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Abstract: In this paper, we study the traveling wave solution of an epidemic model with mixed
diffusion. First, we give two definitions of the minimum wave speeds and prove that they are
equivalent. Second, the existence, decaying behavior, and uniqueness of traveling wave fronts are
obtained. Third, the signs of minimum wave speeds are studied, and further, in two specific cases of
the dispersal kernel, we show how to identify the signs of minimum wave speeds.
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1. Introduction

This paper is devoted to studying the following epidemic model:{
ut = uxx − αu + h(v), x ∈ R, t ∈ R,

vt = K ∗ v− v− βv + g(u), x ∈ R, t ∈ R,
(1)

where u(t, x) and v(t, x) in biology stand for the spatial concentration of an infectious
agent and the spatial density of the infectious human population, respectively; α > 0 and
β > 0 denote the natural death rates of the infectious agent and infectious humans; h(v)
means the growth of the infectious agent caused by infectious humans; and g(u) is the
infection rate of the human population under the assumption that the total susceptible
human population is a constant during the evolution of the epidemic. The model (1)
describes a positive feedback interaction between the concentration of infectious agent and
the infectious human population; that is, a high concentration of infectious agent leads to a
large infection rate in the human population, and as more people are infected, the growth
rate of the infectious agent increases. This model is an extension to the classical SEIR
(susceptible–exposed–infectious–recovered) model. There is a widely adopted numerical
approach to the solution of epidemic phenomena based on the modification of SEIR model
and similar ones, and the very recent contributions include [1–3].

The model (1) is a mixed-diffusion variant of the following classical epidemic model:{
ut = d1uxx − αu + h(v), x ∈ R, t ∈ R,

vt = d2vxx − βv + g(u), x ∈ R, t ∈ R,
(2)

which was proposed by Capasso and Maddalena [4,5] to model the spread of cholera in
the European Mediterranean regions in 1973. In (2), the diffusions of infectious agent and
infectious human are described by the classical diffusion operators uxx and vxx. However,
in (1), the diffusion of infectious human is represented by the nonlocal dispersal operator

K ∗ v(x)− v(x) =
∫
R

K(x− y)(v(y)− v(x))dy,
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where K(x− y) can be viewed as the probability of individuals moving from location y to
location x (see [6]). Compared to the classical diffusion operator, the nonlocal dispersal
operator describes the movements between not only adjacent but also nonadjacent spatial
locations. Here the nonlocal dispersal of v can be thought as the long-distance move-
ments of infectious humans across cites or countries by air traffic and other long-distance
transportation. If the diffusion of infectious agent is also nonlocal, then (1) reduces to the
following nonlocal dispersal model:{

ut = d1(K1 ∗ u− u)− αu + h(v), x ∈ R, t ∈ R,

vt = d2(K2 ∗ v− v)− βv + g(u), x ∈ R, t ∈ R.
(3)

In (3), the nonlocal dispersal operator K1 ∗ u − u means that long-distance movements
of infectious agent happen; for example, the infectious agent can move among countries
through the transportation of imported food or the flow of international rivers.

The wave propagation phenomena, which are associated with the studies of traveling
wave solutions and spreading speeds of systems (2) and (3), have been widely studied
in the literature. For example, Hsu and Yang [7] considered the existence, uniqueness,
and decaying behavior of traveling wave fronts of (2), and Wu and Hsu [8] studied the
entire solutions of (2). We also refer to [9,10] for the traveling wave solution of (2) in
the case d2 = 0, and [11,12] for traveling wave solutions of a more general system that
includes (2) as a special case. For the nonlocal dispersal model (3), we assume that Ki
satisfies

∫
R Ki(x)eλxdx < +∞ for λ ∈ R. Li, Xu, and Zhang [13]; and Meng, Yu, and

Hsu [14] studied the traveling wave solutions and entire solutions. We also refer to [15,16]
for the traveling wave solutions and spreading speed of (3) in the case d2 = 0. The
spreading speed of (3) was studied by Bao et al. [17], Hu et al. [18], and Xu et al. [19].

The study of the following scalar dispersal equation with reaction:

ut = Au + f (u), x ∈ R, t > 0 (4)

is also closely related to (1) and (3), where A is a dispersal operator. There are various
forms of A, such as classical diffusion Au = ∆u, nonlocal dispersal Au = K ∗ u − u,
fractional Laplacian Au = −(−∆)αu (see [20] for a recent review), and variable-order
Riemann–Liouville fractional derivatives defined by [21,22]

xL Dα(x,t)
x u(x, t) =

1
Γ(2− α(x, t))

[
∂2

∂ξ2

∫ ξ

xL

u(η, t)
(ξ − η)α(x,t)−1

dη

]
ξ=x

,

xDα(x,t)
xR u(x, t) =

1
Γ(2− α(x, t))

[
∂2

∂ξ2

∫ xR

ξ

u(η, t)
(η − ξ)α(x,t)−1

dη

]
ξ=x

,

where Γ(·) is the gamma function. The variability and transition of fractional orders con-
tribute to the detailed description of highly heterogeneous systems and complex phenom-
ena. Such scenarios have motivated the formulation of variable-order fractional operators
and related algorithms—for example, [23]. Consider the monostable case with f satisfying
the following Fisher–KPP condition

f (0) = f (1) = 0, f (u) > 0 for u ∈ (0, 1), f ′(0) > 0, f (u) 6 f ′(0)u for u ∈ (0, 1).

The different forms of A usually cause distinct wave propagation phenomena of (4).

(i) When Au = ∆u, (4) is a classical reaction-diffusion equation and there is a unique
traveling wave front for any speed c > 2

√
f ′(0), but no traveling wave solution for

the speed c ∈ (0, 2
√

f ′(0)).
(ii) WhenAu = −(−∆)αu, (4) is a fractional diffusion equation with reaction, and there is

no traveling wave solution for any speed c ∈ R. Moreover, it was shown that the front
position propagates exponentially; see, e.g., [24–26]. To the best of our knowledge,
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there is no result about the propagation dynamics of variable-order fractional diffusion
equations, and our work could possibly provide some basis for this topic.

For the case Au = K ∗ u − u, the properties of K determine whether (4) admits a
traveling wave front spreading at a finite speed or has exponentially propagating front
position. More precisely, when the symmetric kernel K satisfies

∫
R K(x)eλxdx < +∞ for

λ ∈ R, there exists c∗ > 0 such that (4) has a unique traveling wave front for any speed
c > c∗, and no traveling wave solution with the speed c ∈ (0, c∗); see [27–33]. However,
when K is “heavy-tailed”, in the sense that |K′(x)| = o(K(x)) as |x| → +∞, there is no
traveling wave solution for any speed c ∈ R and the spatial propagation of front position
is accelerated; see, e.g., [34–37]. In particular, when K(x) ∼ |x|−β as |x| → +∞, the
front position propagates exponentially, which means the nonlocal dispersal case with an
algebraic-tailed kernel has similar wave propagation properties to the caseAu = −(−∆)αu.

