,k
ρ,λ,b−ψ(x) defined by Tunc et al. [63] and Butt et al. [64].

(G7) Let Ω(x) = 1, φ(x) = xλ/k and ξ(x) = xα/α for λ, k, α > 0, then operators in (143)
and (144) reduce to the generalized Katugampola k-fractional integrals Fσ,k,α

ρ,λ,a+ψ(x) and

Fσ,k,α
ρ,λ,b−ψ(x).



Fractal Fract. 2022, 6, 182 23 of 27

(G8) Let Ω(x) = 1, φ(x) = xλ/k and ξ(x) = xτ+β/(τ + β) for λ, k > 0, τ ∈ R, β ∈ (0, 1]
with τ + β 6= 0, then operators in (143) and (144) reduce to the generalized conformable
k-fractional integrals τ

βF
σ,k
ρ,λ,a+ψ(x) and τ

βF
σ,k
ρ,λ,b−ψ(x).

(G9) Let Ω(x) = 1, φ(x) = xλ/k and ξ(x) = −x−1 for λ, k > 0, then operators in (143)
and (144) reduce to the generalized Harmonic k-fractional integrals J σ,k

ρ,λ,a+ψ(x) and

J σ,k
ρ,λ,b−ψ(x).

(G10) Let Ω(x) = α = k = 1, then operators in (145) and (146) degenerate into the operators in
(139) and (140), respectively.

(G11) Let φ(x) = xα and k = 1, then operator in (145) coincides with the left-side fractional
integral operator Ω

ξ F α
a+ψ(x) defined by Jarad et al. [65].

(G12) Let Ω(x) = xρη , ξ(x) = xρ, φ(ξ) = x−ραξα and k = 1, then operators in (145) and (146)
reduce to the Erdélyi-Kober type fractional integral operators η

ρF α
a+ψ(x) and η

ρF α
b−ψ(x)

given in [50].
(G13) Let Ω(x) = xρη , ξ(x) = xρ, φ(ξ) = ρβxγ+ρηξα and k = 1, then operator in (145)

degenerates into the fractional integral operators η
ρF α,γ

a+ ψ(x) given in Sousa et al. [66].

Remark 12. Similar to the main results in Section 2, all inequalities containing the left-side
generalized fractional integral operator (143) hold all the same. Furthermore, by using the proof
methods of main theorems in Section 2, we can obtain all main results containing the fractional
integral operators mentioned in Remarks 9–11.

Remark 13. From Remarks 9–11, we can see easily that the left and right-side unified fractional
integral operators (17) and (18) as well as generalized fractional integral operators (143) and (144)
involve a large number of existing fractional integral operators. Therefore, the main results of this
paper can be seen as the generalizations of the existing results in the literature. For example, some
specific results are given as follows.

(H1) Based on Theorems 1 and 2 and (F3) of Remark 10, Theorems 1 and 2 are reduced to the
main results given by Dahmani [18] (Theorems 2 and 4).

(H2) Based on Theorems 1 and 2 and (F13) of Remark 10, Theorems 1 and 2 degenerate into the
primary inequalities presented by Chinchane and Pachpatte [14] (Theorems 3.1 and 3.2)
and [19] (Theorems 3.2 and 3.4).

(H3) Based on Theorems 1 and 2 and (F10) of Remark 10, Theorems 1 and 2 are turned into the
main results given by Set et al. [17] (Theorems 5 and 6).

(H4) Based on Theorems 1 and 2 and (F16) of Remark 10, Theorems 1 and 2 are changed into
the primary inequalities presented by Zhou et al. [67] (Theorems 3.2 and 3.4).

(H5) Based on Theorems 3–5 and (F9) of Remark 10, Theorems 3–5 are reduced to the main
results given by Habib et al. [16] (Theorems 3.2–3.5).

(H6) Based on Theorems 3–5 and Definition 3, Theorems 3–5 are turned into the primary
inequalities presented by Yewale and Pachpatte [68] (Theorems 3.1–3.3).

(H7) Based on Theorems 6–8 and (F13) of Remark 10, Theorems 6–8 are changed into the main
results given by Taf and Brahim [69] (Theorems 2.1, 2.3 and 2.7).

(H8) Based on Theorems 6 and 12 and (G13) of Remark 12, Theorems 6 and 9 degenerate into
the primary inequalities presented by Sousa et al. [66] (Theorems 1 and 2).

(H9) Based on Theorems 9 and 10 and (F3) of Remark 10, Theorems 9 and 10 are turned into the
main results given by Dahmani et al. [70] (Theorems 3.1 and 3.2) and Dahmani et al. [71]
(Theorems 2 and 3), respectively.

