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Abstract: The main goal of this article is to explore a new type of polynomials, specifically the Gould-
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1. Introduction and Preliminaries

Significant discoveries in the theory of group representation, statistics, quadrature and
interpolation, scattering theory, imaging of medicine, and splines have led to the develop-
ment of matrix polynomials and special matrix functions. Numerous disciplines of mathe-
matics and engineering make use of special matrix polynomials (see, for
example, [1,2], and the citations included therein). For instance, many mathematicians
investigate and explore special matrix polynomials.

The Sheffer sequences [3] are used extensively in mathematics, theoretical physics,
theory of approximation, and various different mathematical disciplines. Roman [4] natu-
rally discusses the Sheffer polynomials’ properties in the context of contemporary classical
umbral calculus. The Sheffer polynomials are given as follows (see [4], p. 17): Set p(τ) and
q(τ) power series, which are formally given as follows:

p(τ) =
∞

∑
`=0

p`
τ`

`!
(p` ∈ C, ` ∈ Z≥0; p0 = 0, p1 6= 0), (1a)

and

q(τ) =
∞

∑
`=0

q`
τn

`!
(q` ∈ C, ` ∈ Z≥0; q0 6= 0), (1b)

which are referred to as delta series and invertible series, respectively. Here and elsewhere,
let C, R, and Z be, respectively, the sets of complex numbers, real numbers, and integers.
Let

E≤ξ , E<ξ , E≥ξ , and E>ξ

be the sets of numbers in E less than or equal to ξ, less than ξ, greater than or equal to ξ,
and greater than ξ, respectively, for some ξ ∈ R, where E is either Z or R.
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With each pairing of an invertible series q(τ) and a delta series p(τ), there is a unique
sequence s`(x) of polynomials that satisfies the conditions of orthogonality (consult [4],
p. 17): 〈

q(τ) p(τ)k
∣∣∣s`(x)〉 = `! δ`,k (`, k ∈ Z≥0), (2)

where δ`,k is the Kronecker delta function defined by δ`,k = 1 (` = k) and δ`,k = 0 (` 6= k).
The operator 〈· | ·〉 is unchanged from [4], Chapter 2.

Remark 1. The sequence s`(x) satisfying (2) is called the Sheffer sequence for (q(τ), p(τ)), or
s`(x) is Sheffer for (g(τ), p(τ)), which is usually denoted as s`(x) ∼ (q(τ), p(τ)). Remain aware
that q(τ) and p(τ) should be an invertible series and a delta series, respectively.

There are two forms of Sheffer sequences worth noting:

(i) If s`(x) ∼ (1, p(τ)), the s`(x) is said to be the associated sequence for p(τ), or s`(x) is
associated with p(τ);

(ii) If s`(x) ∼ (q(τ), τ), the s`(x) is said to be the Appell sequence for q(τ), or s`(x) is Appell
for q(τ) (see [4], p. 17; see also [5]).

If s`(x) is Sheffer for (q(τ), p(τ)), the Sheffer sequence s`(x) is generated by depending solely
on the series q(τ) and p(τ). To emphasize this dependence, in [5], the s`(x) was represented by
[q,p]s`(x).

Amid various Sheffer sequences’ characterizations, the following generating function
is recalled (consult, for instance, [4], p. 18): The sequence s`(x) is Sheffer for (q(τ), p(τ)) if
and only if:

1
q( p̄(τ))

ex p̄(τ) =
∞

∑
k=0

sk(x)
k!

tk (3)

for every x in C, where p̄(τ) = p−1(τ) is the inverse of composition of p(τ).
The particular polynomials of two variables are significant in view of an appli-

cation. In addition, these polynomials facilitate the derivation of numerous valuable
identities and aid in the introduction of new families of particular polynomials; see, for
instance, [6–9]. The Laguerre-Sheffer polynomials Ls`(x, y) are generated by the following
function (consult [10]):

1
q(p−1(τ))

exp
(
yp−1(τ)

)
C0

(
xp−1(τ)

)
=

∞

∑
n=0

Ls`(x, y)
τ`

`!
, (4)

for all x, y in C, where C0(xτ) denotes the 0th-order Bessel-Tricomi function, which pos-
sesses the subsequent operational law:

C0(ξx) :=
∞

∑
k=0

(−1)k (ξ x)k

(k!)2 = exp(−ξD̂−1
x ){1}, (5)

where

D̂−n
x {1} :=

xn

n!
(n ∈ Z≥0). (6)

Generally,

D̂−ξ
x {p(x)} = 1

Γ(ξ)

∫ x

0
(x− η)ξ−1 p(η) dη, (7)

where Γ is the well-known Gamma function (consult, for example, [11], Section 1.1), which
is a left-sided Riemann-Liouville fractional integral of order ξ ∈ C (<(ξ) > 0) (see, for
example, [12], Chapter 2). For some recent applications for geometric analysis, one may
consult, for example, [13,14].

As in Remark 1, the case q(τ) = 1 and the case p(τ) = τ of the Laguerre-Sheffer poly-
nomials Ls`(x, y) in (4) are called, respectively, the Laguerre-associated Sheffer sequence
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and the Laguerre-Appell sequence, and denoted, respectively, by Ls`(x, y) and L A`(x, y)
(consult [15]).

Remark 2. For κ ∈ Z>0, let Cκ×κ indicate the set of all κ by κ matrices whose entries are in
C. Let σ(B) be the set of all eigenvalues of B ∈ Cκ×κ , which is said to be the spectrum of B.
For B ∈ Cκ×κ , let α(B) := max{<(w) |w ∈ σ(B)} and β(B) := min{<(w) |w ∈ σ(B)}. If
β(B) > 0, that is, <(w) > 0 for all w ∈ σ(B), the matrix B is referred to as positive stable.

For B ∈ Cκ×κ , its 2-norm is denoted by:

‖B‖ = sup
ρ 6=0

‖Bρ‖2

‖ρ‖2
,

where for any vector ρ ∈ Cκ , ‖ρ‖2 =
(
ρH ρ

)1/2 is the Euclidean norm of ρ. Here ρH indicates the
Hermitian matrix of ρ.

If p(w) and q(w) are holomorphic functions of the variable w ∈ C, which are defined in an open
set Λ of the plane C, and R is a matrix in Cκ×κ such that σ(R) ⊂ Λ, then from the matrix functional
calculus’s characteristics ([16], p. 558), one finds that f (R) g(R) = g(R) f (R). Therefore, if Q
in Cκ×κ is another matrix with σ(Q) ⊂ Λ, such that RQ = QR, then f (R)g(Q) = g(Q) f (R)
(consult, for instance, [17,18]).

