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Abstract: We conduct cluster analysis of a class of locally asymptotically self-similar stochastic pro-
cesses with finite covariance structures, which includes Brownian motion, fractional Brownian motion,
and multifractional Brownian motion as paradigmatic examples. Given the true number of clusters, a
new covariance-based dissimilarity measure is introduced, based on which we obtain approximately
asymptotically consistent algorithms for clustering locally asymptotically self-similar stochastic pro-
cesses. In the simulation study, clustering data sampled from fractional and multifractional Brownian
motions with distinct Hurst parameters illustrates the approximated asymptotic consistency of the
proposed algorithms. Clustering global financial markets’ equity indexes returns and sovereign CDS
spreads provides a successful real world application. Implementations in MATLAB of the proposed
algorithms and the simulation study are publicly shared in GitHub.

Keywords: local asymptotic self-similarity; multifractional Brownian motion; stochastic processes
clustering; covariance-based dissimilarity measure; approximated asymptotic consistency

1. Introduction

Learning stochastic processes is a fast growing research area in machine learning,
as there is a considerable number of machine learning problems that involve the time
variable as a component of datasets [1–5]. Due to the nature of the time index, stochastic
processes often possess “path features” [6]. This additional information provided by the
time index makes performing machine learning on stochastic processes quite different
from other types of objects. Several new techniques are developed alongside studying
such machine learning problems [7–10]. In this paper, we focus our study on a particular
unsupervised learning problem: clustering of stochastic processes. Recently, clustering
distribution stationary ergodic time series were motivated by and discussed in [11,12].
Later, Peng et al. [13] developed Khaleghi et al. [12]’s consistent clustering algorithms in
order to cluster covariance stationary ergodic (discrete-time or continuous-time) stochastic
processes. Please note that a distribution stationary ergodic stochastic process is not
necessarily covariance stationary. Therefore, Peng et al. [13] enlarged the class of stochastic
processes for which one can apply the consistent clustering algorithms.

The motivation for this paper lies in the fact that assuming the observed data to follow
a covariance stationary stochastic process seems still unrealistic. Our paper then tries to
overcome this issue through developing a promising algorithm to cluster a more general
class of stochastic processes, the so-called locally asymptotically self-similar processes.
More precisely, the key path features of the observed stochastic processes are assumed
to be known as Assumption 1 (see Section 2). Compared to the stationarity, Assumption
1 is a much weaker constraint, for the reason that in many fields it was proved that
the observed paths are sampled from functions (or functionals) of well-known locally
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asymptotically self-similar processes. For example, dynamics in financial markets (equity
returns and interest rates) can be described based on geometric Brownian motions (gBm);
long-term dependent or self-similar phenomena are often modeled by fractional Brownian
motions (fBm) [14]. The long-term financial indexes and curves, such as S&P 500, Dow
Jones, NASDAQ, interest rates, VIX rates, and currency exchange rates can be modeled
using multifractional Brownian motions (mBm) [15–20]. Modeling events using locally
asymptotically self-similar processes can be widely found in other fields such as geology,
biology, power, and energy [21,22]. Recently, there was growth of investigations on how
to test and estimate locally asymptotically self-similar processes, and on how to apply
machine learning analysis to such processes [23–30]. However, in as far as we know, there
has not yet been a study on clustering locally asymptotically self-similar processes in the
literature. Our paper then aims at shedding some light on clustering such processes.

Contrary to the conventional clustering of finite-dimensional data, clustering based
on the paths’ features of the processes largely removes the noise by capturing the obser-
vations’ path features. Therefore, a nice dissimilarity measure should be the one that
well characterizes the path features. In this context, “nice” refers to the property that the
computational complexity and the prediction errors caused by the over-fitting issues are
expected to be largely reduced. Moreover, with some path features, consistency of the
clustering algorithm [11,12] may be obtained. Among all the stochastic process features, we
focus on characterizing the property of ergodicity in this paper. However similar analysis
can be made for other patterns of process features such as seasonality, Markov property
and martingale property.

