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Abstract: The aim of this paper is to use the Nucci’s reduction method to obtain some novel exact
solutions to the s-dimensional generalized nonlinear dispersive mK(m,n) equation. To the best of
the authors’ knowledge, this paper is the first work on the study of differential equations with local
derivatives using the reduction technique. This higher-dimensional equation is considered with
three types of local derivatives in the temporal sense. Different types of exact solutions in five cases
are reported. Furthermore, with the help of the Maple package, the solutions found in this study
are verified. Finally, several interesting 3D, 2D and density plots are demonstrated to visualize the
nonlinear wave structures more efficiently.

Keywords: Nucci’s reduction method; M-derivative; beta derivative; hyperbolic local derivative;
s-dimensional generalized nonlinear dispersive mK(m,n) equation

1. Introduction

Nonlinear partial differential equations (NPDEs) play a significant role in almost all
branches of science and technology [1–6]. Solutions to these problems can describe many
natural phenomena in engineering, chemistry, physics, etc. Therefore, exact solutions to
Nonlinear partial differential equations is an interesting field for many researchers and
there are various types of methods to find exact solutions to these problems. Additionally,
there are some studies about the practical investigation of natural models. For example,
in [7], significant chaotic features for different experimental conditions that are useful
for the initial understanding of two-phase flow patterns in complex micro-channels, are
considered. An optical system is presented to provide an innovative solution for distributed
detection in microfluidics as a bridge between point-wise and full-field off-line monitoring
systems [8].

Many studies have been carried out in recent years to find new solutions to these equa-
tions, using various techniques. For example, the Lie symmetry method [9–12], invariant
subspace method [13–15], the exponential rational function method [16–18], the modified
simple equation method [19–21], the Exp function method [22,23], the modified extended
tanh-function method [24,25], and the Kudryashov method [26,27]. Different types of
exact solutions are reported using these approaches. Among them, soliton-type solutions
play an important role in science and engineering. N-soliton solutions for the coupling of
differential equations and higher-dimensional differential equations are investigated in the
literature [28,29,29–34].
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One of the interesting NPDEs, which was first reported by Rosenau and Hyman [35],
is the K(m,n) equation:

ut + (um)x + (un)xxx = 0, m > 0, 1 < n ≤ 3. (1)

Indeed, this equation is the Korteweg–de Vries-like equation with nonlinear dispersion.
The role of nonlinear dispersion in the formation of patterns in liquid drops (nuclear
physics) is interpreted by the aforementioned K(m,n) equation. The very closed behavior
and stability of solitary waves with compact support (compactons) to completely integrable
systems were found.

A natural generalization of the K(m,n) equation is the generalized nonlinear dispersive
mK(m,n) equations in a higher dimension [36,37]:

un−1ut + a(um)x +
s

∑
i=1

αi(un)xixixi = 0, n ≥ 1, (2)

where αi are constants. In [38], the bifurcation behavior of travelling wave solutions of
Equation (2) by s = 1, along with all possible exact explicit parametric representations
for periodic travelling wave solutions, solitary wave solutions, kink and anti-kink wave
solutions and periodic cusp wave solutions are investigated. Moreover, a new version of
Equation (2), that is, the modified K(m,n,k), is discussed in [39]. Some compacton solutions
and solitary pattern solutions of mK(m,n, k) equations are reported in this paper.

In this work, we investigate analytical solutions to the s−dimensional mK(m,n) equa-
tion with a recently defined local derivative [40]:

un−1Dtu + a(um)x +
s

∑
i=1

αi(un)xixixi = 0, a, αi ∈ R, (3)

where the operator Dt ∈ { A
0 D

β
t , MDα,β

t , Dα
h}, and A

0 D
β
t , MDα,β

t , Dα
h , are beta derivative,

M-derivative and recently defined hyperbolic derivative, respectively. Moreover, for the
order of fractional derivatives in Equation (3), we have 0 < α ≤ 1, β ∈ R+, and non-linear
powers m and n are non-negative constants.

