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Abstract: In this article, we study a class of two-dimensional nonlinear fourth-order partial differential
equation models with the Riemann–Liouville fractional integral term by using a mixed element
method in space and the second-order backward difference formula (BDF2) with the weighted and
shifted Grünwald integral (WSGI) formula in time. We introduce an auxiliary variable to transform
the nonlinear fourth-order model into a low-order coupled system including two second-order
equations and then discretize the resulting equations by the combined method between the BDF2
with the WSGI formula and the mixed finite element method. Further, we derive stability and error
results for the fully discrete scheme. Finally, we develop two numerical examples to verify the
theoretical results.

Keywords: nonlinear fourth-order fractional integro-differential equation; WSGI approximation;
BDF2; mixed finite element method

1. Introduction

In recent years, scholars in various fields of science and engineering have established
a large number of mathematical models with fractional differential or integral operators
and solved their solutions to explain practical problems. The main reason is that fractional
calculus operators are non-local and have a memory effect. However, fractional differential
or integral equation models have a complex structure, and thus their solutions are difficult
to solve accurately with analytical methods, which has prompted scholars to look for their
numerical solutions by designing efficient numerical methods.

Among many fractional calculus models, the fourth-order fractional calculus model
has attracted much attention, which can describe many practical problems, such as trav-
eling waves of reaction–diffusion systems, the pattern formation of bistable systems and
the propagation of domain walls in liquid crystals. Naturally, increasingly efficient algo-
rithms have been developed to solve these models, which include fourth-order fractional
differential Equations (FDEs) (the fourth-order fractional diffusion Equation [1–5], fourth-
order fractional wave model [6,7] and other fourth-order fractional models [8–12]) and
fourth-order fractional integral Equations (FIEs) [13–16].

From these studies, we find that most scholars have studied numerical algorithms of
fourth-order FDEs, and only a few scholars have paid attention to the research of fourth-
order FIEs. At the same time, we also noticed that most of these studies on numerical
methods for fourth-order FIEs are linear or one-dimensional. Based on these considerations,
it is worthwhile to develop efficient numerical algorithms for high-dimensional nonlinear
fourth-order FIEs.

Here, we propose an efficient numerical algorithm to solve the following initial and
boundary value problem of the fourth-order FIE model
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ut − ∆0Iα

t u + ∆2u− ∆ f (u) = g(z, t), (z, t) ∈ Ω× (0, T],
u(z, 0) = u0(z), z ∈ Ω̄,
u(z, t) = 0, (z, t) ∈ ∂Ω× [0, T],

(1)

where Ω is a two-dimensional convex polygon region, (0, T] is the time interval with T > 0,
f (u) is a nonlinear term, and 0Iα

t (α ∈ (0, 1)) is the Riemann–Liouville integral operator
defined by

0Iα
t u(z, t) =

1
Γ(α)

∫ t

0
(t− s)α−1u(z, s)ds. (2)

In this article, we design a second-order time stepping scheme based on a mixed
element method for solving the fourth-order FIE model (1) with a nonlinear term, where
the second-order time stepping scheme is generated by the combination between the
BDF2 and the second-order WSGI formula. The WSGI formula is used to approximate the
fractional integral term, which was developed in [17] based on the WSGD formula proposed
by Tian et al. in [18] and applied in other references [17,19]. In [20], Cao et al. applied the
Crank–Nicolson WSGI difference/finite element method to the linear time-fractional wave
problem with a second-order space derivative.

However, the WSGI formula is seldom used for fourth-order FIE models. In particular,
there has been little research on two-dimensional nonlinear models. For our model (1),
in addition to the difficulty caused by the fractional integral term −∆0Iα

t u, there exist
the following technical difficulties: (1) due to the existence of the nonlinear term −∆ f (u),
the general algorithm design is difficult; (2) the high-order space derivative term ∆2u
in (1) will lead to the use of higher-order elements if the finite element algorithm is used
directly; and (3) compared with the works for one-dimensional problems, the research of
two-dimensional problems is complex and difficult.

In light of these reasons, we need to construct a fully discrete mixed element algorithm
and to develop the theory analyses. First, we split the original problem by introducing a
nonlinear auxiliary variable σ = ∆u− f (u) (that is different from [2]) into the following
low-order coupled system

(a) σ = ∆u− f (u),

(b) ut − ∆0Iα
t u + ∆σ = g(z, t).

(3)

We discretize the resulting system (3) in time by using the BDF2 and the WSGI formula
and then formulate a weak formulation and a fully discrete mixed finite element scheme.
Here, our main research content and contributions are as follows:

(1). An efficient low-order mixed element system is proposed to solve the fourth-order
FIE model, which can reduce the demand for higher-order elements.

(2). Stability and error analyses based on the proposed fully discrete mixed element
system are conducted in detail.

(3). A detailed algorithm is provided to tell readers how to conduct the numerical
calculations, and the numerical tests are implemented in two numerical examples to
validate our method.

(4). The error data are calculated for our method and another numerical scheme to
show the advantages of our method in computational accuracy.