Ergodicity [31] is a very typical feature possessed by several well-known processes,
which is applied to financial time series analysis. It is tightly related to other process
features, such as stationarity, long-term memory, and self-similarity [32,33]. In [12,13], it
is shown that both distribution ergodicity and covariance ergodicity lead to obtaining an
asymptotically consistent clustering algorithms for clustering processes. In this paper, we
take one step further to relax the condition of ergodicity to the “local asymptotic ergodic-
ity” [34] and obtain the so-called “approximately asymptotically consistent algorithms” for
clustering processes having such path property. This setting presents such a large class of
processes that includes the well-known Lévy processes, some self-similar processes and
some multifractional processes [34].

Each clustering stochastic processes problem involves handling data, defining clusters,
measuring dissimilarities, and finding groups efficiently; therefore, we organize the paper
as follows. Section 2 is devoted to introducing a class of locally asymptotically self-similar
processes to which our clustering approaches apply. In Section 3, a covariance-based
dissimilarity measure is suggested and in Section 4, the approximately asymptotically
consistent algorithms for clustering both offline and online datasets are designed. A
simulation study is performed in Section 5, where the algorithms are applied to cluster
multifractional Brownian motions (mBm), an excellent representative of the class of locally
asymptotically self-similar processes. In Section 6, we perform cluster analysis over a
global equity return data. Conventionally, stock returns of countries in the same region
are considered to have similar patterns due to the common regional economic factors.
However, recent empirical evidence shows that, as financial market globalization increases,
global economic clusters switch from “geographical centriods” to “economic development
centriods”. Our clustering algorithms show how “geography” and “economic development”
jointly impact the equity returns of countries or regions. Considering the equities as
stochastic processes in the clustering makes the analysis more promising. Finally, Section 7
concludes and provides future prospects.

2. A Class of Locally Asymptotically Self-Similar Processes

Self-similar processes are a class of processes that are invariant in distribution under
suitable scaling of time [35–37]. These processes have been used to successfully model
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various time-scaling random phenomena observed in high frequency data, especially in
the financial data and geological data.

Definition 1 (Self-similar process). A stochastic process {Y(H)
t }t≥0 (here the time indexes

set is not necessarily continuous) is self-similar to self-similarity index H ∈ (0, 1) if, for all
n ∈ N := {1, 2, . . .}, all t1, . . . , tn ≥ 0 and all c > 0,

(
Y(H)

ct1
, . . . , Y(H)

ctn

) law
=
(
cHY(H)

t1
, . . . , cHY(H)

tn

)
, (1)

where law
= denotes the equality in joint probability distribution of two finite-dimensional random

vectors.

When E|Y(H)
t | < +∞ for t ≥ 0, it follows from (1) that for any t ≥ 0,

E
(
Y(H)

t
)
= cHE

(
Y(H)

t/c
)
, for all c > 0. (2)

Therefore taking t = 0 at both hand sides of (2) yields

E
(
Y(H)

0
)
= 0. (3)

Self-similar processes are generally not distribution stationary but their increment processes
can be distribution stationary (any finite subset’s joint distribution is invariant subject to
time shift) or covariance stationary (its mean and covariance structure exist and are an
invariant subject to time shift). From now on we restrict our setting to stochastically
continuous-time self-similar processes only [37]. i.e., a process {Xt}t≥0 is stochastically
continuous at t0 ≥ 0 if

P(|X(t0 + h)− X(t0)| > ε) −−−→
h→0+

0, for any ε > 0.

This assumption is weaker than the almost sure continuity. The process {Xt}t≥0 is called
(stochastically) continuous time over [0,+∞) if it is continuous at each t ≥ 0. For u > 0,
we call {Y(t)}t = {X(t + u)− X(t)}t the increment process (or simply the increments) of
{X(t)}t. If a continuous-time self-similar process’ all increment processes are covariance
stationary, its covariance structure can be explicitly given below:

Theorem 1. Let
{

X(H)
t
}

t≥0 be a self-similar process with index H ∈ (0, 1) and with covariance
stationary increments. Then

E
(
X(H)

t
)
= 0, for all t ≥ 0, (4)

and

Cov
(
X(H)

s , X(H)
t
)
=

Var
(
X(H)

1
)

2
(
|s|2H + |t|2H − |s− t|2H), for any s, t ≥ 0. (5)

Theorem 1 can be obtained by replacing the distribution stationary increments as-
sumption in Theorem 1.2 in [36] with covariance stationary increments assumption. We
briefly provide the proof below.