The plan of the paper is organized as follows.
In Section 2, we provide some preliminaries and discussions about the definitions and

basic properties of the utilized local derivatives. Section 3, which contains the main body of
this research, deals with the exact solutions to the s−dimensional mK(m,n) equation with
local derivatives in temporal direction using a novel reduction method. Finally, Section 4
contains the conclusions.

2. Preliminaries

In this section, we provided a brief discussion on three local derivatives, which are utilized
in the current work. Recently, the local fractional-order derivatives absorbed the attention of
many researchers in science and technology. The concept of local fractional calculus, which
also is known as fractal calculus, was first proposed in [41,42]. Indeed, the proposed fractals,
defined based on the Riemann–Liouville fractional derivative [43–45], were utilized to deal
with the non-differentiable equations raised by science and engineering [46–49].

Firstly, we require the definition of an applicable function, namely, the Mittag–Leffler
function, which plays a significant role in the fractional calculus. One- and two-parameter
kinds of this function are introduced in the literature. In the current work, we need the
one-parameter version, as defined by

Eγ(t) :=
∞

∑
k=0

tk

Γ(γk + 1)
,

where Γ(.) is the Euler Gamma function.
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The local M-derivative of order 0 < α ≤ 1, β ∈ R+ for a real valued function v, is a
developed version of a traditional first-order derivative, which is defined by [50]

MDα,β
t v(t) := lim

ε→0

v
(
tEβ(ε t−α)

)
−v(t)

ε
.

Moreover, when the limit exists, we have

MDα,β
t v(0) := lim

t→0
MDα,β

t v(t),

and the function v is called α−differentiable(w.r.t. M-derivative) on (0, ∞), whenever
MDα,β

t v(t) exists and is finite.
Our other utilized local derivative is the beta fractional derivatives defined in [51]:

A
0 D

β
t v(t) = lim

ε→0

v
(

t + ε (t + 1
Γ(β)

)1−β
)
−v(t)

ε
.

where β ∈ (0, 1) and t > 0. It is notable that a real function v defined on [x0, x f ] is said to
be β−differentiable if

lim
t→x+0

A
0 D

β
t v(t) = A

0 D
β
t v(x+0 ),

provided that limt→x+0
A
0 D

β
t v(t) exists.

Moreover, a new type of local fractional derivative was recently defined in [40]:

Dα
h v(t) = lim

ε→0

v
(

t + ε t
1−α

2 Sech((1− α)t
1+α

2 )
)
−v(t)

ε
.

where α ∈ (0, 1) and t > 0. We call this type of derivative a hyperbolic local derivative. It is
notable that a real function v defined on [x0, x f ] is said to be α−differentiable if

lim
t→x+0

Dα
h v(t) = Dα

h v(x+0 ),

provided that limt→x+0
Dα

h v(t) exists.
The following theorem shows some properties of these three local derivatives [40,52,53].

Theorem 1. Let 0 < α ≤ 1, β ∈ R+ and v1, v2 are α-differentiable functions. If Dt ∈
{ A

0 D
β
t , MDα,β

t , Dα
h}, then

• Dt(c1v1 + c2v2)(t) = c1Dtv1(t) + c2Dtv2(t), c1, c2 ∈ R,

• Dt(v1v2)(t) = v1(t)Dtv2(t) + v2(t)Dtv1(t),

• Dt

(
v1
v2

)
(t) = v2(t)Dtv1(t)−v1(t)Dtv2(t)

v2
2(t)

,

• Dt(λ) = 0, λ ∈ R,

• MDα,β
t v(t) = t1−α

Γ(1+β)
v′(t), A

0 D
β
t v(t) =

(
t + 1

Γ(β)

)1−β
v′(t),

Dα
h v(t) = t

1−α
2 Sech

(
(1− α)t

1+α
2

)
v′(t), v ∈ C1.