The rest of the article is structured as follows: In Section 1, we formulate the weak
formulation and the fully discrete mixed element scheme. In Section 2, we derive the
stability. In Section 3, we provide the detailed error analysis. In Section 4, we show several
numerical examples to verify the validity of the algorithm and the correctness of the results.
Finally, we give some conclusions about our work.
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2. Fully Discrete Scheme

First, for any given positive integer N, we divide the time interval [0, T] into N equal
parts with N + 1 nodes, which satisfy 0 = t0 < t1 < · · · < tN = T. We define τ := T/N
and obtain tn = nτ. For convenience, we let un = u(·, tn) and vn = v(·, tn).

Now, we need to introduce the following approximation formula for the Riemann–
Liouville integral operator (for α ∈ (0, 1)) at time node tn, which is called the WSGI
approximation

0Iα
t un = τα

n

∑
k=0

λ
(α)
k un−k + Ẽ1 , 0 Iα

t un + Ẽn
0 , (4)

where the error is Ẽn
0 = O(τ2), and

λ
(α)
0 = (1− α

2
)ω

(α)
0 , λ

(α)
k = (1− α

2
)ω

(α)
k +

α

2
ω
(α)
k−1, k ≥ 1, (5)

ω
(α)
0 = 1 , ω

(α)
k = (1 +

α− 1
k

)ω
(α)
k−1, k ≥ 1. (6)

By applying the WSGI approximation formula and taking the BDF2 in time when
n ≥ 2 and the backward Euler scheme when n = 1 in (3), we obtain the equivalent
formulation as the following

−∆un + σn +
[
2 f (un−1)− f (un−2)

]
= Ẽn

1 , (7)

{
3un−4un−1+un−2

2τ − ∆0 Iα
t un + ∆σn = gn + Ẽn

2 , n ≥ 2,
u1−u0

τ − ∆0 Iα
t u1 + ∆σ1 = g1 + Ẽ1

2, n = 1,
(8)

where Ẽn
1 = O(τ2), Ẽn

2 = O(τ2) and Ẽ1
2 = O(τ), and f̄ (un)

.
= 2 f (un−1)− f (un−2) is a time

second-order approximation for the nonlinear term f (un).
Now, we first multiply (3)(a) by v ∈ H1

0 and (3)(b) by w ∈ H1
0 , respectively, and

further we integrate with respect to the spatial domain Ω to arrive at

(∇un,∇v) + (σn, v) + (2 f (un−1)− f (un−2), v) = (Ẽn
1 , v), (9)

(
3un−4un−1+un−2

2τ , w
)
+ (∇0 Iα

t un,∇w)− (∇σn,∇w) = (gn, w) + (Ẽn
2 , w), n ≥ 2,(

u1−u0

τ , w
)
+ (∇0 Iα

t u1,∇w)− (∇σ1,∇w) = (g1, w) + (Ẽ1
2, w), n = 1.

(10)

Next, we take finite element space Vh ⊂ H1
0 and obtain the fully discrete scheme

as follows

(∇un
h ,∇vh) + (σn

h , vh) + (2 f (un−1
h )− f (un−2

h ), vh) = 0, (11)
(

3un
h−4un−1

h +un−2
h

2τ , wh

)
+ (∇0 Iα

t un
h ,∇wh)− (∇σn

h ,∇wh) = (gn, wh), n ≥ 2,(
u1

h−u0
h

τ , wh

)
+ (∇0 Iα

t u1
h,∇wh)− (∇σ1

h ,∇wh) = (g1, wh), n = 1.
(12)

Remark 1. If we introduce σ = −0Iα
t u + ∆u− f (u), we reduce (1) into the following cou-

pled system

σ = −0Iα
t u + ∆u− f (u), (13)

ut + ∆σ = g(z, t). (14)
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By a similar process to (11) and (12), we easily arrive at another fully discrete scheme

(σn
h , vh) + (0 Iα

t un
h , vh) + (∇un

h ,∇vh) + (2 f (un−1
h )− f (un−2

h ), vh) = 0, (15)
(

3un
h−4un−1

h +un−2
h

2τ , wh

)
− (∇σn

h ,∇wh) = (gn, wh), n ≥ 2,(
u1

h−u0
h

τ , wh

)
− (∇σ1

h ,∇wh) = (g1, wh), n = 1.
(16)

In numerical tests, we make a comparison between our method in this article and the mixed
element system (15) and (16) to illustrate the advantages of our method.

3. Stability Analysis

We analyze the stability of the numerical scheme above in this section. First, we need
to introduce several lemmas to make preparations for it.

Lemma 1. For series {χn}, the following inequality holds(
3χn − 4χn−1 + χn−2

2τ
, χn
)
≥ 1

4τ

[
H(χn)−H(χn−1)

]
, n ≥ 2, (17)

where

H(χn) = 3‖χn‖2 − ‖χn−1‖2 + 2‖χn − χn−1‖2 ≥ ‖χn‖2. (18)

Theorem 1. For un
h , σn

h ∈ Vh, we can obtain the stability for the fully discrete system (11)–(12)

‖uL
h‖

2 + Kτ
L

∑
n=1
‖σn

h ‖
2 ≤ C(‖u0

h‖
2 + τ

L

∑
n=1
‖gn‖2), (19)

where L = 1, 2, · · · , N.