As the reciprocal of the Gamma function indicated by Γ−1(w) = 1/Γ(w) is an entire function
of the variable w ∈ C, for any R in Cκ×κ , the functional calculus of Riesz-Dunford reveals that
the image of Γ−1(w) acting on R, symbolized by Γ−1(R), is a well-defined matrix (consult [16],
Chapter 7).

Recently, the matrix polynomials of Gould-Hopper (GHMaP) g`n(x, y; C, E) were intro-
duced by virtue of the subsequent generating function (consult [19]):

∞

∑
n=0

g`n(x, y; C, E)
τn

n!
= exp(xτ

√
2C) exp(E yτ`). (8)

Here C, E are matrices in Cκ×κ (κ ∈ Z>0) such that C is positive stable and an ` ∈ Z>0.
Consider the principal branch of w

1
2 = exp

(
1
2 log w

)
defined on the domain Λ := C \

(−∞, 0]. Then, as in Remark 2,
√

C is well-defined if σ(C) ⊂ Λ.
The polynomials g`n(x, y; C, E) are specified to be the series

g`n(x, y; C, E) =
[ n
` ]

∑
k=0

n! (
√

2C)n−`kEk

(n− `k)! k!
xn−`kyk. (9)

As a result of the idea of monomiality, the majority of the features of generalized and con-
ventional polynomials have been demonstrated to be readily derivable within a framework
of operations. The monomiality principle is underpinned by Steffensen’s [20] introduction of
the idea of poweroid. Following that, Dattoli [21] reconstructed and elaborated the idea of
monomiality (consult, for instance, [22]).

As per the monomiality principle, there are two operators M̂ and P̂ that operate
on a polynomial set {q`(x)}`∈Z>0 , termed the multiplicative and derivative operators,
respectively. Then the polynomial set {q`(x)}`∈Z>0 is said to be quasi-monomial if it
satisfies:

M̂{q`(x)} = q`+1(x), P̂{q`(x)} = ` q`−1(x), q0(x) = 1. (10)

One easily finds from (10) that

M̂P̂{q`(x)} = ` q`(x), (11)

and

P̂M̂{q`(x)} = (`+ 1) q`(x). (12)
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A Weyl group structure of the operators M̂ and P̂ is shown by the relation
of commutation:

[P̂, M̂] := P̂M̂− M̂P̂ = 1̂, (13)

where 1̂ is the identity operator.
As a result of M̂m acting on q0(x), we may deduce the qm(x):

qm(x) = M̂m{q0(x)}. (14)

The matrix polynomials of Gould-Hopper g`m(x, y; C, E) are quasi-monomial with
regard to the subsequent derivative and multiplicative operators [23]:

P̂g = (
√

2C)−1Dx, (15)

and

M̂g = x
√

2C + `Ey(
√

2C)−(`−1)D`−1
x , (16)

respectively, where Dx := ∂
∂x .

The generalization αFβ (α, β ∈ Z≥0) of the hypergeometric series is given by (consult,
for instance, [11], Section 1.5):

αFβ

[
µ1, . . . , µα ;

ν1, . . . , νβ ;
w

]
=

∞

∑
n=0

(µ1)n · · · (µα)n

(ν1)n · · · (νβ)n

wn

n!

= αFβ(µ1, . . . , µα; ν1, . . . , νβ; w),

(17)

where (ξ)η indicates the Pochhammer symbol (for ξ, η ∈ C) defined by

(ξ)η :=
Γ(ξ + η)

Γ(ξ)
=

{
1 (η = 0; ξ ∈ C \ {0}),
ξ(ξ + 1) · · · (ξ + n− 1) (η = n ∈ Z>0; ξ ∈ C).

(18)

Here it is assumed that (0)0 := 1, an empty product as 1, and that the variable w,
the parameters of numerators µ1, . . . , µα, and the parameters of denominators ν1, . . . , νβ

are supposed to get complex values, provided that(
νj ∈ C \Z≤0; j = 1, . . . , β

)
. (19)

Recall the well-known generalized binomial theorem (consult, for example, [24], p. 34):

(1− z)−α =
∞

∑
k=0

(α)k zk

k!
(α ∈ C; |z| < 1). (20)

Recall the familiar beta function (consult, for instance, [11], p. 8):

B(ξ, η) =


∫ 1

0
uξ−1(1− u)η−1 du (min{<(ξ), <(η)} > 0)

Γ(ξ) Γ(η)
Γ(ξ + η)

(ξ, η ∈ C \Z≤0).
(21)

Here we introduce the Gould-Hopper-Laguerre-Sheffer matrix polynomials (GHLSMaP),
which are denoted by gLs`n(x, y, z; C, E), by convoluting the Laguerre-Sheffer polynomi-
als Lsn(x, y) with the Gould-Hopper matrix polynomials g`n(x, y; C, E). The polynomials
gLs`n(x, y, z; C, E) are generated as in the following definition.

Definition 1. The Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs`n(x, y, z; C, E) are gen-
erated by the following function:
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F(x, y, z; C, E)(τ) : =
1

q(p−1(τ))
exp

[
x
√

2Cp−1(τ) + Ey
(

p−1(τ)
)`]

C0

(
zp−1(τ)

)
=

∞

∑
n=0

gLs`n(x, y, z; C, E)
τn

n!
.

(22)

Here and in the sequel, the functions p, q, C0 are as in (4); the matrices C, E are as in (8), (9),
or (16); the variables x, y, z ∈ C.

In addition, to emphasize the invertible series q and the delta series p, whenever necessary, the
following notation is used:

gLs`n(x, y, z; C, E) =
[q,p]gLs`n(x, y, z; C, E). (23)

Further,

gs`n(x, y; C, E) := gLs`n(x, y, 0; C, E) (24)

is called the Gould-Hopper-Sheffer matrix polynomials.

Remark 3. First we show how to derive the generating function in (22). In (4), replacing y by the
multiplicative operator M̂g in (16), and x by z, we obtain

F(τ) :=
1

q(p−1(τ))
C0

(
zp−1(τ)

)
× exp

[(
x
√

2C p−1(τ) + `Ey(
√

2C)−(`−1) p−1(τ) D`−1
x

)
{1}

]
.