• MDα,β
t tµ = µtµ−α

Γ(1+β)
, A

0 D
β
t (t

µ) = µtµ−1
(

t + 1
Γ(β)

)1−β
,

Dα
h(t

µ) = µt
2µ−α−1

2 Sech
(
(1− α)t

1+α
2

)
, µ ∈ R.
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Moreover, since the considered mK(m,n) equation in this work is s-dimensional, we
define the corresponding local derivatives as follows:

MDα,β
t u(t, x1, . . . , xs) = lim

ε→0

u
(
tEβ(ε t−α), x1, . . . , xs

)
− u(t, x1, . . . , xs)

ε
,

A
0 D

β
t u(t, x1, . . . , xs) = lim

ε→0

u
(

t + ε (t + 1
Γ(β)

)1−β, x1, . . . , xs

)
− u(t, x1, . . . , xs)

ε
,

and

Dα
h,tu(t, x1, . . . , xs) = lim

ε→0

u
(

t + ε t
1−α

2 Sech((1− α)t
1+α

2 ), x1, . . . , xs

)
− u(t, x1, . . . , xs)

ε
.

Besides, from the chain rule of Theorem 1, one can write

MDα,β
t u(t, x1, . . . , xs) =

t1−α

Γ(1 + β)

∂u(t, x1, . . . , xs)

∂t
,

A
0 D

β
t u(t, x1, . . . , xs) =

(
t +

1
Γ(β)

)1−β ∂u(t, x1, . . . , xs)

∂t
,

Dα
h u(t, x1, . . . , xs) = t

1−α
2 Sech

(
(1− α)t

1+α
2

)∂u(t, x1, . . . , xs)

∂t
.

3. Nucci’s Reduction Method

In this section, we consider the nonlinear s−dimensional mK(m,n) equation with
the mentioned temporal local derivative. By using some forthcoming transformations,
this equation can be converted into a nonlinear ordinary differential equation. Then,
using Nucci’s reduction technique, different types of exact solution can be extracted. All
computations are accomplished by the Maple software.

Among the existence methods used to obtain exact solutions to differential equations,
most of them extract special solutions such as hyperbolic solutions, soliton solutions,
exponential solutions, etcetera. However, there are some analytical approaches, which can
obtain different types of exact solutions, such as Lie symmetry method, invariant subspace
method and the one utilized by us, the Nucci’s reduction method [54–57]. This point
motivated our use of the reduction method to obtain exact solutions to Equation (3) with
different differential operators.

Let us assume the s−dimensional mK(m,n) Equation (3) with three local derivatives
and the following corresponding transformations:

W(θ) = u(t, x1, · · · , xs), θ =
s

∑
i=1

kixi −
c
α

Γ(β + 1)tα, (4)

W(θ) = u(t, x1, · · · , xs), θ =
s

∑
i=1

kixi −
1
β

(
ct +

1
Γ(β)

)β

. (5)

and

W(θ) = u(t, x1, · · · , xs), θ =
2

1− α2 Sinh

(
(1− α)

(
s

∑
i=1

kix
1+α

2
i − ct

1+α
2

))
, (6)

for the M-derivative, beta-derivative and hyperbolic derivative, respectively. These trans-
formations can convert the Equation (3) with fractional derivatives, into an ordinary differ-
ential equation with integer differential operator. Transformations (4)–(6) are developed
in [40,50,58].

Let us first consider the s−dimensional mK(n,n) equation, that is, m = n.
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Applying transformations (4)–(6), we obtain the following single non-linear third-
order ODE:

− (c + ak1n)Wn−1W′ +

[
nWn−1W′′′ + 3n(n− 1)Wn−2W′W′′ + n(n− 1)(n− 2)Wn−3(W′)3

]
×

s

∑
i=1

αik3
i = 0. (7)

If we assume the change of variables [43,55,59,60]:

ψ1(θ) = W(θ), ψ2(θ) = W′(θ), ψ3(θ) = W′′(θ), (8)

then Equation (7) reduces into the following autonomous system of equations:

dψ1

dθ
= ψ2,

dψ2

dθ
= ψ3,

dψ3

dθ
=

ψ2

n ∑s
i=1 αik3

i

[
n(1− n)(n− 2)(

s

∑
i=1

αik3
i )

ψ2
2

ψ2
1
+ 3n(1− n)(

s

∑
i=1

αik3
i )

ψ3

ψ1
+ (c + ak1n)

]
.