Proof. For n ≥ 2, we take vh = σn
h in (11) and wh = un

h in (12), we use Lemma 1 and apply
the Hölder inequality and Young inequality to obtain

1
4τ

[
H(un

h)−H(un−1
h )

]
+ τα

n

∑
k=0

λ
(α)
k (∇un−k

h ,∇un
h)

≤
(

3un
h − 4un−1

h + un−2
h

2τ
, un

h

)
+ τα

n

∑
k=0

λ
(α)
k (∇un−k

h ,∇un
h)

=(gn, un
h) + (∇σn

h ,∇un
h)

=(gn, un
h)− ‖σ

n
h ‖

2 − (2 f (un−1
h )− f (un−2

h ), σn
h )

≤− 1
2
‖σn

h ‖
2 + C(‖un

h‖
2 + ‖un−1

h ‖2 + ‖un−2
h ‖2) + C‖gn‖2.

(20)

Sum (20) with respect to n from 2 to L and multiply both sides of the inequality by 4τ
so that we can obtain

H(uL
h ) + 2τ

L

∑
n=2
‖σn

h ‖
2 + 4τ1+α

L

∑
n=2

n

∑
k=0

λ
(α)
k (∇un−k

h ,∇un
h)

≤ H(u1
h) + Cτ

L

∑
n=2
‖gn‖2 + Cτ

L

∑
n=0
‖un

h‖
2.

(21)
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For the case n = 1, we conduct a similar process to the above analyses to easily obtain

‖u1
h‖

2 + 2τα+1
1

∑
k=0

λ
(α)
k (∇u1−k

h ,∇u1
h)+τ‖σ1

h‖
2 ≤ ‖u0

h‖
2 + τ‖g1‖2 + τ‖u1

h‖
2. (22)

Combine (21) with (22) and use H(u1
h) ≤ C(‖u1

h‖
2 + ‖u0

h‖
2) to obtain

(1− Cτ)‖uL
h‖

2+4τα+1
L

∑
n=0

n

∑
k=0

λ
(α)
k (∇un−k

h ,∇un
h) + τ

L

∑
n=1
‖σn

h ‖
2

≤C‖u0
h‖

2 + Cτ
L

∑
n=1
‖gn‖2 + Cτ

L−1

∑
n=0
‖un

h‖
2.

(23)

Due to the fact that (0 Iα
t ∇un

h ,∇un
h) ≥ 0, we can remove it on the left-hand side of the

inequality and use the Gronwall inequality to obtain the stability result.

4. Error Analysis

Before we conduct the error analysis, the following Ritz-projection operator [5] needs
to be introduced. We let the operatorRh : H1

0(Ω)→ Vh for any given z ∈ H1
0(Ω) satisfy

(∇(z−Rhz),∇zh) = 0, ∀zh ∈ Vh, (24)

with the following estimate inequality.

‖z−Rhz‖+ ‖zt −Rhzt‖+ h‖z−Rhz‖1 ≤ Chr+1, ∀z ∈ Hr+1(Ω) ∩ H1
0(Ω). (25)

Theorem 2. If (u, σ) is the solution of the mixed weak system (9) and (10) and (uh, σh) is the
solution of the fully discrete system (11) and (12), we would obtain the conclusion that there exists a
constant C that makes the following inequality hold with the initial conditionRhu0 = u0

h.

‖u(tL)− uL
h‖+

(
τ

L

∑
n=1
‖σ(tn)− σn

h ‖
) 1

2

≤ C(hr+1 + τ2), L = 1, 2, · · · , N, (26)

where the constant C is independent of the spatial mesh parameter h and time grid step length τ.

Proof. For the convenience of expression, we write the errors as u(tn)− un
h = (u(tn)−

Rhun) + (Rhun − un
h) , ηn

u + θn
u , σ(tn)− σn

h = (σ(tn)−Rhσn) + (Rhσn − σn
h ) , φn

σ + ξn
σ.

We still consider the case of n ≥ 2 first. Subtract (11) from (9), subtract (12) from (10), apply
the formula (24), take vh = ξn

σ, wh = θn
u and use the Hölder inequality as well as Young

inequality to arrive at(
3θn

u − 4θn−1
u + θn−2

u
2τ

, θn
u

)
+ τα

n

∑
k=0

λ
(α)
k (∇θn−k

u ,∇θn
u)

=(∇ξn
σ,∇θn

u)−
(

3ηn
u − 4ηn−1

u + ηn−2
u

2τ
, θn

u

)
+ (Ẽ2, θn

u)

=− ‖ξn
σ‖2 −

(
3ηn

u − 4ηn−1
u + ηn−2

u
2τ

, θn
u

)
− ( f̄ (un)− f̄ (un

h), ξn
σ)

+ (Ẽn
1 , ξn

σ)− (φn
σ , ξn

σ) + (Ẽn
2 , θn

u)

=− 1
2
‖ξn

σ‖2 +

∥∥∥∥3ηn
u − 4ηn−1

u + ηn−2
u

2τ

∥∥∥∥2

+ ‖φn
σ‖2 + ‖Ẽn

1‖
2 + ‖Ẽn

2‖
2 + C‖θn

u‖2

+ C‖ f ′(ūn−1)‖2
∞(‖ηn−1

u ‖2 + ‖θn−1
u ‖2) + C‖ f ′(ūn−2)‖2

∞(‖ηn−2
u ‖2 + ‖θn−2

u ‖2),

(27)
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where f̄ (zn) = 2 f (zn−1)− f (zn−2), z = u or uh, ūi (i = n− 1 or n− 2) is the value between
ui and ui

h.
Multiply (27) by 4τ and sum the resulting inequality from n = 2 to L to arrive at