(25)

Recall the Crofton-type identity (see, for instance, [25], p. 12; see also [26]:

f
(
x+ `λ

d`−1

dx`−1

)
{1} = exp

(
λ

d`

dx`
){

f (x)
}

, (26)

with f usually being an analytic function. Setting ` = 1 gives:

f
(
x+ λ

)
{1} = exp

(
λ

d
dx

){
f (x)

}
. (27)

Using (25) in (26), we get

F(τ) =
1

q(p−1(τ))
C0(zp−1(τ)) exp

(
Ey(
√

2C)−`D`
x

){
exp

(
x
√

2Cp−1(τ)
)}

. (28)

By performing the operation in (28), with the aid of (32), we can readily find that F(τ) is
identical to the F(x, y, z; C, E)(τ) in (22).

Second, as in (ii), Remark 1, setting p(τ) = p−1(τ) = τ in (22), we get the generating func-
tion for the Gould-Hopper-Laguerre-Appell matrix polynomials (GHLAMaP) gLC`n(x, y, z; C, E) in
[27].

Using Euler’s integral for the Gamma function Γ (consult, for instance, Section 1.1 in
[11], p. 218 in [24]), we get

b−ν =
1

Γ(ν)

∫ ∞

0
uν−1e−bu du (min{<(ν), <(b)} > 0). (29)

Dattoli et al. [28] used (29) to obtain the following operator:(
α− ∂

∂x

)−ν

f (x) =
1

Γ(ν)

∫ ∞

0
uν−1e−αueu ∂

∂x { f (x)} du

=
1

Γ(ν)

∫ ∞

0
uν−1e−αu f (x + u) du,

(30)

for the second equality of which (27) is employed.
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The following definition introduces the extended matrix polynomials of Gould-
Hopper-Laguerre-Sheffer (EGHLSMaP), which are indicated by gLs`n,ν(x, y, z; C, E; η).

Definition 2. Let <(η) > 0 and <(ν) > 0. Then the extended Gould-Hopper-Laguerre-Sheffer
matrix polynomials gLs`n,ν(x, y, z; C, E; η) are defined by

gLs`n,ν(x, y, z; C, E; η) :=

(
η − yE

(√
2C
)−` ∂`

∂x`

)−ν{
Lsn(z, x

√
2C)

}
. (31)

In this article, we aim to introduce the Gould-Hopper-Laguerre-Sheffer matrix polyno-
mials via the use of a generating function. For these newly presented matrix polynomials,
we investigate quasi-monomial features and related operational principles. We also explore
the extended form of these novel hybrid special matrix polynomials and their properties
using an integral transform. Finally, we provide many instances to demonstrate how the
results presented here may be used.

2. Gould-Hopper-Laguerre-Sheffer Matrix Polynomials

The following lemma provides an easily-derivable operational identity.

Lemma 1. Let ξ and η be constants independent of x. Also let ` ∈ Z≥0. Then:

exp

(
ξ

d`

dx`

)
{eη x} = exp

(
η x+ ξ η`

)
. (32)

In particular,

exp
(

ξ
d

dx

)
{eη x} = exp(η x+ ξ η). (33)

Proof.

exp

(
ξ

d`

dx`

)
{eη x} =

∞

∑
k=0

ξk

k!
d`k

dx`k eη x = eη x
∞

∑
k=0

(
ξ η`

)k

k!
= exp

(
η x+ ξ η`

)
.

The following theorem shows that the Gould-Hopper-Laguerre-Sheffer matrix poly-
nomials gLs`n(x, y, z; C, E) may be obtained by performing a suitable differential operation
on the Laguerre-Sheffer polynomials Lsn(x, y) in (4) with some suitable substitutions of x
and y.

Theorem 1. The following identity holds true:

gLs`n(x, y, z; C, E) = exp
(
yE
(√

2C
)−`

D`
x

){
Lsn

(
z, x
√

2C
)}

. (34)

Proof. Replacing x and y by z and x
√

2C, respectively, in (4), we get

1
q(p−1(τ))

C0

(
zp−1(τ)

)
exp

(
x
√

2Cp−1(τ)
)
=

∞

∑
n=0

Lsn(z, x
√

2C)
τn

n!
. (35)
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Performing the operation exp
[
yE
(√

2C
)−`

D`
x

]
on both sides of (35), we obtain

∞

∑
n=0

exp
[
yE
(√

2C
)−`

D`
x

]{
Lsn(z, x

√
2C)

}τn

n!

=
1

q(p−1(τ))
C0

(
zp−1(τ)

)
exp

[
yE
(√

2C
)−`

D`
x

]{
exp

(
x
√

2Cp−1(τ)
)}

=
∞

∑
n=0

gLs`n(x, y, z; C, E)
τn

n!
,

(36)

for the second equality of which (22) and (32) are used. Finally, matching the coefficients of
τn on the first and last power series in (36) gives the identity (34).

Theorem 2. The Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs`n(x, y, z; C, E) are opera-
tionally represented by the Gould-Hopper-Sheffer matrix polynomials gs`n(x, y; C, E):

gLs`n(x, y, z; C, E) = exp
[
−D̂−1

z

(√
2C
)−1

Dx

]{
gs`n(x, y; C, E)

}
. (37)

Proof. From (22) and (24), we have

1
q(p−1(τ))

exp
[
x
√

2Cp−1(τ) + Ey
(

p−1(τ)
)`]

=
∞

∑
n=0

gLs`n(x, y; C, E)
τn

n!
.

(38)

Performing the following operation exp
[
−D̂−1

z

(√
2C
)−1

Dx

]
on each side of (38), and

using (5) and (33), in the same way as in the argument of Theorem 1, one may find the
desired identity (37).

The following theorem reveals the quasi-monomial principle of the matrix polynomials
of Gould-Hopper-Laguerre-Sheffer gLs`n(x, y, z; C, E).

Theorem 3. The matrix polynomials gLs`n(x, y, z; C, E) gratify the following quasi-monomiality,
with respect to the operators of multiplication and differentiation:

M̂gLs =

(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× 1
p′
(
(
√

2C)−1Dx
) (39)

and

P̂qLs = p
((√

2C
)−1

Dx

)
, (40)

respectively.

Proof. Performing derivatives on each side of the first and second members in (22) about
x, k times, we derive(

(
√

2C)−1 Dx

)k
{F(x, y, z; C, E)(τ)} =

(
p−1(τ)

)k
F(x, y, z; C, E)(τ) (k ∈ Z≥0). (41)

In particular,
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(
(
√

2C)−1 Dx

)
{F(x, y, z; C, E)(τ)} = p−1(τ) F(x, y, z; C, E)(τ). (42)

Applying (41) to the series in (1a), we find

∞

∑
k=0

pk
k!