(9)

Selecting ψ1 as a new independent variable converts the system (9) into
dψ2

dψ1
=

ψ3

ψ2
,

dψ3

dψ1
=

1
n ∑s

i=1 αik3
i

[
n(1− n)(n− 2)(

s

∑
i=1

αik3
i )

ψ2
2

ψ2
1
+ 3n(1− n)(

s

∑
i=1

αik3
i )

ψ3

ψ1
+ (c + ak1n)

]
.

(10)

From the first equation in (10), we have

ψ3 = ψ2
dψ2

dψ1
.

Therefore, the second equation of (10) can be written as:(
dψ2

dψ1

)2
+ ψ2

d2ψ2

dψ2
1

=
1

n ∑s
i=1 αik3

i

[
n(1− n)(n− 2)(

s

∑
i=1

αik3
i )

ψ2
2

ψ2
1
+ 3n(1− n)(

s

∑
i=1

αik3
i )

ψ2

ψ1

dψ2

dψ1
+ (c + ak1n)

]
. (11)

Solving Equation (11) concludes

ψ2(ψ1) = ±

√
ψ1

n−2n(∑s
i=1 αik3

i )
(
2 ψ1

−nλ1 n2(∑s
i=1 αik3

i )− 2 λ2 n2(∑s
i=1 αik3

i ) + ψ1
n(c + ak1n)

)
ψ1

n−2n2(∑s
i=1 αik3

i )
, (12)

with λ1 and λ2 arbitrary constants. Hence, the first equation of (9) has the following form:

dψ1

dθ
= ±

√
ψ1

n−2n(∑s
i=1 αik3

i )
(
2 ψ1

−nλ1 n2(∑s
i=1 αik3

i )− 2 λ2 n2(∑s
i=1 αik3

i ) + ψ1
n(c + ak1n)

)
ψ1

n−2n2(∑s
i=1 αik3

i )
. (13)

This equation is a separable ODE with an implicit general solution

θ ∓
∫ n2ψn−2

1 (θ)√
− n(−ψ2n

1 (θ)(c+ank1)+2 ψn
1 (θ)(∑

s
i=1 αik3

i )λ2 n2−2 (∑s
i=1 αik3

i )λ1 n2)
ψ2

1(θ)(∑
s
i=1 αik3

i )

dψ1(θ) + λ3 = 0, (14)

where λ3 is an arbitrary constant. To extract explicit solutions, we consider some spe-
cial cases.

• Case 1: λ1 = 0, k1 = − c
an
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In this case, the integral in Equation (14) is solvable and we obtain

θ ∓
2nψn−1

1 (θ)√
−2λ2n3ψn−2

1 (θ)
+ λ3 = 0,

which, after solving this equation regarding the dependent variable ψ1, concludes

W(θ) = ψ1(θ) = e
ln
(
− nλ2

2 (θ+λ3)
2
)

n .

Finally, from the obtained solution and transformations (4)–(6), we obtain the final
solutions:

u(t, x1, . . . , xs) = e
ln
(
− nλ2

2 (∑s
i=1 ki xi−

c
α Γ(β+1)tα+λ3)

2
)

n , (15)

u(t, x1, . . . , xs) = e
ln

(
− nλ2

2 (∑s
i=1 ki xi−

1
β

(
ct+ 1

Γ(β)

)β
+λ3)

2
)

n , (16)

u(t, x1, . . . , xs) = e

ln

− nλ2
2 ( 2

1−α2 Sinh

(1−α)

∑s
i=1 ki x

1+α
2

i −ct
1+α

2

+λ3)
2


n , (17)

for s−dimensional mK(n,n) equation with M-derivative, beta-derivative and hyperbolic
derivative, respectively.