H(θL
u ) + 4τ1+α

L

∑
n=2

n

∑
k=0

λ
(α)
k (∇θn−k

u ,∇θn
u) + 2τ

L

∑
n=2
‖ξn

σ‖2

≤H(θ1
u) + Cτ

L

∑
n=2

(∥∥∥∥3ηn
u − 4ηn−1

u + ηn−2
u

2τ

∥∥∥∥2

+ ‖φn
σ‖2 + ‖Ẽn

1‖
2 + ‖Ẽn

2‖
2

)

+ Cτ
L

∑
n=0
‖θn

u‖2 + Cτ
L−1

∑
n=0
‖ηn

u‖2.

(28)

Secondly, we consider the case n = 1. By a similar process as the case n ≥ 2, we take
vh = ξ1

σ and wh = θ1
u to easily derive

‖θ1
u‖2 + 2τα+1

1

∑
k=0

λ
(α)
k (∇θ1−k

u ,∇θ1
u) + 2τ‖ξ1

σ‖2

≤Cτ2
∥∥∥∥η1

u − η0
u

τ

∥∥∥∥2

+
1
2
‖θ1

u‖2 + τ‖ξ1
σ‖2 + Cτ‖φ1

σ‖2

+ Cτ(‖C(u0, u0
h)‖∞ + 1)(‖η0

u‖2 + ‖θ0
u‖2) + Cτ4.

(29)

Now, combine (28) and (29) with (25) and use the Gronwall lemma to obtain

‖θL
u‖2 + τα+1

L

∑
n=0

n

∑
k=0

λ
(α)
k (∇θn−k

u ,∇θn
u) + τ

L

∑
n=1
‖ξn

σ‖2 ≤ C(h2r+2 + τ4). (30)

Finally, combine (30) with (25) and use the triangle inequality to obtain the conclusion.

5. Numerical Tests
5.1. Two-Dimensional Example Based on the Triangular Meshes

Here, a specific algorithm is given to illustrate how to implement the calculation
process, and numerical results are given to verify our theoretical results.

5.1.1. Numerical Algorithm

We show the numerical algorithm with two processes, including the preliminary
knowledge of algorithm and the algorithm based on our scheme.
Process I: Preliminary knowledge of the algorithm

We give the numerical algorithm based on the space–time mesh parameters M and N,
where N is the number of time cells and M is the number of spatial triangular units.

In order to use linear interpolation in each triangular unit Ip, (1 ≤ p ≤ M), we take
the three vertexes of the unit as interpolation points. If we define the coordinates of three
vertexes as (xi, yi), (xj, yj), (xm, ym), the corresponding triangular unit’s area ∆e can be
expressed as a third-order determinant consisting of the coordinates above.

Setting the values of the linear interpolation function uh at the three nodes ui, uj, um,
in triangular unit Ip, we can easily work out the three unknown coefficients β1, β2, β3 of uh,
which are completely determined by (xk, yk) and uk, (k = i, j, m).

Further, substituting {βk, k = 1, 2, 3}, into the general form of the linear interpolation
function uh, we can obtain the expression for uh in Ip, which is

uh = Niui + Njuj + Nmum, (31)
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where

Nk(x, y) =
1

2∆e
(akx + bky + ck), k = i, j, m, (32)

specifically, ∆e is given as follows, and ak, bk, ck are defined by the latter equation

∆e =
1
2

∣∣∣∣∣∣
xi yi 1
xj yj 1
xm ym 1

∣∣∣∣∣∣ , hl =

∣∣∣∣sl+1 rl+1
sl+2 rl+2

∣∣∣∣ , (33)

where h = a, b, c, and the values of s and r depending on h and the indexes l + 1 are
the following

s =


y, h = a,
−x, h = b,
x, h = c,

, r =

{
1, h = a, b
y, h = c,

, l + 1 =


j, l = i,
m, l = j,
i, l = m,

(34)

Likewise, the indexes l + 2 can be obtained by the indexes l + 1.
Similarly, we set that function v takes vi, vj, vm at mesh nodes {i, j, m} in each triangular

unit Ip. From (31)–(34), we know that

uh(x, y) = ∑
k=i,j,m

Nk(x, y)uk , v(x, y) = ∑
k=i,j,m

Nk(x, y)vk,

∂uh
∂x

=
1

2∆e
∑

k=i,j,m
akuk ,

∂uh
∂y

=
1

2∆e
∑

k=i,j,m
bkuk.

(35)

To simplify this expression, let us introduce the matrix B and three dimensional
column vector u(e), v(e), w(e), N(x, y) as follows

B =
1

2∆e

[
ai aj am
bi bj bm

]
, u(e) =

[
ui uj um

]T , v(e) =
[
vi vj vm

]T ,

w(e) =
[
wi wj wm

]T , N(x, y) =
[
Ni Nj Nm

]T .