(
(
√

2C)−1 Dx

)k
{F(x, y, z; C, E)(τ)} =

∞

∑
k=0

pk
k!

(
p−1(τ)

)k
{F(x, y, z; C, E)(τ)},

which implies

p
(
(
√

2C)−1 Dx

)
{F(x, y, z; C, E)(τ)} = p

(
p−1(τ)

)
{F(x, y, z; C, E)(τ)}

= τ F(x, y, z; C, E)(τ).
(43)

Then, utilizing the identity (43) in (22), we get
∞

∑
n=1

p
(
(
√

2C)−1 Dx

)
gLs`n(x, y, z; C, E)

τn

n!

=
∞

∑
n=1

gLs`n−1(x, y, z; C, E)
τn

(n− 1)!
.

(44)

Now, identifying the coefficients of τn on each side of (44), in view of (10), may prove
the derivative operator (40).

Next, in view of (5), we have

d
dτ

C0

(
zp−1(τ)

)
=

d
dτ

exp(−p−1(τ)D̂−1
z ){1} = −

(
p−1(τ)

)′
D̂−1
z C0

(
zp−1(τ)

)
. (45)

Then, taking (45) into account, differentiating (22) about τ, we get
∞

∑
n=0

gLs`n+1(x, y, z; C, E)
τn

n!

=
1

p′
(

p−1(τ)
) (x√2C + `Ey(

√
2C)−(`−1)D`−1

x − D̂−1
z −

q′
(

p−1(τ)
)

q
(

p−1(t)
) )

×
∞

∑
n=0

gLs`n(x, y, z; C, E)
τn

n!
.

(46)

Finally, applying (42) to (46), in view of (10), we can prove the multiplicative
operator (39).

Remark 4. If p(τ) is a delta series, then p′(τ) is an invertible series. Therefore, the reciprocal
1/p′

(
p−1(τ)

)
is well-defined in (46).

Combining the multiplicative operator in (39) and the derivative operator in (40), such
as (11)–(14), we can provide several matrix differential equations for the matrix polynomials
of Gould-Hopper-Laguerre-Sheffer gLs`n(x, y, z; C, E). One uses (11) to illustrate one of them
in the next theorem, whose proof is simple and overlooked.

Theorem 4. The following differential equation holds true:{(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

×
p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
gLs`n(x, y, z; C, E) = 0.

(47)

The polynomials gLs`n(x, y, z; C, E) may yield numerous particular matrix polynomials
as special cases, some of which are offered in Table 1.
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Table 1. Particular cases of the polynomials gLs`n(x, y, z; C, E).

S. Values of the Relation between Name of the Special Generating Functions
No. Indices and gLs`n(x, y, z; C, E) Matrix Polynomials

Variables and Its Special Case

I. ` = 2 gLs2
n(x, y, z; C, E) 3-Variable Hermite- 1

q(p−1(τ))
exp

(
(xp−1(τ)

√
2C + Ey

(
p−1(τ)

)2
)

= H Lsn(x, y, z; C, E) Laguerre-Sheffer matrix ×C0(zp−1(τ)) =
∞
∑

n=0
H Lsn(x, y, z; C, E) τn

n!

polynomials (3VHLSMaP)

II. z = 0 gLs`n(x, y, 0; C, E) Gould-Hopper-Sheffer- 1
q(p−1(τ))

exp
(
xp−1(τ)

√
2C + Ey

(
p−1(τ)

)`)
= gs`n(x, y; C, E) matrix polynomials =

∞
∑

n=0
gs`n(x, y; C, E) τn

n!

(GHSMaP)

III. ` = r− 1, gLsr−1
n (x, y, 0; C, E) Generalized Chebyshev- 1

q(p−1(τ))
exp

(
xp−1(τ)

√
2C + Ey

(
p−1(τ)

)r−1
)

z = 0 = Usr
n(x, y; C, E) Sheffer matrix =

∞
∑

n=0
Usr

n(x, y; C, E) τn

n!

polynomials (GCSMaP)

IV. ` = 2, gLs2
n(x, y, 0; C, E) Hermite Kampé de 1

q(p−1(τ))
exp

(
xp−1(τ)

√
2C + Ey

(
p−1(τ)

)2
)

z = 0 = Hsn(x, y; C, E) Fériet-Sheffer matrix =
∞
∑

n=0
Hsn(x,y; C, E) τn

n!

polynomials (HKdFSMaP)

V. z = 0, x→ y Ls`n(y, D−1
x , 0; C, E) Generalized Laguerre- 1

q(p−1(τ))
C0

(
−Ex

(
p−1(τ)

)`)
y→ D−1

x = Ls`n(x, y; C, E) Sheffer matrix × exp
(

yp−1(τ)
√

2C
)
=

∞
∑

n=0
Ls`n(x, y; C, E) τn

n!

polynomials (GLSMaP)

VI. x = −D−1
x , gLs`n(−D−1

x , y; C, E) 2-Variable generalized 1
q(p−1(τ))

C0

(
xp−1(τ)

√
2C
)

exp
(

Ey
(

p−1(τ)
)`)

z = 0 = [`]Ls`n(x, y; C, E) Laguerre type Sheffer matrix =
∞
∑

n=0
[`]Lsn(x, y; C, E) τn

n!

polynomials (2VgLtSMaP)

VII. y = 0, z→ x, gLs`n(y, 0, x; C, E) Laguerre-Sheffer 1
q(p−1(τ))

C0
(
xp−1(τ)

)
exp

(
yp−1(τ)

√
2C
)

x→ y = Lsn(x, y; C) matrix polynomials =
∞
∑

n=0
Lsn(x, y; C) τn

n!

(LSaMP)

Remark 5. For the particular matrix polynomials demonstrated in Table 1, we may offer some
properties corresponding to those in Theorems 1–4.

We may get a variety of outcomes that correspond to the above-presented results by varying
the invertible series q(τ) and the delta series p(τ). As in Remark 1, the following corollaries give
the corresponding results to those in Theorems 3 and 4 for the associated and Appell polynomials.

Associated Polynomials

Corollary 1. The associated polynomials
[1,p]gLs`n(x, y, z; C, E) satisfy the following quasi-

monomiality with regard to the operators of multiplication and differentiation:

[1,p] M̂gLs =
(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x

) 1
p′
(
(
√

2C)−1Dx
) (48)

and

[1,p] P̂gLs = p
((√

2C
)−1

Dx

)
, (49)

respectively.