In Figure 1, density plots of the obtained exact solutions (15)–(17) are plotted with the
same parameters and derivative orders but different types of derivatives. This figure shows
that the type of local derivative effects the final results and solution profiles. Variations
in local derivative orders and a comparison of the final solutions with three types of
derivatives in the fixed time direction t = 1, are plotted in Figure 2. We have to note that
the figures are corresponding to the one-dimensional mK(n,n) equation, namely, s = 1.
This is very easy to plot in higher-dimensional cases s > 1.

• Case 2: λ1 = 0, k1 =
∑s

i=1 αik3
i−c

2a , n = 2
In this case, the Equation (14) reduces into

θ ∓
√

2 ln
(

ψ2
1(θ) +

√
ψ4

1(θ) + 8λ2

)
+ λ3 = 0,

which solving this equation with respect to the dependent variable ψ1, yields

W(θ) = ψ1(θ) = ±

√√√√2e−
√

2
2 (θ+λ3)

((
e−
√

2
2 (θ+λ3)

)2
− 8 λ2

)

2e−
√

2
2 (θ+λ3)

.

Therefore, from the obtained solution and transformations (4)–(6), we can obtain the
final solutions:

u(t, x1, . . . , xs) =

±

√√√√2e−
√

2
2 (∑s

i=1 kixi− c
α Γ(β+1)tα+λ3)

((
e−
√

2
2 (∑s

i=1 kixi− c
α Γ(β+1)tα+λ3)

)2
− 8 λ2

)

2e−
√

2
2 (∑s

i=1 kixi− c
α Γ(β+1)tα+λ3)

, (18)
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u(t, x1, . . . , xs) =

±

√√√√√√2e
−
√

2
2

(
∑s

i=1 kixi− 1
β

(
ct+ 1

Γ(β)

)β
+λ3

)
e
−
√

2
2

(
∑s

i=1 kixi− 1
β

(
ct+ 1

Γ(β)

)β
+λ3

)2

− 8 λ2


2e
−
√

2
2

(
∑s

i=1 kixi− 1
β

(
ct+ 1

Γ(β)

)β
+λ3

) , (19)

and

u(t, x1, . . . , xs) =

±

√√√√√√2e
−
√

2
2

(
2

1−α2 Sinh
(
(1−α)

(
∑s

i=1 ki x
1+α

2
i −ct

1+α
2

))
+λ3

)
e
−
√

2
2

(
2

1−α2 Sinh
(
(1−α)

(
∑s

i=1 ki x
1+α

2
i −ct

1+α
2

))
+λ3

)2

− 8 λ2


2e
−
√

2
2

(
2

1−α2 Sinh
(
(1−α)

(
∑s

i=1 ki x
1+α

2
i −ct

1+α
2

))
+λ3

) , (20)

for s−dimensional mK(n,n) equation with M-derivative, beta-derivative and hyperbolic
derivative, respectively.

Figure 1. Exact solutions with α1 = a = c = 2, λ2 = λ3 = 1, m = 3, and n = 5, β = α = 0.9 w.r.t.
(a) M-derivative (15), (b) beta-derivative (16), (c) hyperbolic-derivative (17).
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Figure 2. Exact solutions with α1 = a = c = 2, λ2 = λ3 = t = 1, m = 3, n = 5, and (a) β = 0.9,
and various α w.r.t. M-derivative (15), (b) various β w.r.t. beta-derivative (16) (c) various α w.r.t.
hyperbolic-derivative (17) (d) α = β = 0.8, and various derivatives.

In Figure 3, density plots of the obtained exact solutions (18)–(20) are plotted with the
same parameters and derivative orders but different type of derivatives. Variations in local
derivative orders and a comparison of the final solutions with three types of derivatives in
the fixed time direction t = 1, are plotted in Figure 4.