To the best of our knowledge, there is no result about the traveling wave solutions
of the mixed-diffusion model (1), although its background in biology is clear; that is, the
movements of an infectious agent are local, but the long-distance movements of infectious
human happen. Herein, we consider the traveling wave solutions and the minimum
wave speeds in monostable system (1). A traveling wave solution of (1) is a solution of
the special form (u(x, t), v(x, t)) = (φ(x − ct), ψ(x − ct)), which can be regarded as the
dispersal process of epidemic from outbreak to an endemic. Usually, a non-decreasing
or non-increasing traveling wave solution is called a traveling wave front. Note that we
use the form (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct)) to represent not only non-increasing
but also non-decreasing traveling wave front. Therefore, no matter whether a traveling
wave solution is non-increasing or non-decreasing, when its speed is positive, it propagates
from left to right along the x-axis, and when its speed is negative, it propagates from right
to left on the x-axis. In this paper, we study the “light-tailed” dispersal kernel, namely,∫
R K(x)eλxdx < +∞, for λ ∈ R. Our results can be summarized from three angles.

First, we give two definitions of the minimum wave speeds. The first definition is
related to the principal eigenvalue of a linear operator derived from (1), and this definition
is common in the study of traveling wave solutions and spreading speeds in (2) and (3),
and other related systems (see, e.g., [17–19,38,39]). The second definition is related to the
root number of an eigenvalue equation, and this definition is used to study the traveling
wave solutions in [7,13]. Moreover, we prove that these two definitions are equivalent.

Second, we consider the traveling wave solutions of (1). Motivated by the works
of [7,13,40,41], we change the traveling wave solution problem into investigating the fixed
point of a nonlinear operator, and the existence of traveling wave front is obtained by
constructing a pair of upper and lower solutions and applying the Schauder’s fixed point
theorem. The decaying behavior and uniqueness of traveling wave fronts are also obtained.

Third, we study the signs of minimum wave speeds. In (1), the kernel function K(·) is
assumed to be asymmetric. As stated in [32], asymmetric kernels may induce non-positive
minimal wave speed. Thus, it is significant to study the signs of minimum wave speeds,
which determine whether it happens that the asymmetric kernel changes the propagation
direction of traveling wave solutions. Motivated by the work of [19] for (3), we show
that the signs of minimum wave speeds of (1) depend only on the number of elements in
some set, which is further applied to two specific forms of K(·) (i.e., normal distribution
and uniform distribution). For these two specific forms, the study of signs of minimum
wave speeds is quite different from that considered in [19] for (3), because in this work
for (1) we consider the influences of the asymmetric dispersal of v under the assumption
that u has symmetric local diffusion, but in [19] for (3), the authors study the influences
of symmetric nonlocal kernel of v when u has asymmetric nonlocal dispersal. We show
that when K(·) is normal distribution or uniform distribution, the signs of minimum wave
speeds depend only on µ and µ√

σ
where µ ∈ R is the expectation and σ is the variance of K,

which is different from the results obtained in [19] for (3). Thus, the study for the cases of
normal distribution and uniform distribution in this paper is a new result to understand
the influences of asymmetric dispersal on the signs of minimum wave speeds.
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The rest of this paper is organized as follows. In Section 2, we give two definitions
of minimum wave speeds and prove they are equivalent. Section 3 presents the existence,
uniqueness, and decaying behavior of traveling wave fronts of (1). Section 4 deals with the
signs of minimum wave speeds, and the results for two specific forms of K are given.

2. Two Definitions of Minimum Wave Speeds

In the section, we give two definitions of minimum wave speeds and prove that they
are equivalent. First we state the assumptions. Assume that

(A1) g(·) and h(·) are two functions in C1([0, 1])∩C1+δ0([0, p0]) with δ0 > 0 and p0 ∈ (0, 1),
and g(0) = h(0) = 0, h(1)/α = g(1)/β = 1, h(g(u)/β)− αu > 0 for u ∈ (0, 1);

(A2) 0 < g(u) 6 g′(0)u, g′(u) > 0 for u ∈ (0, 1); 0 < h(v) 6 h′(0)v, h′(v) > 0 for v ∈ (0, 1).

Then (1) is a monostable system with equilibria (u, v) ≡ (0, 0) and (u, v) ≡ (1, 1), and there
exists no equilibrium (u, v) satisfying 0 < u, v < 1. We can easily check that h′(0)g′(0)u >
h′(0)g(u) > βh(g(u)/β) > αβu for u ∈ (0, 1), which implies that

h′(0)g′(0) > αβ.

We assume that K(·) is a continuous and nonnegative function satisfying

(K)
∫
R K(x)dx = 1,

∫
R K(x)eλxdx < +∞ for λ ∈ R, and there exist x1 > 0 and x2 < 0

such that K(x1) > 0 and K(x2) > 0.

Note that we do not assume that K(·) is symmetric.

2.1. The First Definition

We denote

a(λ) = λ2 − α, b(λ) =
∫
R

K(x)eλxdx− 1− β for λ ∈ R.

Consider the matrix

E(λ) =
(

a(λ) h′(0)
g′(0) b(λ)

)
.

Let χ(λ) be the large one of the two eigenvalues of E(λ), namely,

χ(λ) =
1
2

[
a(λ) + b(λ) +

√
(a(λ)− b(λ))2 + 4g′(0)h′(0)

]
,

and then (a(λ)− χ(λ))(b(λ)− χ(λ)) = h′(0)g′(0). Denote

c(λ) =
χ(λ)

λ
for λ 6= 0. (5)

It follows that
[a(λ)− λc(λ)][b(λ)− λc(λ)] = h′(0)g′(0). (6)

Theorem 1. We have the following statements about c(λ):

(i) c(λ) satisfies that

lim
λ→0+

c(λ) = lim
λ→+∞

c(λ) = +∞, lim
λ→0−

c(λ) = lim
λ→−∞

c(λ) = −∞;

(ii) There are two unique constants λ∗R > 0 and λ∗L < 0 such that

c′(λ)


> 0, λ ∈ (λ∗R,+∞),

= 0, λ = λ∗R,

< 0, λ ∈ (0, λ∗R),

and c′(λ)


> 0, λ ∈ (−∞, λ∗L),

= 0, λ = λ∗L,

< 0, λ ∈ (λ∗L, 0);
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(iii) If we set
c∗R , c(λ∗R) = min

λ>0
{c(λ)}, c∗L , c(λ∗L) = max

λ<0
{c(λ)},

then c∗L < c∗R holds.

Proof. Since a(0) = −α and b(0) = −β, we get from h′(0)g′(0) > αβ that

χ(0) =
1
2

[
−α− β +

√
(α− β)2 + 4g′(0)h′(0)

]
> 0,

which implies that lim
λ→0+

c(λ) = +∞ and lim
λ→0−

c(λ) = −∞. Note that

lim
λ→+∞

a(λ)
λ

= +∞, lim
λ→+∞

b(λ)
λ

= +∞,

and then

lim
λ→+∞

c(λ) = lim
λ→+∞

χ(λ)

λ
= +∞.

Similarly, it holds that lim
λ→−∞

c(λ) = −∞.

The proofs of (ii) and (iii) are similar to the counterpart in the proof of [19]
(Theorem 2.1).

2.2. The Second Definition

Consider the function

∆c(λ) = Ac(λ)Bc(λ)− h′(0)g′(0), c ∈ R, λ ∈ R,

where
Ac(λ) = a(λ)− cλ = λ2 − cλ− α,

Bc(λ) = b(λ)− cλ =
∫
R

K(x)eλxdx− 1− cλ− β.