(36)

From (36), the gradients of uh(x, y), v(x, y) can be expressed as

∇uh = Bu(e) ,∇v = Bv(e). (37)

Therefore,

uh(x, y) = N(x, y)Tu(e) , v(x, y) = N(x, y)Tv(e). (38)

Process II: The algorithm based on our scheme
According to the formulas above, we can express (10) and (11) (the case of n ≥ 2) as

(
[
un
(e)

]T
BT B, v(e)) + (

[
σn
(e)

]T
NNT , v(e)) = −((2 f (un−1)− f (un−2))N, v(e)), (39)

(
3

2τ

[
un
(e)

]T
NNT , w(e)) + (ταλ

(α)
0

[
un
(e)

]T
BT B, w(e))− (

[
σn
(e)

]T
BT B, w(e))

=(−τα
n

∑
k=1

λ
(α)
k

[
un−k
(e)

]T
BT B, w(e)) + (

2
τ

[
un−1
(e)

]T
NNT , w(e))

− (
1

2τ

[
un−2
(e)

]T
NNT , w(e)) + (gn, w(e)).

(40)
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For the case n = 1 in (11), we can deal with it by a similar method and do not repeat it
here. Now, we write (39) and (40) as the following

∑
e
(
[
un
(e)

]T
A1
(e)v(e) +

[
σn
(e)

]T
B1
(e)v(e)) = ∑

e

[
b1
(e)

]T
v(e), (41)

∑
e
(
[
un
(e)

]T
A2
(e)w(e) +

[
σn
(e)

]T
B2
(e)w(e)) = ∑

e

[
b2
(e)

]T
w(e), (42)

where

A1
(e) =

∫∫
e
(BT B)dxdy, B1

(e) =
∫∫

e
(NNT)dxdy,

b1
(e) = −

∫∫
e
(2 f (un−1)− f (un−2))Ndxdy,

A2
(e) =

∫∫
e
(

3
2τ

NNT + ταλ
(α)
0 BT B)dxdy, B2

(e) = −
∫∫

e
(BT B)dxdy,

b2
(e) =

∫∫
e
(−τα

n

∑
k=1

λ
(α)
k BT Bun−k

(e) +
2
τ

NNTun−1
(e) −

1
2τ

NNTun−2
(e) + gnN)dxdy.

(43)

Clearly, (41) and (42) are equivalent to[
A1
(e) B1

(e)
A2
(e) B2

(e)

][
un
(e)

σn
(e)

]
=

[
b1
(e)

b2
(e)

]
. (44)

In other words,

K
−→
U n =

−→
G n, 1 ≤ n ≤ N, (45)

where

K =

[
A1 B1
A2 B2

]
,
−→
U n =

[
un

σn

]
,
−→
G n =

[
bn

1
bn

2

]
, (46)

A1 = ∑
e

A1
(e) , A2 = ∑

e
A2
(e), B1 = ∑

e
B1
(e) , B2 = ∑

e
B2
(e), bn

1 = ∑
e

b1
(e) , bn

2 = ∑
e

b2
(e). (47)

According to (41) and (43), we know that

A1
(e) =



...
...

...
· · · a(e)ii · · · a(e)ij · · · a(e)im · · ·

...
...

...
· · · a(e)ji · · · a(e)jj · · · a(e)jm · · ·

...
...

...
· · · a(e)mi · · · a(e)jm · · · a(e)mm · · ·

...
...

...


, B1

(e) =



...
...

...
· · · b(e)ii · · · b(e)ij · · · b(e)im · · ·

...
...

...
· · · b(e)ji · · · b(e)jj · · · b(e)jm · · ·

...
...

...
· · · b(e)mi · · · b(e)jm · · · b(e)mm · · ·

...
...

...


,
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A2
(e) =



...
...

...
· · · c(e)ii · · · c(e)ij · · · c(e)im · · ·

...
...

...
· · · c(e)ji · · · c(e)jj · · · c(e)jm · · ·

...
...

...
· · · c(e)mi · · · c(e)jm · · · c(e)mm · · ·

...
...

...


, B2

(e) =



...
...

...
· · · d(e)ii · · · d(e)ij · · · d(e)im · · ·

...
...

...
· · · d(e)ji · · · d(e)jj · · · d(e)jm · · ·

...
...

...
· · · b(e)mi · · · d(e)jm · · · d(e)mm · · ·

...
...

...


,

b1
(e) =

[
· · · b(e)i1 · · · b(e)j1 · · · b(e)m1 · · ·

]T
, b2

(e) =
[
· · · b(e)i2 · · · b(e)j2 · · · b(e)m2 · · ·

]T
,

and

a(e)kl =
∫∫

e

1
4∆2

e
(akal + bkbl)dxdy, b(e)kl =

∫∫
e

Nk Nldxdy, (k, l = i, j, m),

c(e)kl =
∫∫

e
(

3
2τ

Nk Nl + ταλ0
1

4∆2
e
(akal + bkbl))dxdy, d(e)kl =

∫∫
e
− 1

4∆2
e
(akal + bkbl)dxdy,

b(e)1i =
∫∫

e
−(2 f (un−1

e )− f (un−2
e ))Nidxdy,

b(e)1j =
∫∫

e
−(2 f (un−1

e )− f (un−2
e ))Njdxdy,

b(e)1m =
∫∫

e
−(2 f (un−1

e )− f (un−2
e ))Nmdxdy,

b(e)2i =
∫∫

e
(−τα 1

4∆2
e

n

∑
k=1

λα
k ((a2

i + b2
i )u

n−k
e,i + (aiaj + bibj)un−k

e,j + (aiam + bibm)un−k
e,m )