Corollary 2. The associated polynomials
[1,p]gLs`n(x, y, z; C, E) satisfy the following

differential equation:
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{(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x

)
×

p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
[1,p]gLs`n(x, y, z; C, E) = 0.

(50)

Appell Polynomials

Corollary 3. The Appell polynomials
[q(τ),τ]gLs`n(x, y, z; C, E) gratify the following quasi- monomi-

ality with respect to the operators of multiplication and differentiation:

[q(τ),τ] M̂gLs =

(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) ) (51)

and

[q(τ),τ] P̂gLs =
(√

2C
)−1

Dx, (52)

respectively.

Corollary 4. The Appell polynomials
[q(τ),τ]gLs`n(x, y, z; C, E) gratify the following

differential equation:{(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

×
√

2C)−1Dx − n

}
[q(τ),τ]gLs`n(x, y, z; C, E) = 0.

(53)

3. Extended Gould-Hopper-Laguerre-Sheffer Matrix Polynomials

Fractional calculus is a well-established theory that is extensively employed in a broad
variety of fields of science, engineering, and mathematics today. The use of integral trans-
forms and operational procedures to new families of special polynomials is a reasonably
effective technique (consult, for instance, [28]).

This section provides some properties for the extended Gould-Hopper-Laguerre-
Sheffer matrix polynomials in (31).

Theorem 5. Let <(η) > 0 and <(ν) > 0. Then the following integral representation for the
extended Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs`n,ν(x, y, z; C, E; η) holds true:

gLs`n,ν(x, y, z; C, E; η)

=
1

Γ(ν)

∫ ∞

0
e−ηttν−1

gLs`n(x, yt, z; C, E) dt.
(54)

Proof. Let L be the left-sided member of (54). Using (29) and (31), we have

L =
1

Γ(ν)

∫ ∞

0
e−ηttν−1 exp

(
yEt
(√

2C
)−` ∂`

∂x`

){
Lsn(z, x

√
2C)

}
dt

=
1

Γ(ν)

∫ ∞

0
e−ηttν−1

gLs`n(x, yt, z; C, E) dt,

(55)

the second equality of which follows from (34).

The following theorem gives the generating function of the EGHLSMaP.
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Theorem 6. The following function generates the extended Gould-Hopper-Laguerre-Sheffer matrix
polynomials gLs`n,ν(x, y, z; C, E; η):

exp(x
√

2Cp−1(u))C0(zp−1(u))
q(p−1(u))

{
η − Ey(p−1(u))`

}ν =
∞

∑
n=0

gLs`n,ν(x, y, z; C, E; η)
un

n!
. (56)

Additionally, the following differential-recursive relation holds true:
∂

∂η
gLs`n,ν(x, y, z; C, E; η) = −ν gLs`n,ν+1(x, y, z; C, E; η). (57)

Proof. Multiplying each member of (54) by un

n! and adding over n, one derives
∞

∑
n=0

gLs`n,ν(x, y, z; C, E; η)
un

n!

=
∞

∑
n=0

1
Γ(ν)

∫ ∞

0
e−ηttν−1

gLs`n(x, yt, z; C, E)
un

n!
dt.

(58)

Using (22) in the integrand of the right-sided member of (58) gives
∞

∑
n=0

gLs`n,ν(x, y, z; C, E; η)
un

n!

=
C0(z(p−1(u))`) exp(x

√
2Cp−1(u))

q(p−1(u))Γ(ν)

∫ ∞

0
e−{η−Ey( f−1(u))`}ttν−1 dt,

the right member of which, upon using (29), leads to the left-sided member of (56).
Differentiating each member of (56) about η, one may get (57).

The following theorem reveals that the EGHLSMaP gLs`n,ν(x, y, z; C, E; η) is an exten-
sion of the GHLSMaP gLs`n(x, y, z; C, E).

Theorem 7. The following identities hold true:

exp(x
√

2Cp−1(u))C0(zp−1(u))
q(p−1(u)) 1F1

(
ν ; 1; Ey(p−1(u))`

)
=

∞

∑
n=0

gLs`n,ν(x, D̂−1
y , z; C, E; 1){1}un

n!
;

(59)

gLs`n(x, y, z; C, E) = gLs`n,1(x, D̂−1
y , z; C, E; 1){1}. (60)

Proof. Taking η = 1 and y = D̂−1
y in (56), we get

G(ν; t) :=
exp(x

√
2Cp−1(u))C0(zp−1(u))

q(p−1(u))

(
1− ED̂−1

y (p−1(u))`
)−ν
{1}. (61)

Using (20), we obtain(
1− ED̂−1

y (p−1(u))`
)−ν
{1} =

∞

∑
n=0

(ν)n

n!
En
(

p−1(u)
)`n

D̂−n
y {1}

=
∞

∑
n=0

(ν)n Enyn(p−1(u)
)`n

(1)n n!

= 1F1

(
ν ; 1; Ey(p−1(u))`

)
,

(62)

for the second and third equalities of which (6) and (17) are employed, respectively.
Now, setting the last expression of (62) in (61), in view of (56), we obtain (59).
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Noting

1F1

(
1 ; 1; Ey(p−1(u))`

)
= exp

(
Ey
(

p−1(u)
)`)

,

we find that the resulting G(t; 1) is the generating function of the Gould-Hopper-Laguerre-
Sheffer matrix polynomials gLs`n(x, y, z; C, E) in (22). We therefore have

∞

∑
n=0

gLs`n,1(x, D̂−1
y , z; C, E; 1){1}un

n!
=

∞

∑
n=0

gLs`n(x, y, z; C, E)
un

n!
,

which, upon equating the coefficients of un, yields (60).
The identity (60) may be obtained as follows: Combining (31) and (34) gives

gLs`n(x, y, z; C, E) =
(

1− D̂−1
y E

(√
2C
)−`

D`
x

)
exp

(
y E
(√

2C
)−`

D`
x

)
×
{

gLs`n,1(x, D̂−1
y , z; C, E; 1)

}
.

As in (62), we find

exp
(
y E
(√

2C
)−`

D`
x

)
=

(
1− D̂−1

y E
(√

2C
)−`

D`
x

)−1
{1}.