We can easily check that

Ac(0) = −α < 0, Bc(0) = −β < 0, Ac(±∞) = Bc(±∞) = +∞,

and
A′′c (λ) = 2 > 0, B′′c (λ) =

∫
R

K(x)eλxx2dx > 0.

Then, there exist four unique constants η−, ζ− ∈ (−∞, 0) and η+, ζ+ ∈ (0,+∞) such that

Ac(λ)


< 0, λ ∈ (η−, η+),

= 0, λ = η− or η+,

> 0, λ ∈ (−∞, η−) ∪ (η+,+∞),

Bc(λ)


< 0, λ ∈ (ζ−, ζ+),

= 0, λ = ζ− or ζ+,

> 0, λ ∈ (−∞, ζ−) ∪ (ζ+,+∞),

and

A′c(λ)

{
< 0, λ ∈ (−∞, η−),

> 0, λ ∈ (η+,+∞),
B′c(λ)

{
< 0, λ ∈ (−∞, ζ−),

> 0, λ ∈ (ζ+,+∞).

Denote

λ1 = min{η−, ζ−}, λ2 = max{η−, ζ−}, λ3 = min{η+, ζ+}, λ4 = max{η+, ζ+},

and it follows that λ1 < λ2 < 0 < λ3 < λ4.
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Theorem 2. For sufficiently large c ∈ R, ∆c(λ) = 0 has exactly three different positive roots and
one negative root. For sufficiently small c ∈ R, ∆c(λ) = 0 has exactly three different negative roots
and one positive root.

Proof. We have that

∆′c(λ) = A′c(λ)Bc(λ) + Ac(λ)B′c(λ)

{
< 0, λ ∈ (−∞, λ1),

> 0, λ ∈ (λ4,+∞).

Since
∆c(λ1) = ∆c(λ4) = −h′(0)g′(0) < 0 and ∆c(±∞) = +∞,

then ∆c(λ) = 0 has a unique root in (−∞, λ1) and a unique root in (λ4,+∞). In [λ1, λ2] or
[λ3, λ4], since Ac(λ)Bc(λ) 6 0, we have that ∆c(λ) 6 −h′(0)g′(0) < 0, which implies that
∆c(λ) = 0 has no root in [λ1, λ2] or [λ3, λ4].

Next consider the roots in (λ2, λ3). Note that

Ac

(
1√
c

)
=

1
c
−
√

c− α→ −∞, as c→ +∞,

Bc

(
1√
c

)
=
∫
R

K(x)e
x√
c dx− 1−

√
c− β→ −∞, as c→ +∞,

Ac

(
− 1√
−c

)
= −1

c
−
√
−c− α→ −∞, as c→ −∞,

Bc

(
− 1√
−c

)
=
∫
R

K(x)e−
x√
−c dx− 1−

√
−c− β→ −∞, as c→ −∞.

Then

∆c

(
1√
c

)
→ +∞ as c→ +∞,

∆c

(
− 1√
−c

)
→ +∞ as c→ −∞.

We can easily check that

∆c(0) = αβ− h′(0)g′(0) < 0, ∆c(λ2) = ∆c(λ3) = −h′(0)g′(0) < 0.

Therefore, for sufficiently large c ∈ R, ∆c(λ) = 0 has at least one root in (0, 1√
c ) and at least

one root in ( 1√
c , λ3). Similarly, for sufficiently small c ∈ R, ∆c(λ) = 0 has at least one root

in (− 1√
−c , 0) and at least one root in (λ2,− 1√

−c ).
We now prove that ∆c(λ) = 0 has at most two roots in (λ2, λ3). When λ belongs to

(λ2, λ3) and satisfies

∆′c(λ) = A′c(λ)Bc(λ) + Ac(λ)B′c(λ) = 0,

we have that A′c(λ)B′c(λ) 6 0 since Ac(λ) < 0 and Bc(λ) < 0, which along with A′′c (λ) > 0
and B′′c (λ) > 0, implies that

∆′′c (λ) = A′′c (λ)Bc(λ) + 2A′c(λ)B′c(λ) + Ac(λ)B′′c (λ) < 0.

Then the function ∆c(·) has only a unique maximum point and no minimum point in
(λ2, λ3). By Rolle’s theorem, we can obtain the existence of maximum point of ∆c(·) in
(λ2, λ3), which is denoted by λM. Moreover, we have that ∆′c(λ) > 0 for (λ2, λM), and
∆′c(λ) < 0 for (λM, λ3). Therefore, ∆c(λ) = 0 has at most two roots in (λ2, λ3), which (if
exist) are in (λ2, λM) and (λM, λ3), respectively.
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Therefore, for sufficiently large c ∈ R, ∆c(λ) = 0 has exactly three different positive
roots and one negative root. For sufficiently small c ∈ R, ∆c(λ) = 0 has exactly three
different negative roots and one positive root.

Definition 1. From Theorem 2, we can define

C∗R , inf{c ∈ R | ∆c(λ) = 0 has three different positive roots},
C∗L , sup{c ∈ R | ∆c(λ) = 0 has three different negative roots}.

Let
M(c) = the number of positive roots of ∆c(λ) = 0,

N(c) = the number of negative roots of ∆c(λ) = 0.

A simple calculation implies

∂

∂c
∆c(λ) = Ac(λ)

∂

∂c
Bc(λ) + Bc(λ)

∂

∂c
Ac(λ) = −λ[Ac(λ) + Bc(λ)].

Since Ac(λ) < 0 and Bc(λ) < 0 for λ ∈ (λ2, λ3), we have that ∂
∂c ∆c(λ) > 0 for λ ∈ (0, λ3),

and ∂
∂c ∆c(λ) < 0 for λ ∈ (λ2, 0). Since ∆c(λ) with λ ∈ (0, λ3) is strictly increasing in c, the

proof of Theorem 2 implies that the root number of ∆c(λ) = 0 in (0, λ3) is non-decreasing
in c. Definition 1 shows that

M(c) =


3, c > C∗R,

2, c = C∗R,

1, c < C∗R.

(7)

Similarly, we have that

N(c) =


3, c < C∗L,

2, c = C∗L,

1, c > C∗L.

(8)

2.3. Equivalence of Two Definitions

Theorem 3. c∗R = C∗R and c∗L = C∗L.

Proof. First, we prove c∗R > C∗R. For any c > c∗R, Theorem 1 implies that there are two
positive constants ξ1(c) ∈ (0, λ∗R) and ξ2(c) ∈ (λ∗R,+∞) such that

c = c(ξ1(c)) = c(ξ2(c)).

From (6), it follows that

[a(ξ1(c))− cξ1(c)][b(ξ1(c))− cξ1(c)] = h′(0)g′(0),

[a(ξ2(c))− cξ1(c)][b(ξ2(c))− cξ1(c)] = h′(0)g′(0),

which mean that
∆c(ξ1(c)) = ∆c(ξ2(c)) = 0,

Then ξ1(c) and ξ2(c) are two different positive roots of ∆c(λ) = 0, and M(c) > 2 for any
c > c∗R. From (7) it follows that c∗R > C∗R.