(H10) Based on Theorems 9 and 10 and (F5) of Remark 10, Theorems 9 and 10 are changed into
the main results given by Çelik et al. [72] (Theorems 2.1 and 2.2).

(H11) Based on Theorems 9 and 10 and (F16) of Remark 10, Theorems 9 and 10 are reduced to the
primary inequalities presented by Zhou et al. [73] (Theorems 2.1 and 2.2).

(H12) Based on Theorems 9 and 10 and (G11) of Remark 12, Theorems 9 and 10 are turned into
the main results given by Rahman et al. [74] (Theorems 6 and 7).
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(H13) Based on Theorems 9 and 10 and Definition 3, Theorems 9 and 10 are changed into the
main results given by Set et al. [75] (Theorems 2.1 and 2.2).

(H14) Based on Theorems 11 and 12 and (F3) of Remark 10, Theorems 11 and 12 degenerate into
the primary inequalities presented by Dahmani et al. [31] (Theorems 3.1 and 3.3).

(H15) Based on Theorems 11 and 12 and (G1) of Remark 12, Theorems 11 and 12 are turned into
the main results given by Butt et al. [64] (Theorems 2 and 3).

(H16) Based on Theorems 11 and 12 and (F9) of Remark 10, Theorems 11 and 12 are changed
into the primary inequalities presented given by Rahman et al. [76] (Theorems 2 and 5).

(H17) Based on Theorems 13 and 14 and (F3) of Remark 10, Theorems 13 and 14 are reduced to
the main results given by Tariboon et al. [77] (Theorems 2 and 5).

(H18) Based on Theorems 13–15 and (F11) of Remark 10, Theorems 13–15 degenerate into the
primary inequalities presented by Kaçar and Yildirim [78] (Theorems 5–7).

(H19) Based on Theorems 13 and 14 and (F11) of Remark 10, Theorems 13 and 14 are turned into
the main results given by Mubeen and Iqbal [79] (Theorems 2.1 and 2.5).

(H20) Based on Theorems 13 and 1 and (F10) of Remark 10, Theorems 13–15 are changed into
the primary inequalities presented by Rahman et al. [80] (Theorems 2.1 and 2.2).

(H21) Based on Theorems 13–15 and (F9) of Remark 10, Theorems 13–15 are reduced to the main
results given by Farid et al. [81] (Theorems 2.1, 2.2 and 2.4).

(H22) Based on Theorems 13 and 14 and (F15) of Remark 10, Theorems 13 and 14 are turned into
the primary inequalities presented by Rashid et al. [82] (Theorems 3.1 and 3.5).

(H23) Based on Theorems 13–15 and (G13) of Remark 12, Theorems 13–15 are changed into the
main results given by Aljaaidi et al. [83] [Theorems 3.1, 3.4 and 3.7].

(H24) Based on Theorems 13–15 and (F9) of Remark 10, Theorems 13–15 degenerate into the
primary inequalities presented by Rashid et al. [84] (Theorems 2.1, 2.5 and 2.10).

4. Conclusions

In this paper, we have investigated the Chebyshev- and Grüss-type inequalities for
unified fractional integral operators via an extended generalized Mittag-Leffler function.
Then two generalized fractional integral operators involving the Mittag-Leffler-like function
and weighted function have been introduced. Using the newly introduced generalized
fractional integral operators, some new inequalities similar to the main results can be
also presented. Moreover, their relevance with known inequalities for different kinds of
fractional integral operators have been demonstrated. Based on main results in this paper,
our future research objects are to investigate some other inequalities by using the unified
fractional integral operators and generalized fractional integral operators introduced in
this paper.
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26. Elezović, N.; Marangunić, L.J.; Pečarić, J.E. Some improvements of Grüss type inequality. J. Math. Inequal. 2007, 1, 425–436.

[CrossRef]
27. Liu, W.; Ngô, Q.A. An Ostrowski-Grüss type inequality on time scales. Comput. Math. Appl. 2009, 58, 1207–1210.
28. Dragomir, S.S. New Grüss’ type inequalities for functions of bounded variation and applications. Appl. Math. Lett. 2012, 25,

1475–1479. [CrossRef]
29. Dragomir, S.S. On some Grüss’ type inequalities for the complex integral. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.

RACSAM 2019, 113, 3531–3543. [CrossRef]
30. Dragomir, S.S. Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 2002, 31, 397–415. Available online:

https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005b0e_397.pdf (accessed on 20 February 2022).
31. Dahmani, Z.; Tabharit, L.; Taf, S. New generalisations of Grüss inequality using Riemann-Liouville fractional integrals. Bull.