+
2
τ
(Ni Niun−1

e,i + Ni Njun−1
e,j + Ni Nmun−1

e,m )

− 1
2τ

(Ni Niun−2
e,i + Ni Njun−2

e,j + Ni Nmun−2
e,m ) + gnNi)dxdy,

b(e)2j =
∫∫

e
(−τα 1

4∆2
e

n

∑
k=1

λα
k ((aiaj + bibj)un−k

e,i + (a2
j + b2

j )u
n−k
e,j + (ajam + bjbm)un−k

e,m )

+
2
τ
(Ni Njun−1

e,i + NjNjun−1
e,j + NjNmun−1

e,m )

− 1
2τ

(Ni Njun−2
e,i + NjNjun−2

e,j + NjNmun−2
e,m ) + gnNj)dxdy,

b(e)2m =
∫∫

e
(−τα 1

4∆2
e

n

∑
k=1

λα
k ((aiam + bibm)un−k

e,i + (ajam + bjbm)un−k
e,j + (a2

m + b2
m)u

n−k
e,m )

+
2
τ
(Ni Nmun−1

e,i + NjNmun−1
e,j + NmNmun−1

e,m )

− 1
2τ

(Ni Nmun−2
e,i + NjNmun−2

e,j + NmNmun−2
e,m ) + gnNm)dxdy.

(48)

Based on system (45), we can obtain the unique numerical solution of u and σ.

5.1.2. Numerical Calculations

For reflecting the effectiveness of the considered numerical method in the current
article, two numerical examples with initial and boundary conditions are provided. In
these tests, we take z = (x, y) ∈ Ω = (0, 1)× (0, 1) and T = 1.
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Example 1. We take the exact solution of (1) as u(x, y, t) = t3(sin πx)y3(1− y)3 and then
substitute it into (2) to find

0Iα
t u =

6(sin πx)y3(1− y)3

Γ(α + 4)
tα+3. (49)

Now, we take the nonlinear term f (u) = sin u and obtain the corresponding source
term g(x, y, t). Here, we show the effectiveness by the calculated data in Tables 1 and 2.

For the fractional parameters α = 0.1, 0.3, 0.5, 0.7, 0.9, we fix the time step length
parameter τ = 1/200 and change the spatial grid parameters h = 1/4, 1/8, 1/16, 1/32 to
arrive at the spatial convergence results for both u and σ in Table 1. Further, by taking
(τ, h) = ( 1

10 , 1
10 ), (

1
20 , 1

20 ), (
1

30 , 1
30 ), (

1
40 , 1

40 ), we calculate the space–time convergence results
shown in Table 2. The computed data illustrate that we can arrive at the approximat-
ing second-order convergence rate, which is in agreement with our theory results. In
Figures 1–4, we show the approximate process between uh and u by taking the fractional
parameter α = 0.1 and space–time step length parameters τ = h = 1/20, 1/30 and 1/40.
We also show the approximation behavior between σh and σ in Figures 5–8.

Table 1. The spatial convergence results for u and σ with τ = 1
200 .

α h Eu(τ, h) Rate Eσ(τ, h) Rate

1/4 1.2160 × 10−3 — 7.3073 × 10−2 —

0.1 1/8 3.0300 × 10−4 2.0047 1.8151 × 10−2 2.0093
1/16 7.5223 × 10−5 2.0101 4.7932 × 10−3 1.9210
1/32 1.8735 × 10−5 2.0054 1.1330 × 10−3 2.0809

1/4 1.2189 × 10−3 — 7.3130 × 10−2 —

0.3 1/8 3.0367 × 10−4 2.0050 1.8170 × 10−2 2.0089
1/16 7.5369 × 10−5 2.0104 4.7981 × 10−3 1.9210
1/32 1.8771 × 10−5 2.0055 1.1342 × 10−3 2.0807

1/4 1.2212 × 10−3 — 7.3175 × 10−2 —

0.5 1/8 3.0420 × 10−4 2.0052 1.8185 × 10−2 2.0086
1/16 7.5486 × 10−5 2.0107 4.8020 × 10−3 1.9210
1/32 1.8799 × 10−5 2.0055 1.1353 × 10−3 2.0806

1/4 1.2230 × 10−3 — 7.3210 × 10−2 —

0.7 1/8 3.0463 × 10−4 2.0054 1.8197 × 10−2 2.0084
1/16 7.5579 × 10−5 2.0110 4.8052 × 10−3 1.9210
1/32 1.8821 × 10−5 2.0056 1.1361 × 10−3 2.0806

1/4 1.2245 × 10−3 — 7.3238 × 10−2 —

0.9 1/8 3.0496 × 10−4 2.0055 1.8206 × 10−2 2.0082
1/16 7.5651 × 10−5 2.0112 4.8076 × 10−3 1.9210
1/32 1.8839 × 10−5 2.0057 1.1367 × 10−3 2.0805

0

1

0.005

1

0.01

0.8

0.015

y

0.5 0.6

x

0.02

0.4
0.2

0 0

Figure 1. Exact solution u at t = 1.
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Figure 2. uh with τ = h = 1
20 .