• Case 3: n = 1
In this case, the integral in Equation (14) is solvable, and we can obtain

θ +

√
−∑s

i=1 αik3
i

ak1 + c
arctan

 λ1 ∑s
i=1 αik3

i − (ak1 + c)ψ1(θ)√
(ak1 + c)

(
2λ1 ∑s

i=1 αik3
i ψ1(θ)− (ak1 + c)ψ2

1(θ)− 2λ2 ∑s
i=1 αik3

i
)
+ λ3 = 0,
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which, solving this equation with respect to the dependent variable ψ1, yields

W(θ) = ψ1(θ) =
1

ak1 + c

[√√√√ s

∑
i=1

αik3
i (2(ak1 + c)λ2 − λ2

1

s

∑
i=1

αik3
i )

(
cos2

(√
− ak1 + c

∑s
i=1 αik3

i
(θ + λ3)

)
− 1

)

+λ1

s

∑
i=1

αik3
i

]
.

Figure 3. Density plots with a = c = 2, λ2 = λ3 = 1, α1 = 3
2

3
√

2, m = 3, and β = α = 0.9 w.r.t.
(a) M-derivative (18), (b) beta-derivative (19), (c) hyperbolic-derivative (20).
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Figure 4. Exact solutions with a = c = 2, λ2 = λ3 = t = 1, α1 = 3
2

3
√

2, m = 3, and (a) β = 0.9,
and various α w.r.t. M-derivative (18), (b) various β w.r.t. beta-derivative (19) (c) various α w.r.t.
hyperbolic-derivative (20) (d) α = β = 0.8, and various derivatives.

Lastly, from the obtained solution and transformations (4)–(6) we obtain the final
solutions:

uK(t, x1, . . . , xs) =
1

ak1 + c

[√√√√(
s

∑
i=1

αik3
i )ϑ sin2

(√
− ak1 + c

∑s
i=1 αik3

i
(θK + λ3)

)

+λ1

s

∑
i=1

αik3
i

]
, (21)

where ϑ = λ2
1 ∑s

i=1 αik3
i − 2(ak1 + c)λ2, θK ∈ {θ1, θ2, θ3}, and
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θ1 =
s

∑
i=1

kixi −
c
α

Γ(β + 1)tα,

θ2 =
s

∑
i=1

kixi −
1
β

(
ct +

1
Γ(β)

)β

,

θ3 =
2

1− α2 Sinh

(
(1− α)

(
s

∑
i=1

kix
1+α

2
i − ct

1+α
2

))
,

corresponding to M-derivative, beta-derivative and hyperbolic derivative, respectively.
Density plots and 2-D plots of (21) with three types of local derivatives are plotted in

Figures 5 and 6, respectively.

Figure 5. Exact solutions with k1 = α1 = a = c = 2, λ1 = λ2 = λ3 = 1, m = 3, and n = 1.5, β = α =

0.9 w.r.t. (a) M-derivative (21), (b) beta-derivative (c) hyperbolic-derivative.
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Figure 6. Exact solutions with k1 = α1 = a = c = 2, λ1 = λ2 = λ3 = t = 1, m = 3, and (a) n = 1.5,
β = 0.9, and various α w.r.t. M-derivative (21), (b) n = 2, and various β w.r.t. beta-derivative
(21) (c) n = 2, and various α w.r.t. hyperbolic-derivative (21) (d) n = 2, α = β = 0.8, and various
derivatives in (21).

• Case 4: λ1 6= 0, λ2 6= 0, n ∈ R+

In this case, the integral in Equation (14) is solvable and we can obtain

θ ∓ n2
√

γ

n(ak1n + c)
ln(ψ1(θ)) + λ3 = 0,

which, solving this equation with respect to the dependent variable ψ1, concludes the
final solution

W(θ) = ψ1(θ) = e
±
√

n(ak1n+c)

∑s
i=1 αi k3

i
× θ+λ3

n2
.