Second, we prove C∗R > c∗R. For any c > C∗R, by the proof of Theorem 2 and Definition 1,
∆c(λ) = 0 has two different positive roots in (0, λ3), and we denote them by η1(c) and
η2(c) with η1(c) < η2(c). Then for i = 1, 2, we have that

∆c(ηi(c)) = Ac(ηi(c))Bc(ηi(c))− h′(0)g′(0) = 0,

where Ac(ηi(c)) = a(ηi(c))− cηi(c) < 0, and Bc(ηi(c)) = b(ηi(c))− cηi(c) < 0.
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It follows that

[cηi(c)]2 − cηi(c)[a(ηi(c)) + b(ηi(c))] + a(ηi(c))b(ηi(c))− h′(0)g′(0) = 0.

Note that if cηi(c) = 1
2 [a(ηi(c)) + b(ηi(c))−

√
[a(ηi(c))− b(ηi(c))]2 + 4h′(0)g′(0)], then

Ac(ηi(c)) = a(ηi(c))− cηi(c) > 0 and Bc(ηi(c)) = b(ηi(c))− cηi(c) > 0,

which is a contradiction. Thus, we have that

cηi(c) =
1
2

[
a(ηi(c)) + b(ηi(c)) +

√
[a(ηi(c))− b(ηi(c))]2 + 4h′(0)g′(0)

]
= χ(ηi(c)),

which implies that

c =
χ(ηi(c))

ηi(c)
= c(ηi(c)) > max

λ>0
{c(λ)} = c∗R.

We obtain C∗R > c∗R.
Therefore, it holds that c∗R = C∗R, and the proof of c∗L = C∗L is similar.

Theorem 3 shows that the first definition for c∗R and c∗L in Theorem 1 (iii) is equivalent
to the second definition for C∗R and C∗L in Definition 1. Thus, we use c∗R and c∗L for the
minimum wave speeds in the rest of the paper.

3. Traveling Wave Solutions

In this section, we consider the traveling wave solutions of (1). First, we introduce the
notations for the standard order in R2. For U = (u1, u2)

T and V = (v1, v2)
T , we denote

U 6 V if u1 6 v1 and u2 6 v2; U < V if U 6 V but U 6= V; and U � V if u1 < v1 and
u2 < v2.

Substituting (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct)) into (1) and letting ξ = x− ct,
we can get that{

φ′′(ξ) + cφ′(ξ)− αφ(ξ) + h(ψ)(ξ) = 0, ξ ∈ R,

K ∗ ψ(ξ)− ψ(ξ) + cψ′(ξ)− βψ(ξ) + g(φ)(ξ) = 0, ξ ∈ R.
(9)

Let Φ(ξ) = (φ(ξ), ψ(ξ)), ξ ∈ R. For a non-increasing traveling wave front, we assume the
boundary condition

Φ(−∞) = (1, 1), Φ(+∞) = (0, 0), (10)

and for a non-decreasing traveling wave front, we assume the boundary condition

Φ(−∞) = (0, 0), Φ(+∞) = (1, 1). (11)

Define F(Φ)(ξ) = ( f1(Φ), f2(Φ))(ξ) satisfying

f1(Φ)(ξ) =
1

λ2 − λ1

[∫ ξ

−∞
eλ1(ξ−s)h(ψ)(s)ds +

∫ +∞

ξ
eλ2(ξ−s)h(ψ)(s)ds

]
,

f2(Φ)(ξ) = − e
(1+β)ξ

c

c

∫ ξ

−∞
e−

(1+β)s
c

[
K ∗ ψ(s) + g(φ)(s)

]
ds,

where λ1 and λ2 are the roots of the equation λ2 + cλ− α = 0, namely,

λ1 =
−c−

√
c2 + 4α

2
, λ2 =

−c +
√

c2 + 4α

2
.
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Note that F(Φ)(·) satisfies that{
( f1(Φ))′′ + c( f1(Φ))′ − α( f1(Φ)) + h(ψ) = 0,

K ∗ f2(Φ)− f2(Φ) + c( f2(Φ))′ − β f2(Φ) + g(φ) = 0.

Therefore, a fixed point of F is a solution of (9).

Definition 2. A continuous function Ψ = (φ, ψ) : R→ R2 is called an upper solution of (9), if
φ(ξ) is twice continuously differentiable and ψ(ξ) is continuously differentiable on R\T, where
T = {Ti}i=1,...,m is a set containing countable points in R, and they satisfy{

φ′′(ξ) + cφ′(ξ)− αφ(ξ) + h(ψ)(ξ) 6 0, ξ ∈ R\T,

K ∗ ψ(ξ)− ψ(ξ) + cψ′(ξ)− βψ(ξ) + g(φ)(ξ) 6 0, ξ ∈ R\T,
(12)

A lower solution of (9) is defined similarly by reversing the inequality in (12).

Next we consider the non-increasing traveling wave front satisfying (10). Define

C[0,1](R,R2) = {Φ = (φ, ψ) ∈ C(R,R2) | φ(ξ) ∈ [0, 1] and ψ(ξ) ∈ [0, 1] for ξ ∈ R}.

The following result reduces the existence of the solution of (9) to the existence of a pair of
upper and lower solutions satisfying some additional conditions.

Theorem 4. Assume that (A1), (A2), and (H) hold. If (9) has an upper solution Φ̄ = (φ̄, ψ̄) ∈
C[0,1](R,R2) and a lower solution Φ = (φ, ψ) ∈ C[0,1](R,R2) satisfying

(a) sups>ξ{Φ(s)} 6 Φ̄(ξ) for any ξ ∈ R,
(b) (9) has no constant solution on (0, infξ∈R Φ̄(ξ)] ∪ [supξ∈R Φ(ξ), 1),
(c) Φ̄′(ξ+) 6 Φ̄′(ξ−) for ξ ∈ R,
(d) Φ′(ξ+) > Φ′(ξ−) for ξ ∈ R,

then (9) has a non-increasing solution satisfying (10), which is a traveling wave front of (1).

Proof. The proof is similar to the proofs of [40] (Theorem 2.2) and [41] (Theorem 3.2), where
Schauder’s fixed point theorem is applied to obtain the fixed point of F. The properties for
f1 can be studied by the method in [40] (Lemmas 2.3 and 2.4). The properties for f2 can be
obtained from [41] (Lemmas 3.3, 3.5, 3.6, and 3.7). Thus, we omit the details.

By Theorem 4, we can obtain the following results of traveling wave fronts.

Theorem 5. Assume (A1), (A2), and (H) hold. Then for c > c∗R, (1) has a non-increasing traveling
wave front (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct)) satisfying (10), and for c 6 c∗L, (1) has a
non-decreasing traveling wave front (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct)) satisfying (11).
Moreover, there exists no traveling wave solution of (1) with c ∈ (c∗L, c∗R).

Proof. We consider the existence of a non-increasing traveling wave front satisfying (10)
and the existence of a non-decreasing traveling wave front satisfying (11) to be similar.
By Theorem 2 and Definition 1, when c > c∗R, there are two different positive roots of
∆c(λ) = 0 in (0, λ3), and we denote them by µ1(c) and µ2(c) with µ1(c) < µ2(c). Define

l(c) , −Ac(µ1(c))
h′(0)

= − g′(0)
Bc(µ1(c))

> 0.