Table 2. The space–time convergence results for u and σ.

α (τ, h) Eu(τ, h) Rate Eσ(τ, h) Rate

(1/10,1/10) 2.0896 × 10−4 — 1.3569 × 10−2 —

0.1 (1/20,1/20) 4.6046 × 10−5 2.1821 3.0399 × 10−3 2.1582
(1/30,1/30) 2.0672 × 10−5 1.9751 1.3515 × 10−3 1.9993
(1/40,1/40) 1.1502 × 10−5 2.0381 7.4700 × 10−4 2.0609

(1/10,1/10) 2.0955 × 10−4 — 1.3585 × 10−2 —

0.3 (1/20,1/20) 4.6178 × 10−5 2.1820 3.0437 × 10−3 2.1582
(1/30,1/30) 2.0731 × 10−5 1.9753 1.3532 × 10−3 1.9992
(1/40,1/40) 1.1535 × 10−5 2.0377 7.4796 × 10−4 2.0609

(1/10,1/10) 2.0995 × 10−4 — 1.3597 × 10−2 —

0.5 (1/20,1/20) 4.6263 × 10−5 2.1821 3.0465 × 10−3 2.1581
(1/30,1/30) 2.0768 × 10−5 1.9754 1.3545 × 10−3 1.9991
(1/40,1/40) 1.1557 × 10−5 2.0374 7.4866 × 10−4 2.0609

(1/10,1/10) 2.1018 × 10−4 — 1.3606 × 10−2 —

0.7 (1/20,1/20) 4.6309 × 10−5 2.1822 3.0484 × 10−3 2.1581
(1/30,1/30) 2.0788 × 10−5 1.9754 1.3554 × 10−3 1.9990
(1/40,1/40) 1.1568 × 10−5 2.0373 7.4916 × 10−4 2.0609

(1/10,1/10) 2.1028 × 10−4 — 1.3612 × 10−2 —

0.9 (1/20,1/20) 4.6327 × 10−5 2.1824 3.0498 × 10−3 2.1581
(1/30,1/30) 2.0795 × 10−5 1.9755 1.3560 × 10−3 1.9990
(1/40,1/40) 1.1573 × 10−5 2.0373 7.4950 × 10−4 2.0609

0

1

0.005

1

0.01

0.8

0.015

0.5
0.6

0.02

0.4

0.2
0 0

Figure 3. uh with τ = h = 1
30 .
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0.015
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0 0

Figure 4. uh with τ = h = 1
40 .
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Figure 5. Exact solution σ at t = 1.
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Figure 6. σh with τ = h = 1
20 .
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Figure 7. σh with τ = h = 1
30 .
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-0.6
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Figure 8. σh with τ = h = 1
40 .

Example 2. Now, we consider another numerical example to further validate the convergence for
our method. We take the exact solution u(x, y, t) = t2.5x3(1− x)3y3(1− y)3 and then obtain

0Iα
t u =

Γ(3.5)
Γ(α + 3.5)

x3(1− x)3y3(1− y)3tα+2.5. (50)

Next, we choose the nonlinear term f (u) = u3 − u to obtain the corresponding source
term g(x, y, t). In this case, we continue to do our tests.

Here, we list the computing data including errors and convergence orders in
Tables 3 and 4 and the approximation behaviors between the numerical solution and the
exact solution in Figures 9–12 with the chosen same fractional parameter α and space–time
step length sizes to the ones used in Example 1. From Tables 3 and 4 and Figures 13–16, it
is easy to see that the approximation effect is consistent with the theoretical results.

To further show the advantages of our method, we need to make a comparison
with other numerical schemes. Now, we compute the Example 2 by using another method
presented in Remark 1 and obtain the numerical results shown in Table 5. By the comparison
of errors Eu(τ, h) and Eσ(τ, h) between Tables 3 and 5, one easily finds that our method can
obtain the better calculation accuracy.

Table 3. The spatial convergence results for u and σ with τ = 1
200 .

α h Eu(τ, h) Rate Eσ(τ, h) Rate

1/4 1.9466 × 10−5 — 1.4787 × 10−3 —

0.1 1/8 4.8028 × 10−6 2.0190 3.2835 × 10−4 2.1711
1/16 1.2213 × 10−6 1.9755 8.8243 × 10−5 1.8957
1/32 3.1213 × 10−7 1.9682 2.1371 × 10−5 2.0458

1/4 1.9495 × 10−5 — 1.4795 × 10−3 —

0.3 1/8 4.8101 × 10−6 2.0190 3.2864 × 10−4 2.1705
1/16 1.2229 × 10−6 1.9758 8.8322 × 10−5 1.8957
1/32 3.1254 × 10−7 1.9682 2.1392 × 10−5 2.0457

1/4 1.9520 × 10−5 — 1.4801 × 10−3 —

0.5 1/8 4.8163 × 10−6 2.0190 3.2889 × 10−4 2.1701
1/16 1.2242 × 10−6 1.9760 8.8388 × 10−5 1.8957
1/32 3.1289 × 10−7 1.9681 2.1409 × 10−5 2.0456

1/4 1.9541 × 10−5 — 1.4806 × 10−3 —

0.7 1/8 4.8213 × 10−6 2.0190 3.2909 × 10−4 2.1697
1/16 1.2253 × 10−6 1.9763 8.8442 × 10−5 1.8957
1/32 3.1317 × 10−7 1.9681 2.1423 × 10−5 2.0456

1/4 1.9557 × 10−5 — 1.4811 × 10−3 —

0.9 1/8 4.8254 × 10−6 2.0190 3.2925 × 10−4 2.1694
1/16 1.2262 × 10−6 1.9764 8.8485 × 10−5 1.8957
1/32 3.1340 × 10−7 1.9681 2.1434 × 10−5 2.0455
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Table 4. The space–time convergence results for u and σ.