Remark 6. As in (ii), Remark 1, the Laguerre-Sheffer polynomials Lsn(x, y) reduce to the Laguerre-
Appell polynomials LAn(x, y) (see [15]). Additionally, taking p−1(u) = u in the generating
equation (56), we can get the generalized Gould-Hopper-Laguerre-Appell matrix polynomials
gLA`

n,ν(x, y, z; C, E; η) (see [27]).

The following theorem reveals the quasi-monomial principle of the extended Gould-
Hopper-Laguerre-Sheffer matrix polynomials gLs`n,ν(x, y, z; C, E; η).

Theorem 8. The matrix polynomials gLs`n,ν(x, y, z; C, E; η) satisfy the following quasi-monomiality
with regard to the operators of multiplication and differentiation:

M̂gLsν =

(
x
√

2C− D̂−1
z − `Ey(

√
2C)−(`−1)Dη D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× 1
p′
(
(
√

2C)−1Dx
) (63)

and

P̂gLsν = p
((√

2C
)−1

Dx

)
, (64)

respectively. Here Dη := ∂
∂η .

Proof. From Theorem 3, we have(
x
√

2C− D̂−1
z + `Ey(

√
2C)−(`−1)D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× 1
p′
(
(
√

2C)−1Dx
) gLs`n(x, y, z; C, E) = gLs`n+1(x, y, z; C, E),

(65)

and

p
((√

2C
)−1

Dx

)
gLs`n(x,y,z; C, E) = n gLs`n−1(x,y,z; C, E). (66)
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Replacing y by yt in each member of (66), multiplying both members of the resultant
identity by 1

Γ(ν) e−ηttν−1, and integrating each member of the last resultant identity with
respect to t from 0 to ∞, with the aid of (54), one obtains

p
((√

2C
)−1

Dx

){
gLs`n,ν(x, y, z; C, E; η)

}
= n gLs`n−1,ν(x, y, z; C, E; η),

which proves (64).
Furthermore, replacing y by yt in both sides of (65), multiplying both members of the

resultant identity by 1
Γ(ν) e−ηttν−1, and integrating both sides of the last resulting identity

with respect to t from 0 to ∞, with the help of (54) and (57), one can derive

M̂gLsν

{
gLs`n,ν(x, y, z; C, E; η)

}
= gLs`n+1,ν(x, y, z; C, E; η).

This proves (63).

As in Theorem 4, using the results in Theorem 8, a differential equation for the
extended Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs`n,ν(x, y, z; C, E; η) can be
given in Theorem 9.

Theorem 9. The following differential equation holds true:{(
x
√

2C− D̂−1
z − `Ey(

√
2C)−(`−1)Dz D`−1

x −
q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

×
p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
gLs`n,ν(x, y, z; C, E; η) = 0.

(67)

As in Table 1, Table 2 includes certain particular cases of the extended Gould-Hopper-
Laguerre-Sheffer matrix polynomials gLs`n,ν(x, y, z; C, E; η), among numerous ones.

Table 2. Special cases of the EGHLSMaP gLs`n,ν(x, y, z; C, E; η).

S. Values of the Indices Name of the Hybrid Special Polynomials Generating Function
No. and Variables

I. ` = 2 3-Variable extended Hermite-Laguerre-Sheffer
exp((xp−1(u)

√
2C)C0(zp−1(u))

q(p−1(u))
(

η−Ey(p−1(u))
2)ν

matrix polynomials (3VEHLSMaP) =
∞
∑

n=0
H Lsn,ν(x, y, z; C, E, η) τn

n!

II. z = 0 Extended Gould-Hopper-Sheffer-matrix
exp(xp−1(u)

√
2C)

q(p−1(u))
(

η−Ey(p−1(u))
`
)ν

polynomials (EGHSMaP) =
∞
∑

n=0
gs`n,ν(x, y; C, E, η) τn

n!

III. ` = r− 1, Extended generalized Chebyshev-Sheffer
exp((xp−1(u)

√
2C)

q(p−1(u))
(

η−Ey(p−1(u))
r−1)ν

z = 0 matrix polynomials (EGCSMaP) =
∞
∑

n=0
Usr

n,ν(x, y; C, E, η) τn

n!

IV. ` = 2, Extended Hermite Kampé de Fériet-
exp(xp−1(u)

√
2C)

q(p−1(u))
(

η−Ey(p−1(u))
2)ν

z = 0 Sheffer matrix polynomials (EHKdFSMaP) =
∞
∑

n=0
Hsn,ν(x, y; C, E, η) τn

n!

V. z = 0, x→ y Extended generalized Laguerre-Sheffer
C0

(
−Ex(p−1(u))

`
)

q(p−1(u))(η−y
√

2Cp−1(u))
ν

y→ D−1
x matrix polynomials (EGLSMaP) =

∞
∑

n=0
Ls`n,ν(x, y; C, E, η) τn

n!
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Table 2. Cont.

S. Values of the Indices Name of the Hybrid Special Polynomials Generating Function
No. and Variables

VI. x = −D−1
x , 2-Variable extended generalized Laguerre

C0(xp−1(u)
√

2C)

q(p−1(u))
(

η−Ey(p−1(u))
`
)ν

z = 0 type Sheffer matrix polynomials (2VEgLtSMaP) =
∞
∑

n=0
[`]Lsn,ν(x, y; C, E, η) τn

n!

VII. y = 0, z→ x, Extended Laguerre-Sheffer
C0(xp−1(u))

q(p−1(u))(η−y
√

2Cp−1(u))
ν

x→ y matrix polynomials (ELSaMP) =
∞
∑

n=0
Lsn,ν(x, y; C, η) τn

n!

Remark 7. As in (i), Remark 1, if q(τ) = 1, the Laguerre-Sheffer polynomials Lsn(x, y) reduce to
the Laguerre-associated Sheffer polynomials

[1,p]Lsn(x,y). The extended Gould-Hopper-Laguerre-Sheffer
matrix polynomials gLs`n,ν(x,y,z; C, E; η) reduce to the extended Gould-Hopper-Laguerre-associated
Sheffer matrix polynomials (EGHLASMaP)

[1,p]gLs`n,ν(x,y,z; C, E; η). The following corollary contains
the results for EGHLASMaP corresponding to those in Theorems 5–9.

Corollary 5. (i) Let <(η) > 0 and <(ν) > 0.