Consider δ satisfying

0 < δ < min{δ0, µ2(c)/µ1(c)− 1},
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where δ0 is the constant in (A1). We define

φ̄c(ξ) , min{1, e−µ1(c)ξ}, ψ̄c(ξ) , min{1, l(c)e−µ1(c)ξ},

φ
c
(ξ) , max{0, e−µ1(c)ξ − qe−µ1(c)(1+δ)ξ},

ψ
c
(ξ) , max{0, l(c)e−µ1(c)ξ − qL(c, δ)e−µ1(c)(1+δ)ξ},

where q is a sufficiently large constant, and L(c, δ) satisfies

g′(0)
−Bc

(
(1 + δ)µ1(c)

) < L(c, δ) <
−Ac

(
(1 + δ)µ1(c)

)
h′(0)

.

By the methods in [13] (Lemma 2.7) and [8] (Lemma 2.2), we can get that Φ̄c(ξ) ,
(φ̄c(ξ), ψ̄c(ξ)) is an upper solution and Φc(ξ) , (φ

c
(ξ), ψ

c
(ξ)) is a lower solution of (1).

Note that Φc(·) is non-increasing and Φc(ξ) 6 Φ̄c(ξ) for any ξ ∈ R. Then we have

sup
s>ξ

{Φc(s)} 6 sup
s>ξ

{Φ̄c(s)} = Φ̄(ξ) for ξ ∈ R,

which implies the condition (a) in Theorem 4 holds. Recall that there is no equilibrium
(u, v) of (1) satisfying 0 < u, v < 1, and then the condition (b) holds. The conditions (c)
and (d) can be easily checked. By Theorem 4, (1) has a non-increasing traveling wave front
(φ(x− ct), ψ(x− ct)) with c > c∗R satisfying (10).

Now we consider the case c = c∗R. Let {cn} satisfy cn > c∗R and cn → c∗R as n →
+∞. Then there is a sequence of non-increasing continuous functions {Φn} = {(φn, ψn)}
satisfying 

φ′′n + cnφ′n − αφn + h(ψn) = 0,

K ∗ ψn − ψn + cnψ′n − βψn + g(φn) = 0,

lim
ξ→−∞

(φn, ψn) = (1, 1), lim
ξ→∞

(φn, ψn) = (0, 0).
(13)

By the methods in the proof of [7] (Theorem 1.1), the function sequences {φn}, {φ′n},
and {φ′′n} are uniformly bounded and equicontinuous on R; and by the methods in the
proof of [13] (Theorem 2.1), the function sequences {ψn} and {ψ′n} are uniformly bounded
and equicontinuous on R. By the Arzela–Ascoli theorem, we can find a subsequence of {n}
denoted by {nk} such that

cnk → c∗, φnk → φc∗ , φ′nk
→ φ′c∗ , φ′′nk

→ φ′′c∗ , ψnk → ψc∗ , ψ′nk
→ ψ′c∗ .

From (13), it follows that
φ′′c∗ + c∗φ′c∗ − αφc∗ + h(ψc∗) = 0,

K ∗ ψc∗ − ψc∗ + c∗ψ′c∗ − βψc∗ + g(φc∗) = 0,

lim
ξ→−∞

(φc∗ , ψc∗) = (1, 1), lim
ξ→∞

(φc∗ , ψc∗) = (0, 0).

Then (φc∗ , ψc∗) is a traveling wave front of (1) with c = c∗R satisfying (10).
Finally, the proof of the nonexistence of traveling wave solution with c ∈ (c∗L, c∗R) is

similar to the counterpart in [13] (Theorem 2.1) or [7] (Theorem 1.1).

By Theorem 2 and Definition 1, when c > c∗R, ∆c(λ) = 0 has three positive roots, and
let µc be the smallest one. When c 6 c∗L, ∆c(λ) = 0 has three negative roots, and let νc be
the largest one. Define

∆̄c(λ) = Ac(λ)Bc(λ)− g′(1)h′(1), c ∈ R, λ ∈ R.
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Now suppose that g′(1)h′(1) < αβ. It follows that ∆̄c(0) > 0. By a similar argument for
∆c(λ) = 0 in the proof of Theorem 2, there are two positive roots and two negative roots
of ∆̄c(λ) = 0. Let γ1

c be the larger negative root, and let γ2
c be the smaller positive root.

The following two theorems study the decaying behavior and uniqueness of traveling
wave fronts.

Theorem 6. Let (A1), (A2), and (H) hold, and suppose that g′(1)h′(1) < αβ. For c > c∗R and
c 6= 0, let (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct)) be a non-increasing traveling wave front
of (1) satisfying (10). Then there exist D1, D2, and D3 ∈ R+ ×R+ such that

lim
ξ→+∞

(φ(ξ), ψ(ξ))

e−µcξ
= D1, when c > c∗R, (14)

lim
ξ→+∞

(φ(ξ), ψ(ξ))

ξe−µcξ
= D2, when c = c∗R, (15)

lim
ξ→−∞

(1− φ(ξ), 1− ψ(ξ))

e−γ1
c ξ

= D3, when c > c∗R. (16)

Similarly, for c 6 c∗L and c 6= 0, let (u(x, t), v(x, t)) = (φ(x− ct), ψ(x− ct)) be a non-decreasing
traveling wave front of (1) satisfying (11). Then there exist D4, D5, and D6 ∈ R+ ×R+ such that

lim
ξ→−∞

(φ(ξ), ψ(ξ))

e−νcξ
= D4, when c < c∗L, (17)

lim
ξ→−∞

(φ(ξ), ψ(ξ))

ξe−νcξ
= D5, when c = c∗L, (18)

lim
ξ→+∞

(1− φ(ξ), 1− ψ(ξ))

e−γ2
c ξ

= D6, when c > c∗L. (19)

Theorem 7. Under the same assumptions of Theorem 6, the traveling wave front of (1) with (10)
or (11) is unique up to translation, in the sense that, for any c ∈ (c∗R,+∞) ∪ (−∞, c∗L), if
(φ1(x), ψ1(x)) and (φ2(x), ψ2(x)) are two solutions of (9) and at least one of them is continuous,
then there exists ξ0 ∈ R such that

(φ1(ξ + ξ0), ψ1(ξ + ξ0)) = (φ2(ξ), ψ2(ξ)), ξ ∈ R.

The proof of Theorem 6 is similar to Theorem 2.2 in [13], and we give a scheme here.
By a similar argument for (27) in [13], there are two constants γ > 0 and M > 0 such that

φ(ξ) 6 Me−γξ , ψ(ξ) 6 Me−γξ , ξ ∈ R.

Define
U(λ) =

∫
R

φ(ξ)eλξdξ, V(λ) =
∫
R

ψ(ξ)eλξdξ, 0 < Reλ < γ.

Multiplying (9) by eλξ and integrating it over R, we obtain that(
Ac(λ) h′(0)

g′(0) Bc(λ)

)(
U(λ)

V(λ)

)
=

(
Hψ(λ)

Gφ(λ)

)
,

where

Hψ(λ) ,
∫
R

[
h′(0)ψ(ξ)− h(ψ(ξ))

]
eλξ dξ, Gφ(λ) ,

∫
R

[
g′(0)φ(ξ)− g(φ(ξ))

]
eλξ dξ.
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It follows that

∫ +∞

0
φ(ξ)eλξ dξ =

Bc(λ)Hψ(λ)− h′(0)Gφ(λ)− ∆c(λ)
∫ 0
−∞ φ(ξ)eλξdξ

∆c(λ)
,

∫ +∞

0
ψ(ξ)eλξ dξ =

Ac(λ)Gφ(λ)− g′(0)Hψ(λ)− ∆c(λ)
∫ 0
−∞ ψ(ξ)eλξ dξ

∆c(λ)
.