α (τ, h) Eu(τ, h) Rate Eσ(τ, h) Rate

(1/10,1/10) 3.6207 × 10−6 — 2.5835 × 10−4 —

0.1 (1/20,1/20) 8.4923 × 10−7 2.0920 5.9985 × 10−5 2.1066
(1/30,1/30) 3.7741 × 10−7 2.0002 2.6440 × 10−5 2.0204
(1/40,1/40) 2.0890 × 10−7 2.0561 1.4528 × 10−5 2.0816

(1/10,1/10) 3.6281 × 10−6 — 2.5859 × 10−4 —

0.3 (1/20,1/20) 8.5093 × 10−7 2.0921 6.0046 × 10−5 2.1065
(1/30,1/30) 3.7812 × 10−7 2.0005 2.6468 × 10−5 2.0203
(1/40,1/40) 2.0931 × 10−7 2.0556 1.4543 × 10−5 2.0816

(1/10,1/10) 3.6338 × 10−6 — 2.5879 × 10−4 —

0.5 (1/20,1/20) 8.5222 × 10−7 2.0922 6.0095 × 10−5 2.1065
(1/30,1/30) 3.7865 × 10−7 2.0008 2.6490 × 10−5 2.0203
(1/40,1/40) 2.0963 × 10−7 2.0553 1.4555 × 10−5 2.0816

(1/10,1/10) 3.6379 × 10−6 — 2.5894 × 10−4 —

0.7 (1/20,1/20) 8.5315 × 10−7 2.0923 6.0133 × 10−5 2.1064
(1/30,1/30) 3.7903 × 10−7 2.0010 2.6508 × 10−5 2.0202
(1/40,1/40) 2.0986 × 10−7 2.0550 1.4565 × 10−5 2.0816

(1/10,1/10) 3.6407 × 10−6 — 2.5905 × 10−4 —

0.9 (1/20,1/20) 8.5375 × 10−7 2.0923 6.0162 × 10−5 2.1063
(1/30,1/30) 3.7927 × 10−7 2.0011 2.6521 × 10−5 2.0202
(1/40,1/40) 2.1000 × 10−7 2.0549 1.4572 × 10−5 2.0816

Table 5. The spatial convergence rate for u and σ with τ = 1
200 .

α h Eu(τ, h) Rate Eσ(τ, h) Rate

1/4 2.5596 × 10−5 — 1.8764 × 10−3 —

0.1 1/8 5.6306 × 10−6 2.1845 4.2919 × 10−4 2.1283
1/16 1.4004 × 10−6 2.0075 1.0788 × 10−4 1.9922
1/32 3.5652 × 10−7 1.9738 2.7133 × 10−5 1.9913

1/4 2.5633 × 10−5 — 1.8737 × 10−3 —

0.3 1/8 5.6380 × 10−6 2.1847 4.2868 × 10−4 2.1279
1/16 1.4020 × 10−6 2.0077 1.0776 × 10−4 1.9921
1/32 3.5693 × 10−7 1.9738 2.7104 × 10−5 1.9913

1/4 2.5664 × 10−5 — 1.8714 × 10−3 —

0.5 1/8 5.6443 × 10−6 2.1849 4.2826 × 10−4 2.1275
1/16 1.4033 × 10−6 2.0079 1.0766 × 10−4 1.9920
1/32 3.5727 × 10−7 1.9738 2.7079 × 10−5 1.9913

1/4 2.5689 × 10−5 — 1.8695 × 10−3 —

0.7 1/8 5.6494 × 10−6 2.1850 4.2792 × 10−4 2.1272
1/16 1.4044 × 10−6 2.0081 1.0758 × 10−4 1.9919
1/32 3.5755 × 10−7 1.9738 2.7059 × 10−5 1.9912

1/4 2.5710 × 10−5 — 1.8680 × 10−3 —

0.9 1/8 5.6535 × 10−6 2.1851 4.2765 × 10−4 2.1270
1/16 1.4053 × 10−6 2.0083 1.0752 × 10−4 1.9919
1/32 3.5777 × 10−7 1.9738 2.7043 × 10−5 1.9912
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Figure 9. Exact solution u at t = 1.
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Figure 10. uh with τ = h = 1
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Figure 11. uh with τ = h = 1
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Figure 12. uh with τ = h = 1
40 .
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Figure 13. Exact solution σ at t = 1.
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6. Conclusions

In this article, we developed a fully discrete mixed element system with a second-order
time stepping scheme to numerically solve 2D nonlinear fourth-order fractional integral
equations. By computing numerical data, including errors and convergence orders, we
found that the proposed fully discrete mixed element system was feasible.
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