[1,p]gLs`n,ν(x, y, z; C, E; η) =
1

Γ(ν)

∫ ∞

0
e−ηuuν−1

[1,p]gLs`n(x, y u, z; C, E) du. (68)

(ii) The polynomials
[1,p]gLs`n,ν(x, y, z; C, E; η) are generated by means of the following function:

exp(x
√

2Cp−1(u))C0(zp−1(u))
p−1(u)

{
η − Ey(p−1(u))`

}ν =
∞

∑
n=0

[1,p]gLs`n,ν(x, y, z; C, E; η)
un

n!
. (69)

Additionally, the following differential-recursive relation holds true:
∂

∂η [1,p]gLs`n,ν(x, y, z; C, E; η) = −ν
[1,p]gLs`n,ν+1(x, y, z; C, E; η). (70)

(iii) The matrix polynomials
[1,p]gLs`n,ν(x, y, z; C, E; η) gratify quasi-monomiality with regard to

the following operators of multiplication and differentiation:

[1,p] M̂gLsν =
(
x
√

2C− D̂−1
z − `Ey(

√
2C)−(`−1)Dη D`−1

x

) 1
p′
(
(
√

2C)−1Dx
) (71)

and

[1,p] P̂gLsν = p
((√

2C
)−1

Dx

)
, (72)

respectively.
(iv) The following differential equation holds true:{(

x
√

2C− D̂−1
z − `Ey(

√
2C)−(`−1)Dz D`−1

x

)
×

p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
[1,p]gLs`n,ν(x, y, z; C, E; η) = 0.

(73)

4. Remarks and Further Particular Cases

The 1F1 in (59), which is called the confluent hypergeometric function or Kummer’s
function, is an important and useful particular case of αFβ in (17). It also has various
other notations (consult, for instance, [11], p. 70). For properties and identities of 1F1,
one may consult the monograph [29]. In this regard, in view of (59), one may offer a vari-
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ety of identities for the gLs`n,ν(x, D̂−1
y , z; C, E; 1){1}. In order to give a demonstration, the 1F1

in (59) has the following integral representation (consult, for instance, [11], p. 70,
Equation (46)):

1F1

(
ν ; 1; Ey(p−1(u))`

)
=

1
Γ(ν)Γ(1− ν)

∫ 1

0
ην−1(1− η)−ν exp

(
Ey
(

p−1(u)
)`

η

)
dη (0 < <(ν) < 1).

(74)

Further, using (35) and (59), with the aid of (21) and (74), one may readily get the
following identity:

[q(u),u]gLs`n,ν(x, D̂−1
y , z; C, E; 1){1}

=
[ n
` ]

∑
k=0

n! (ν)k
(k!)2 (n− `k)!

(Ey)k
[q(u),u] Lsn−`k(z, x

√
2C).

(75)

The hybrid matrix polynomials introduced in Sections 2 and 3, besides the demon-
strated particular cases, may produce numerous other particular cases as well as corre-
sponding properties. In this section, we combine the findings from Sections 2 and 3 with
several well-known (or classical) polynomials to derive some related identities.

(a) The Hermite polynomials Hn(x), which are generated by the following function
(consult, for example, [30]):

exp(2xτ − τ2) =
∞

∑
n=0

Hn(x)
τn

n!
(76)

belongs to the Sheffer family by choosing

q(τ) = eτ2/4, p(τ) =
τ

2
, and p−1(τ) = 2τ (77)

in (3).
For these choices of q(τ) and p(τ) in (22) and (56), the GHLSMaP gLs`n(x, y, z; C, E)
and the EGHLSMaP gLs`n,ν(x, y, z; C, E; η) are called (denoted) as the matrix polyno-
mials of Gould-Hopper-Laguerre-Hermite (GHLHMaP) gL H`

n(x, y, z; C, E) and the
extended matrix polynomials of Gould-Hopper-Laguerre-Hermite (EGHLHMaP)
gL H`

n,ν(x, y, z; C, E; η), respectively.
Some identities corresponding to those in Sections 2 and 3 are recorded in
Tables 3 and 4.

Table 3. Results for the GHLHMaP gL H`
n(x, y, z; C, E).

Results Expressions

Generating function: exp
(

2xτ
√

2C + Ey(2τ)` − τ2
)

C0(2zτ) =
∞
∑

n=0
gL H`

n(x, y, z; C, E) τn
n! .

Multiplicative and M̂gL H =

(
x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`−1

∂x`−1 −
(
√

2C)−1 Dx
2

)
2,

derivative operators: P̂gL H =
(
√

2C)−1 Dx
2 .

Differential equation:
((

x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`−1

∂x`−1 −
(
√

2C)−1 Dx
2

)(√
2C
)−1

Dx − n
)

×gL H`
n(x, y, z; C, E) = 0.



Fractal Fract. 2022, 6, 211 16 of 19

Table 4. Results for the EGHLHMaP gL H`
n,ν(x, y, z; C, E; α).

Results Expressions

Generating function:
exp(2xτ

√
2C)C0(2zτ)

eτ2 (α−Ey(2τ)`)
ν =

∞
∑

n=0
gL H`

n,ν(x, y, z; C, E; α) τn

n! .

Multiplicative and M̂gL Hν =

(
x
√

2C− D̂−1
z −

`Ey
(
√

2C)(`−1)
∂`

∂α∂x`−1 −
(
√

2C)
−1

Dx
2

)
2,

derivative operators: P̂gL Hν =
(
√

2C)
−1

Dx
2 .

Differential equation:
((

x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`

∂α∂x`−1 −
(
√

2C)
−1

Dx
2

)(√
2C
)−1

Dx − n
)

×gL H`
n,ν(x, y, z; C, E; α) = 0.

(b) The truncated exponential polynomials en(x), which are generated by the following
function (consult, for example, [31], p. 596, Equation (4); see also [32]):

exτ

1− τ
=

∞

∑
n=0

en(x)
τn

n!
(78)

belong to the Sheffer family by choosing q(τ) = 1
1−τ and p(τ) = τ. As in (a), the

GHLSMaP gLs`n(x,y,z; C, E) and EGHLSMaP gLs`n,ν(x,y,z; C, E; η) are called (de-
noted) as the Gould-Hopper-Laguerre-truncated exponential matrix polynomials
(GHLTEMaP) gLe`n(x, y, z; C, E) and extended Gould-Hopper-Laguerre-truncated ex-
ponential matrix polynomials (EGHLTEMaP) gLe`n,ν(x, y, z; C, E; η), respectively. As in
(a), their properties are recorded in Tables 5 and 6.

Table 5. Results for the GHLTEMaP gLe`n(x, y, z; C, E).