Math. Anal. Appl. 2010, 2, 93–99. Available online: http://www.bmathaa.org/repository/docs/BMAA2-3-11.pdf (accessed on
20 February 2022).

http://dx.doi.org/10.3934/math.2020488
http://dx.doi.org/10.12691/tjant-2-3-2
http://dx.doi.org/10.1186/s13662-020-03187-7
http://dx.doi.org/10.1007/s13398-019-00680-x
http://dx.doi.org/10.1007/s13398-019-00624-5
http://dx.doi.org/10.1515/math-2015-0055
http://dx.doi.org/10.1155/2021/2018307
http://www.m-hikari.com/ijma/ijma-2010/ijma-1-4-2010/dahmaniIJMA1-4-2010.pdf
http://dx.doi.org/10.1155%2F2011%2F787939
http://math-frac.org/Journals/JFCA/Vol4(1)_Jan_2013/Vol4(1)_Papers/11_Vol.%204(1)%20Jan.%202013,%20No.%2011,%20pp.%20125-%20129..pdf
http://math-frac.org/Journals/JFCA/Vol4(1)_Jan_2013/Vol4(1)_Papers/11_Vol.%204(1)%20Jan.%202013,%20No.%2011,%20pp.%20125-%20129..pdf
http://dx.doi.org/10.7153/jmi-07-22
http://www.ilirias.com/jiasf/repository/docs/JIASF9-4-5.pdf
http://dx.doi.org/10.1007/s13398-018-0614-9
http://internonlinearscience.org/upload/papers/20110304104734112.pdf
http://internonlinearscience.org/upload/papers/20110304104734112.pdf
https://www.malayajournal.org/articles/MJM008.pdf
http://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/330/pdf
http://math-frac.org/Journals/JFCA/Vol4(2)_July_2013/Vol4(2)_Papers/08_Vol.%204(2)%20July%202013,%20No.%208,%20pp.%20245-250..pdf
http://math-frac.org/Journals/JFCA/Vol4(2)_July_2013/Vol4(2)_Papers/08_Vol.%204(2)%20July%202013,%20No.%208,%20pp.%20245-250..pdf
http://dx.doi.org/10.1016/j.aml.2011.11.005
http://dx.doi.org/10.2298/FIL1506269Y
http://www.eudoxuspress.com/images/JOCAAA-VOL-22-2017-ISSUE-VI.pdf#page=21
http://www.eudoxuspress.com/images/JOCAAA-VOL-22-2017-ISSUE-VI.pdf#page=21
http://dx.doi.org/10.7153/jmi-01-36
http://dx.doi.org/10.1016/j.aml.2011.12.027
http://dx.doi.org/10.1007/s13398-019-00712-6
https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005b0e_397.pdf
http://www.bmathaa.org/repository/docs/BMAA2-3-11.pdf


Fractal Fract. 2022, 6, 182 26 of 27

32. Zhu, C.; Yang, W.; Zhao, Q. Some new fractional q-integral Grüss-type inequalities and other inequalities. J. Inequal. Appl. 2012,
2012, 299. [CrossRef]

33. Dahmani, Z.; Benzidane, A. New weighted Grüss type inequalities via (α, β) fractional q-integral inequalities. Int. J. Innov. Appl.
Stud. 2012, 1, 76–83. Available online: http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-12-306-13 (accessed on
20 February 2022).

34. Dahmani, Z. Some results associate with fractional integrals involving the extended Chebyshev functional. Acta Univ. Apulens.
2011, 27, 217–224. Available online: http://emis.mi.sanu.ac.rs/EMIS/journals/AUA/acta27/Paper22-Acta27-2011.pdf (accessed
on 20 February 2022).

35. Brahim, K.; Taf, S. On some fractional q-integral inequalities. Malaya J. Mat. 2013, 3, 21–26. Available online: https://www.
malayajournal.org/articles/MJM034.pdf (accessed on 20 February 2022).

36. Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of Chebyshev type inequalities via generalized
fractional integral operators. Mathematics 2021, 9, 122. [CrossRef]

37. Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.; Dong, C. Fractional generalized Hadamard and Fejér-Hadamard inequalities
for m-convex functions. AIMS Math. 2020, 5, 6325–6340. [CrossRef]

38. Zhang, Z.; Farid, G.; Mahreen, K. Inequalities for Unified Integral Operators via Strongly (α, h−m)-Convexity. J. Funct. Spaces
2021, 2021, 6675826. [CrossRef]
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