If φ and ψ are monotonous, we can get (14) and (15) by Ikehara’s theorem. If not, define
(φ̃(ξ), ψ̃(ξ)) = (φ(ξ)e−pξ , ψ(ξ)e−pξ) for x ∈ R. When p is large enough, φ̃ and ψ̃ are
monotonous since φ′ and ψ′ are bounded. Then we can get (14) and (15) by applying
Ikehara’s theorem to φ̃ and ψ̃. The result (16) can be similarly proved by considering
(1− φ(ξ), 1− ψ(ξ)) as ξ → −∞. The proofs of (17), (18), and (19) are similar to (14), (15),
and (16), respectively.

The proof of Theorem 7 is based on the following claim: if (φ1, ψ1) 6 (φ2, ψ2) on R,
then either (φ1, ψ1) < (φ2, ψ2) or (φ1, ψ1) ≡ (φ2, ψ2) on R, where (φ1, ψ1) and (φ2, ψ2) are
two solutions of (9) with (10) or (11). If there exists x0 ∈ R satisfying ψ1(x0) = ψ2(x0),
since x0 is a maximum point of ψ1(·)− ψ2(·), we have that∫

R
K(x0 − y)(ψ1(y)− ψ2(y))dy + g(φ1(x0))− g(φ2(x0)) = 0.

It follows from (φ1, ψ1) 6 (φ2, ψ2) and g′ > 0 that φ1(x0) = φ2(x0) and ψ1(y) = ψ2(y)
for any y ∈ {y | x0 − y ∈ supp(K)}, which implies that ψ1(y) = ψ2(y) for y ∈ R (by
redefining x0 and repeating this process if supp(K) 6= R). By the uniqueness of solution
for the equation φ′′ + cφ′ − αφ + h(ψ1) = 0 with φ(x0) = φ1(x0), we get φ1(x) = φ2(x)
for x ∈ R. Hence, it holds that (φ1, ψ1) ≡ (φ2, ψ2) on R. If there exists y0 ∈ R satisfying
φ2(y0) = φ1(y0), we have that

φ′′1 (y0)− φ′′2 (y0) + h(ψ1(y0))− h(ψ2(y0)) = 0.

It follows from φ′′1 (y0)− φ′′2 (y0) 6 0 and h′ > 0 that ψ1(y0) = ψ2(y0), which implies that
(φ1, ψ1) ≡ (φ2, ψ2) on R by the argument above. The claim is proved, and Theorem 7 is
proved by a similar method to Theorem 1.2 in [7].

4. The Signs of Minimum Wave Speeds

In this section, we show how to identify the signs of c∗R and c∗L. Recall that

a(λ) = λ2 − α, b(λ) =
∫
R

K(x)eλxdx− 1− β for λ ∈ R.

Define
Λ ,

{
λ ∈ R

∣∣ a(λ)b(λ) > g′(0)h′(0), a(λ) < 0, b(λ) < 0
}

.

Theorem 8. We have that either Λ ⊆ R+ or Λ ⊆ R−, and

(i) c∗L < c∗R < 0 ⇔ int(Λ) ∩R+ 6= ∅;
(ii) c∗L < c∗R = 0 ⇔ Λ ∩R+ is a singleton set;
(iii) c∗L < 0 < c∗R ⇔ Λ = ∅;
(iv) 0 = c∗L < c∗R ⇔ Λ ∩R− is a singleton set;
(v) 0 < c∗L < c∗R ⇔ int(Λ) ∩R− 6= ∅.

Proof. The proofs of “⇐” in (i)–(v) are similar to the proof of [19] (Theorem 2.2). Now we
prove “⇒” for (i)–(v). By Theorem 1, we get c∗L < c∗R. Then the relationships among 0, c∗L,
and c∗R in (i)–(v) are all possible cases. By [19] (Theorem 2.2), Λ is an empty set or a closed
interval without 0 in R. Then, either Λ ⊆ R+ or Λ ⊆ R−. We have that the conditions of Λ
in (i)–(v) contain all possible cases, which means that Λ must satisfy one of the conditions
in (i)–(v). Therefore, the proofs of “⇒” can be obtained from “⇐” for (i)–(v).
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Next we give two specific forms of the kernel function K(·). For each case, we show
how to apply Theorem 8 to identify the signs of c∗R and c∗L.

4.1. Normal Distribution

Assume that K(x) satisfies that

K(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ

)
with µ ∈ R, σ > 0.

Let r = µ/
√

2σ. When µ 6= 0, K(·) can be regarded as a function with parameters µ and r,
namely,

K(x) =


r

µ
√

π
exp

(
− r2(x− µ)2

µ2

)
, when µ 6= 0;

1√
2πσ

exp
(
− x2

2σ

)
, when µ = 0.

Define
K , α

(
β + 1− exp(−r2)

)/(
g′(0)h′(0)

)
> 0. (20)

Corollary 1. For any fixed r satisfying K > 1, there is a constant µ∗ > 0 such that

(i) µ > µ∗ ⇔ the propagation to left fails, namely, 0 < c∗L < c∗R;
(ii) µ = µ∗ ⇔ 0 = c∗L < c∗R;
(iii) −µ∗ < µ < µ∗ ⇔ the propagation to both left and right happens, namely, c∗L < 0 < c∗R;
(iv) µ = −µ∗ ⇔ c∗L < c∗R = 0;
(v) µ < −µ∗ ⇔ the propagation to right fails, namely, c∗L < c∗R < 0.

Moreover, we have that µ∗ ∈ (0, µ̄) where

µ̄ =
2r2√

α
(

1− 1
K

) .

For any r satisfying K 6 1, it holds that c∗L < 0 < c∗R for any µ ∈ R.

Proof. We first consider the case K > 1. Note that when µ = 0, it holds that r = 0 and
K = αβ/(g′(0)h′(0)) < 1. Now we consider the case µ > 0, and the case µ < 0 can be
obtained similarly. Some calculations imply that

a(λ) = λ2 − α, b(λ) =
∫
R

K(x)eλxdx− 1− β = exp
(

µλ +
µ2λ2

4r2

)
− 1− β.

Define
Λa = {λ ∈ R | a(λ) < 0}, Λb = {λ ∈ R | b(λ) < 0}.

It follows that Λ ∈ Λa ∩Λb. For µ > 0, since

a(0)b(0) = αβ < h′(0)g′(0),
d

dλ
(a(λ)b(λ))

∣∣∣∣
λ=0

= −µα < 0,

the proof of [19] (Theorem 2.2) shows that Λ ⊆ R− for µ > 0.
When K > 1 and µ > µ̄, we have that

α

(
1− 1
K

)
>

4r4

µ2 . (21)
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Define

λ0 = −2r2

µ
.

From (20) and (21), it follows that

a(λ0)b(λ0) =

(
4r4

µ2 − α

)(
exp(−r2)− 1− β

)
= −

(
4r4

µ2 − α

)
K
α

g′(0)h′(0)

> g′(0)h′(0).