Results Expressions

Generating function: 1
1−t exp

(
xt
√

2C + Eyt`
)

C0(zt) =
∞
∑

n=0
gLe`n(x, y, z; C, E) tn

n! .

Multiplicative and M̂gLe = x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`−1

∂x`−1 − 1
1−(
√

2C)−1 Dx
,

derivative operators: P̂gLe =
(√

2C
)−1

Dx.

Differential equation:
((

x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`−1

∂x`−1 − 1
1−(
√

2C)−1 Dx

)
(
√

2C)−1Dx − n
)

×gLe`n(x, y, z; C, E) = 0.

Table 6. Results for the EGHLTEMaP gLe`n,ν(x, y, z; C, E; η).

Results Expressions

Generating function: 1
1−u

exp(xu
√

2C)C0(zu)

(α−Eyu`)
ν =

∞
∑

n=0
gLe`n,ν(x, y, z; C, E; α) un

n! .

Multiplicative and M̂gLeν = x
√

2C− D̂−1
z −

`Ey
(
√

2C)(`−1)
∂`

∂α∂x`−1 − 1
1−(
√

2C)−1 Dx
,

derivative operators: P̂gLeν =
(√

2C
)−1

Dx.

Differential equation:
((

x
√

2C− D̂−1
z −

`Ey
(
√

2C)(`−1)
∂`

∂α∂x`−1 − 1
1−(
√

2C)−1 Dx

)
(
√

2C)−1Dx − n
)

×gLe`n,ν(x, y, z; C, E; α) = 0.

(c) The Mittag-Leffler polynomials Mn(x), which are the member of associated Sheffer
family and defined as follows (see [4]):
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(
1 + τ

1− τ

)x
=

∞

∑
n=0

Mn(x)
τn

n!
(79)

by choosing q(τ) = 1 and p(τ) = eτ−1
eτ+1 . As in (a), the GHLASMaP gLs

`
n(x, y, z; C, E)

and the EGHLASMaP gLs
`
n,ν(x, y, z; C, E; η) are called (denoted) as the Gould-Hopper-

Laguerre-Mittag-Leffler matrix polynomials (GHLMLMaP) gL M`
n(x, y, z; C, E) and the

extended Gould-Hopper-Laguerre-Mittag-Leffler matrix polynomials (EGHLMLMaP)
gL M`

n,ν(x, y, z; C, E; η), respectively. As in (a) or (b), their properties are recorded in
Tables 7 and 8.

Table 7. Results for the GHLMLMaP gL M`
n(x, y, z; C, E).

Results Expressions

Generating function: exp
(
x ln
(

1+τ
1−τ

)√
2C + Ey ln

(
1+τ
1−τ

)`)
C0

(
z ln
(

1+τ
1−τ

))
=

∞
∑

n=0
gL M`

n(x, y, z; C, E) τn

n! .

Multiplicative and M̂gL M =
(
x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`−1

∂x`−1

) (e(
√

2C)−1 Dx+1
)2

2 e(
√

2C)−1 Dx
,

derivative operators: P̂gL M = e(
√

2C)−1 Dx−1
e(
√

2C)−1 Dx+1
.

Differential equation:
((

x
√

2C− D̂−1
z + `Ey

(
√

2C)(`−1)
∂`−1

∂x`−1

)
e2(
√

2C)−1 Dx−1
2 e(
√

2C)−1 Dx
− n

)
×gL M`

n(x, y, z; C, E) = 0.

Table 8. Results for the EGHLMLMaP gL M`
n,ν(x, y, z; C, E; η).

Results Expressions

Generating function:
exp(x ln( 1+τ

1−τ )
√

2C)C0(z ln( 1+τ
1−τ ))(

α−Ey ln( 1+t
1−t )

`
)ν =

∞
∑

n=0
gL M`

n,ν(x, y, z; C, E; η) τn

n! .

Multiplicative and M̂gL Mν =
(
x
√

2C− D̂−1
z −

`Ey
(
√

2C)(`−1)
∂`

∂α∂x`−1

) (e(
√

2C)−1 Dx+1
)2

2 e(
√

2C)−1 Dx
,

derivative operators: P̂gL Mν = e(
√

2C)−1 Dx−1
e(
√

2C)−1 Dx+1
.

Differential equation:
((

x
√

2C− D̂−1
z −

`Ey
(
√

2C)(`−1)
∂`

∂α∂x`−1

)
e2(
√

2C)−1 Dx−1
2 e(
√

2C)−1 Dx
− n

)
×gL M`

n,ν(x, y, z; C, E; η) = 0.

Numerous necessary and sufficient properties for Sheffer sequences, accordingly,
associated sequences and Appell sequences have been developed (see [4], pp. 17–28). In
addition to the identities in Corollaries 3 and 4, here, we record several identities for the
Appell polynomials

[q(τ),τ]gLs`n(x, y, z; C, E) in the following corollary, without their proofs
(see [4], pp. 26–28).

Corollary 6. The following identities hold true:

(a)

[q(τ),τ]gLs`n(x, y, z; C, E) = q
((√

2C
)−1

Dx

)−1

{xn}. (80)
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(b)

[q(τ),τ]gLs`n(x1 + x2, y, z; C, E)

=
n

∑
k=0

(
n
k

)
[q(τ),τ]gLs`n−k(x1, y, z; C, E)

(√
2C x2

)k
.

(81)

(c) (Conjugate representation)

[q(τ),τ]gLs`n(x, y, z; C, E)

=
n

∑
k=0

(
n
k

)[
q
((√

2C
)−1

Dx

)−1{
xn−k

}]
xk.

(82)

5. Conclusions and Posing a Problem

The authors introduced a new class of polynomials, the Gould-Hopper-Laguerre-
Sheffer matrix polynomials, using operational approaches. This new family’s generating
function and operational representations were then constructed. They are also understood
in terms of quasi-monomiality. The authors also extended Gould-Hopper-Laguerre-Sheffer
matrix polynomials and explored their characteristics using the integral transform. There
were other instances for individual members of the aforementioned matrix polynomial
family.

It should be highlighted that the polynomials presented and studied in this article are
regarded to be novel, primarily because they cannot be obtained by modifying previously
published findings and identities, as far as we have researched. Also, the new polynomials
and their identities are potentially useful, particularly in light of the tables’ demonstrations
of some of their special instances.

Posing a problem: Provide some new instances (which are nonexistent from the
literature) for those novel polynomials, such as Gould-Hopper matrix polynomials and
Gould-Hopper-Laguerre-Sheffer matrix polynomials.
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