Lastly, from the obtained solution and transformations (4)–(6), we obtain the final so-
lutions:

u(t, x1, . . . , xs) = e
±
√

n(ak1n+c)

∑s
i=1 αi k3

i
×∑s

i=1 ki xi−
c
α Γ(β+1)tα+λ3
n2

, (22)
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u(t, x1, . . . , xs) = e
±
√

n(ak1n+c)

∑s
i=1 αi k3

i
×

∑s
i=1 ki xi−

1
β

(
ct+ 1

Γ(β)

)β
+λ3

n2
, (23)

and

u(t, x1, . . . , xs) = e
±
√

n(ak1n+c)

∑s
i=1 αi k3

i
×

2
1−α2 Sinh

(1−α)

∑s
i=1 ki x

1+α
2

i −ct
1+α

2

+λ3

n2
, (24)

corresponding to M-derivative, beta-derivative and hyperbolic derivative, respectively.
Figure 7, shows the density plots of (22)–(24), and corresponding 2-D plots are demon-

strated in Figure 8.

Figure 7. Exact solutions with k1 = α1 = a = c = 2, λ3 = 1, and (a) n = 0.5, m = 2, α = 0.8, β = 0.9,
w.r.t. M-derivative (22), (b) n = 0.5, m = 2, β = 0.9, w.r.t. beta-derivative (23), (c) n = 0.5, m = 2,
α = 0.8, w.r.t. hyperbolic-derivative (24).
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Figure 8. Exact solutions with k1 = α1 = a = c = 2, λ3 = t = 1, m = 3, and (a) n = 1.5, β = 0.9,
and various α w.r.t. M-derivative (22), (b) n = 2, and various β w.r.t. beta-derivative (23) (c) n = 2,
and various α w.r.t. hyperbolic-derivative (24) (d) n = 2, α = β = 0.8, and various derivatives in
(22)–(24).

• Case 5: m 6= n
In order to show the power of method, we tried to find exact solutions of the mK(m,n)

equation with local derivatives as follows:

un−1Dtu + a(um)x + (un)xxx = 0, Dt ∈ { A
0 D

β
t , MDα,β

t , Dα
h}, (25)

whenever m 6= n.
Applying transformations (4)–(6), we obtain the following single nonlinear third-order

ODE w.r.t. n and m:

− (c + ak1m)Wm−1W′ +

[
nWn−1W′′′ + 3n(n− 1)Wn−2W′W′′ + n(n− 1)(n− 2)Wn−3(W′)3

]
×

s

∑
i=1

αik3
i = 0. (26)

Let us assume the change of variables

ψ1(θ) = W(θ), ψ2(θ) = W′(θ), ψ3(θ) = W′′(θ).
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By assuming (8), the Equation (26) reduces into the following autonomous system of
equations:

dψ1

dθ
= ψ2,

dψ2

dθ
= ψ3,

dψ3

dθ
=

ψ2

n ∑s
i=1 αik3

i

[
n(1− n)(n− 2)(

s

∑
i=1

αik3
i )

ψ2
2

ψ2
1
+ 3n(1− n)(

s

∑
i=1

αik3
i )

ψ3

ψ1
+ (c + ak1m)ψm−n

1

]
.

(27)

Selecting ψ1 as a new independent variable, converts the system (27) into
dψ2

dψ1
=

ψ3

ψ2
,

dψ3

dψ1
=

1
n ∑s

i=1 αik3
i

[
n(1− n)(n− 2)(

s

∑
i=1

αik3
i )

ψ2
2

ψ2
1
+ 3n(1− n)(

s

∑
i=1

αik3
i )

ψ3

ψ1
+ (c + ak1m)ψm−n

1

]
.

(28)

From the first equation in (28), we have

ψ3 = ψ2
dψ2

dψ1
. (29)

Therefore, the second equation of (28) can be written as:

(
dψ2

dψ1

)2
+ ψ2

d2ψ2

dψ2
1

=
1

n ∑s
i=1 αik3

i

×
[

n(1− n)(n− 2)(
s

∑
i=1

αik3
i )

ψ2
2

ψ2
1
+ 3n(1− n)(

s

∑
i=1

αik3
i )

ψ2

ψ1

dψ2

dψ1
+ (c + ak1m)ψm−n

1

]
. (30)