It is easy to check that

∂

∂λ

(
a(λ)b(λ)

)∣∣∣∣
λ=λ0

= a′(λ0)b(λ0) + a(λ0)b′(λ0)

= 2λ0

(
exp(−r2)− 1− β

)
+ (λ2

0 − α) exp(−r2)

(
µ +

µ2λ0

2r2

)
= 2λ0

(
exp(−r2)− 1− β

)
> 0.

Then there is ε > 0 such that (λ0, λ0 + ε) ⊆ Λ, which implies that 0 < c∗L < c∗R for µ > µ̄.
When K > 1 and µ ∈ (0, µ̄), we have that

α

(
1− 1
K

)
<

4r4

µ2 ,

which implies that

a(λ0)b(λ0) = −
(

4r4

µ2 − α

)
K
α

g′(0)h′(0) < g′(0)h′(0).

When λ ∈ Λa ∩Λb ∩ (−∞, λ0), we can get that

d
d˘

(
a(λ)b(λ)

)
= a′(λ)b(λ) + a(λ)b′(λ)

= 2λb(λ) + a(λ) exp
(

µλ +
µ2λ2

4r2

)(
µ +

µ2

2r2 λ

)
> 0.

It follows that

a(λ)b(λ) < a(λ0)b(λ0) < g′(0)h′(0) for any λ ∈ Λa ∩Λb ∩ (−∞, λ0).

Then we have that Λ ∩Λa ∩Λb ∩ (−∞, λ0) 6= ∅, which implies

Λ ⊆ Λa ∩Λb ∩ (λ0, 0) for µ ∈ (0, µ̄).

Consider a function Λ(·) : µ 7→ Λ which is from R+ to the set that consists of all closed
intervals in R. We can check that

∂

∂µ

(
a(λ)b(λ)

)
= a(λ)λ

(
1 +

λµ

2r2

)
exp

(
µλ +

µ2λ2

4r2

)
> 0 for λ ∈ Λa ∩ (λ0, 0).

It follows that
Λ(µ) ⊆ Λ(µ′) for any 0 < µ < µ′ < µ̄, (22)

and this inclusion is strict when Λ(µ′) 6= ∅.
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Note that we have already obtained int(Λ) 6= ∅ when µ > µ̄. Now consider the
case µ → 0+. For fixed r satisfying K > 1, it holds that λ0 → −∞ as µ → 0+. Since
αβ < g′(0)h′(0), there exists µ > 0 sufficiently small such that

λ0 < −
√

α, and 1− exp
(
−µ
√

α +
µ2α

4r2

)
<

g′(0)h′(0)− αβ

α
.

It follows that

−αb(−
√

α) = α

(
β + 1− exp

(
−µ
√

α +
µ2α

4r2

))
< h′(0)g′(0).

Note that (−
√

α, 0) = Λa ∩ R−. Since λ0 < −
√

α, we have that b(·) is increasing in
(−
√

α, 0) and b(λ) > b(−
√

α) for λ ∈ (−
√

α, 0). Note that a(λ) > −α for λ ∈ (−
√

α, 0),
and then

a(λ)b(λ) 6 −αb(−
√

α) < h′(0)g′(0) for λ ∈ Λa ∩R−.

We get that Λ is an empty set for sufficiently small µ > 0. Therefore, there exists µ∗ ∈ (0, µ̄)
such that

Λ


is an empty set, when µ ∈ (0, µ∗);

is a singleton set in R−, when µ = µ∗;

has interior points in R−, when µ > µ∗.

Considering K̃(x) = K(−x) and ν = −µ, we get by a similar argument as above that

Λ


is an empty set, when µ ∈ (−µ∗, 0);

is a singleton set in R+, when µ = −µ∗;

has interior points in R+, when µ < −µ∗.

By Theorem 8, we have proved “⇒” for (i)–(v) in Corollary 1. Note that the relationships
among 0, c∗L, and c∗R in (i)–(v) are all possible cases; and the relationships among µ, µ∗, and
−µ∗ in (i)–(v) are also all possible cases. Thus, the proofs of “⇐” can be obtained from “⇒”
for (i)–(v).

Next, consider the case K 6 1. When µ = 0, it is easy to check that

a(λ)b(λ) = (λ2 − α)
(

exp
(σ

2
λ2
)
− 1− β

)
6 αβ < g′(0)h′(0) for λ ∈ Λa ∩Λb,

which implies c∗L < 0 < c∗R. When K 6 1 and µ 6= 0, since

a(λ) > a(0) = −α, b(λ) > b(λ0) = exp(−r2)− 1− β for λ ∈ R,

it holds that
a(λ)b(λ) 6 α(β + 1− exp(−r2)) for λ ∈ Λa ∩Λb.

In the above inequality, the equality holds only if λ0 = −2r2/µ = −µ/σ = 0, which
implies µ = 0. Then, when µ 6= 0, we have that

a(λ)b(λ) < α(β + 1− exp(−r2)) = Kg′(0)h′(0) 6 g′(0)h′(0) for λ ∈ Λa ∩Λb,

which implies c∗L < 0 < c∗R.

4.2. Uniform Distribution

Suppose that K(·) is given by

K(x) =


1

A− B
, for x ∈ [B, A],

0, for x /∈ [B, A],
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where the constants A ∈ R+ and B ∈ R− stand for the farthest distances of the movements
of infectious agents during a unit time period to the right and left of x-axis, respectively.
Some calculations imply that

a(λ) = λ2 − α, b(λ) =


eAλ − eBλ

(A− B)λ
− 1− β, λ 6= 0,

− β, λ = 0.

Next, we state the following lemma whose proof can be found in [42] (Lemma 5.3).

Lemma 1. Define ω(x) = (x − 1)ex, x ∈ R. There is a unique non-zero continuous function
r 7→ zr from (0,+∞) to (−∞, 1) with zr 6≡ 0 such that ω(zr) = ω(−rzr) for any r > 0.
Moreover, when r > 1,

ω(x)−ω(−rx) < 0 for x < zr with x 6= 0, ω(x)−ω(−rx) > 0 for x > zr,

and when r ∈ (0, 1),

ω(x)−ω(−rx) < 0 for x < zr, ω(x)−ω(−rx) > 0 for x > zr with x 6= 0.

We also have that zr is strictly increasing in r ∈ (0,+∞), and zr = 0 when r = 1. Then it holds
that (r− 1)zr > 0 for r 6= 1.

Denote r = −A/B > 0, and let zr be the constant defined in Lemma 1. It follows from
Lemma 1 that

b′(λ) =
1

(A− B)λ2 (ω(Aλ)−ω(Bλ))


6 0, λ ∈ (−∞, zr/B),

= 0, λ = zr/B,

> 0, λ ∈ (zr/B,+∞),

(23)

and

b
( zr

B

)
= min{b(z), z ∈ R} = ezr − e−rzr

(1 + r)zr
− 1− β < 0. (24)

When r 6= 1, it holds that zr 6= 0 and we denote

K ,
−α

g′(0)h′(0)
b
( zr

B

)
=

−α

g′(0)h′(0)

[
ezr − e−rzr

(1 + r)zr
− 1− β

]
> 0.

When r = 1, since min{b(λ); λ ∈ R} = −β, we can simply denoteK = αβ/(g′(0)h′(0)) < 1.
We denote

µ =
A + B

2
∈ R,

which implies that when r 6= 1, A = 2rµ
r−1 and B = − 2µ

r−1 . When r 6= 1 (i.e., µ 6= 0), K(·) can
be regarded as a function with parameters µ and r, namely,

K(x) =


r− 1

2µ(r + 1)
, for x ∈

[
− 2µ

r− 1
,

2rµ

r− 1

]
,

0, for x /∈
[
− 2µ

r− 1
,

2rµ

r− 1

]
.

Note that K depends only on r and is independent of µ.
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Corollary 2. All results in Corollary 1 hold for the uniform distribution case after the definition of
µ̄ is replaced by

µ̄ =
(r− 1)zr

2
√

α
(

1− 1
K

) > 0 when K > 1.

Proof. Although the proof uses the idea similar to the proof of Corollary 1, we still give
some details because some important calculations are different. When r = 1, recall that
K = αβ/(g′(0)h′(0)) < 1 and zr = 0, which imply that

b(λ) > min
λ∈R
{b(λ)} = b(0) = −β, λ ∈ R.

Since a(λ) > −α for λ ∈ R, we have that

a(λ)b(λ) 6 αβ < g′(0)h′(0), λ ∈ Λa ∩Λb,

which implies that Λ = ∅ when r = 1, namely, c∗L < 0 < c∗R.
When K > 1 we only consider the case µ > 0 (i.e., r > 1), and the case µ < 0 (i.e.,

r < 1) is similar. It holds that

b′(0) = lim
λ→0

b(λ)− b(0)
λ

= lim
λ→0

1
λ

[
eAλ − eBλ

(A− B)λ
− 1
]
=

A + B
2

= µ.

For µ > 0, since

a(0)b(0) = αβ < h′(0)g′(0), and
d
d˘

(a(λ)b(λ))
∣∣∣∣
λ=0

= a(0)b′(0) = −µα < 0,

we have that Λ ⊆ R− for µ > 0.
When K > 1 and µ > µ̄, we have that

µ2 >
(
(r− 1)zr

2

)2 1

α
(

1− 1
K

) .

Denote

λ0 =
zr

B
= − (r− 1)zr

2µ
.

Then

a(λ0)b(λ0) =

[(
(r− 1)zr

2µ

)2

− α

]
b
( zr

B

)
= −

[(
(r− 1)zr

2µ

)2

− α

]
K
α

g′(0)h′(0) > g′(0)h′(0).

By (23) and (24), we have that b(λ0) < 0 and b′(λ0) = 0. Thus, it holds that

∂

∂λ

(
a(λ)b(λ)

)∣∣∣∣
λ=λ0

= a′(λ0)b(λ0) + a(λ0)b′(λ0) = 2λ0b(λ0) > 0.

Then, int(Λ) ∩R− 6= ∅, which implies that 0 < c∗L < c∗R for µ > µ̄.
When K > 1 and µ ∈ (0, µ̄), we have that

µ2 <

(
(r− 1)zr

2

)2 1

α
(

1− 1
K

) ,
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and then

a(λ0)b(λ0) = −
[(

(r− 1)zr

2µ

)2

− α

]
K
α

g′(0)h′(0) < g′(0)h′(0).

When λ 6 λ0, we have that b′(λ) 6 0 by (23). When λ 6 Λa ∩Λb ∩ (−∞, λ0), it holds
that

d
dλ

(
a(λ)b(λ)

)
= a′(λ)b(λ) + a(λ)b′(λ) = 2λb(λ) + a(λ)b′(λ) > 0.

It follows that

a(λ)b(λ) 6 a(λ0)b(λ0) < g′(0)h′(0) for λ ∈ Λa ∩Λb ∩ (−∞, λ0).

Thus, Λ ⊆ Λa ∩Λb ∩ (λ0, 0) for µ ∈ (0, µ̄). Let Λ(·) : µ 7→ Λ be the function from R+ to
the set that consists of all closed intervals in R. Note that

b(λ) =
eAλ − eBλ

(A− B)λ
− 1− β

=
r− 1

2λ(r + 1)
1
µ

[
exp

(
2rλµ

r− 1

)
− exp

(
− 2λµ

r− 1

)]
− 1− β, λ 6= 0.

Then, we have

∂

∂µ

(
b(λ)

)
=

r− 1
2λ(r + 1)

1
µ2

[(
2rλµ

r− 1
− 1
)

exp
(

2rλµ

r− 1

)
+

(
2λµ

r− 1
+ 1
)

exp
(
− 2λµ

r− 1

)]
=

r− 1
2λ(r + 1)

1
µ2

[
(Aλ− 1)eAλ − (Bλ− 1)eBλ

]
=

r− 1
2λ(r + 1)

1
µ2 [ω(−rBλ)−ω(Bλ)].

When λ ∈ (λ0, 0), we have that Bλ ∈ (0, zr), which implies along with Lemma 1 and
r > 1 that

∂

∂µ

(
b(λ)

)
< 0, λ ∈ (λ0, 0).

It follows that

∂

∂µ

(
a(λ)b(λ)

)
= a(λ)

∂

∂µ

(
b(λ)

)
> 0 for λ ∈ Λa ∩ (λ0, 0).

Then,
Λ(µ) ⊆ Λ(µ′) for any 0 < µ < µ′ < µ̄,

and this inclusion is strict when Λ(µ′) 6= ∅.
Some calculations show that

lim
µ→0+

b(−
√

α) = −β.

Since αβ < g′(0)h′(0), there exists µ sufficiently small such that

−αb(−
√

α) < g′(0)h′(0), and λ0 =
zr

B
= − (r− 1)zr

2µ
< −
√

α.

By (24), b(λ) is increasing in λ ∈ (λ0,+∞). We have that

a(λ)b(λ) < −αb(λ) 6 −αb(−
√

α) < g′(0)h′(0) for λ ∈ Λa ∩Λb ∩R−.

Then, Λ = ∅ for µ > 0 sufficiently small. The rest of the proof is similar to the counterpart
in the proof of Corollary 1.
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Remark 1. Note that the parameter r for the normal distribution in Section 4.1 is defined by
µ/
√

2σ, where σ is variance and µ is expectation. For the uniform distribution, the variance
Var(K) of K is (A− B)2/12, and the expectation is µ = (A + B)/2. Consider

R ,
µ√

Var(K)
=

√
3(r− 1)
r + 1

with r = −A
B

> 0.

Since the function r 7→ (r− 1)/(r + 1) from R+ to (−1, 1) is bijection and increasing, we can use
2
√

3√
3−R
− 1 in place of r in Corollary 2. From the results in Sections 4.1 and 4.2, we see that µ√

Var(K)
(or with some coefficient) and µ are important parameters to describe whether an asymmetric kernel
changes the signs of minimum wave speeds.

5. Conclusions

We studied traveling wave solutions of an epidemic model with mixed diffusion.
We gave two definitions of the minimum wave speeds, and the equivalence of these two
definitions was proved. The existence, decaying behavior, and uniqueness of traveling
wave fronts were obtained. We also presented how to identify the signs of minimum
wave speeds and apply them to two specific forms of the kernel function, namely, normal
distribution and uniform distribution. Our study indicates that in these two scenarios, the
asymmetric nonlocal kernel may induce non-positive minimal wave speed and standing
wave solution whose wave speed is zero. However, for general dispersal kernel K(·) with
the expectation µ and the variance σ, it is unknown whether the parameters µ√

σ
and µ can

determine the signs of minimum wave speeds, and this interesting question will be the
topic of future research.
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