Solving Equation (30) concludes

ψ2(ψ1) = ±

√
mn(m + n)$ψ1

2(n−1) + (ak1m + c)ψm+n
1 − λ1m(m + n)$ψn

1 + λ2m(m + n)$

mn(m + n)$ψ1
2(n−1)

, (31)

where $ = ∑s
i=1 αik3

i , and λ1 and λ2 are arbitrary constants. Hence, the first equation of
(27) yields

dψ1

dθ
= ±

√
mn(m + n)$ψ1

2(n−1) + (ak1m + c)ψm+n
1 − λ1m(m + n)$ψn

1 + λ2m(m + n)$

mn(m + n)$ψ1
2(n−1)

. (32)

This equation is a separable ordinary differential equation. Therefore, we obtain

θ ∓
√

2mn(m + n)$ψn−1
1

(m− n)
√

mn(m + n)(c + ak1m)$ψm+n−2
1

+ λ3 = 0, (33)

where λ1 = λ2 = 0, and λ3 is an arbitrary constant.
Solving this equation concludes:

W(θ) = ψ1(θ) = e
ln

(
2mn(m+n)$

(m−n)2(c+ak1m)(θ+λ3)
2

)
m−n .



Fractal Fract. 2022, 6, 202 16 of 20

Hence, from the obtained solution and transformations (4)–(6), we obtain the final so-
lutions:

u(t, x1, . . . , xs) = e
ln

(
2mn(m+n)$

(m−n)2(c+ak1m)(∑s
i=1 ki xi−

c
α Γ(β+1)tα+λ3)

2

)
m−n , (34)

u(t, x1, . . . , xs) = e

ln

 2mn(m+n)$

(m−n)2(c+ak1m)(∑s
i=1 ki xi−

1
β

(
ct+ 1

Γ(β)

)β
+λ3)

2


m−n , (35)

and

u(t, x1, . . . , xs) = e

ln


2mn(m+n)$

(m−n)2(c+ak1m)( 2
1−α2 Sinh

(1−α)

∑s
i=1 ki x

1+α
2

i −ct
1+α

2

+λ3)
2


m−n , (36)

corresponding to M-derivative, beta-derivative and hyperbolic derivative, respectively.
Soliton-type solutions (34)–(36) with different values of derivative orders and non-

linearity power are plotted in Figure 9. Corresponding 2-D plots are demonstrated in
Figure 10.

Figure 9. Exact solutions with k1 = α1 = a = c = 2, λ3 = 1, and (a) n = 0.5, m = 2, α = 0.8, β = 0.9,
w.r.t. M-derivative (34), (b) n = 0.5, m = 2, β = 0.9, w.r.t. beta-derivative (35),
(c) n = 0.5, m = 2, α = 0.8, w.r.t. hyperbolic-derivative (36), (d) n = 1.5, m = 3, α = β = 0.9, w.r.t.
M-derivative (34), (e) n = 1.5, m = 3, β = 0.9, w.r.t. beta-derivative (35), (f) n = 1.5, m = 3, α = 0.9,
w.r.t. hyperbolic-derivative (36).
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Figure 10. Exact solutions with k1 = α1 = a = c = 2, λ3 = t = 1, m = 3, and (a) n = 1.5, β = 0.9,
and various α w.r.t. M-derivative (34), (b) n = 2, and various β w.r.t. beta-derivative (35) (c) n = 2,
and various α w.r.t. hyperbolic-derivative (36) (d) n = 2, α = β = 0.8, and various derivatives in
(34)–(36).

4. Conclusions

In this paper, an important differential equation, namely, the higher-order generalized
nonlinear dispersive mK(m,n) equation is considered with different values of m and n.
The supposed derivatives in the time direction are M-derivative, beta-derivative and
hyperbolic local derivative. Different types of soliton solutions in five cases, are extracted
using Nucci’s reduction method. A comparison of the obtained solutions with various
local derivatives is graphically considered. In the literature, to the best knowledge of the
author of this article, the reduction method is novel for the differential equations with local
derivatives. Therefore, this paper can serve as a starting point for future works on local
derivatives of other physical models.
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