Proof. We first prove (4). On one hand, using the fact that the increments of
{

X(H)
t
}

t are
covariance stationary and (3), we obtain

E
(
X(H)

mt
)
= E

( m−1

∑
k=0

(
X(H)
(k+1)t − X(H)

kt
)
+ X(H)

0

)
= mE

(
X(H)

t
)
, for all m ∈ N. (6)
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On the other hand, since
{

X(H)
t
}

t is self-similar to index H, we have

E
(
X(H)

mt
)
= mHE

(
X(H)

t
)
, for all m ∈ N. (7)

Putting together (6) and (7) and the fact that 0 < H < 1, we necessarily have E
(
X(H)

t
)
= 0

for all t ≥ 0. (4) is proved.
For proving (5) we first observe that, for s, t ≥ 0,

E
(
X(H)

s X(H)
t
)
=

1
2

(
E
(
X(H)

s
)2

+E
(
X(H)

t
)2 −E

(
X(H)

s − X(H)
t
)2
)

. (8)

Next we can see from the facts that
{

X(H)
t
}

t is self-similar to index H; that its increments
are covariance stationary and (4), that

E
(
X(H)

s
)2

= |s|2HE
(
X(H)

1
)2

= |s|2HVar
(
X(H)

1
)
, for s ≥ 0;

E
(
X(H)

s − X(H)
t
)2

= Var
(
X(H)
|s−t|

)
= |s− t|2HVar

(
X(H)

1
)
, for s, t ≥ 0. (9)

The covariance stationarity yields Var(X(H)
1 ) < +∞. (5) then follows from (8) and (9).

Theorem 1 is proved.

We highlight that, contrary to Theorem 1.2 in [36], the covariance stationary increment
process of

{
X(H)

t
}

t in Theorem 1 is not necessarily distribution stationary. This fact inspires
us to relax the distribution stationarity of the processes to the covariance stationarity in
the forthcoming Assumption (A). Below, we introduce a natural extension of self-similar
processes, the so-called locally asymptotically self-similar processes [34,38,39].

Definition 2 (Locally asymptotically self-similar process). A continuous-time stochastic pro-
cess

{
Z(H(t))

t
}

t≥0 with its index H(•) being a continuous function valued in (0, 1), is called locally
asymptotically self-similar, if for each t ≥ 0, there exists a non-degenerate self-similar process{

Y(H(t))
u

}
u≥0 with self-similarity index H(t), such that

{
Z(H(t+τu))

t+τu − Z(H(t))
t

τH(t)

}
u≥0

f.d.d.
−−−→
τ→0+

{
Y(H(t))

u
}

u≥0, (10)

where the convergence
f.d.d.
−−−→ is in the sense of all the finite-dimensional distributions.

In (10),
{

Y(H(t))
u

}
u is called the tangent process of

{
Z(H(t))

t
}

t at t [38,39]. Moreover, it is

shown (see Theorem 3.8 in [39]) that, if
{

Y(H(t))
u

}
u is unique in law, it is then self-similar to

index H(t) and it has distribution stationary increments. Then the local asymptotic self-
similarity generalizes the conventional self-similarity, in the sense that, any non-degenerate
self-similar process with distribution stationary increments is locally asymptotically self-
similar and its tangent process is itself. Furthermore, in a weaker sense, it is not difficult to
show the following:

Proposition 1. Let
{

Z(H)
t
}

t≥0 be a continuous-time self-similar process with self-similarity index
H ∈ (0, 1) and with covariance stationary increments. Then all its tangent processes share the same
mean and covariance function.

Proof. Since
{

Z(H)
t
}

t≥0 is locally asymptotically self-similar, by definition at each t ≥ 0

there exists a tangent process
{

Y(H)
u
}

u≥0 such that
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{
Z(H)

t+τu − Z(H)
t

τH

}
u≥0

f .d.d.−−−→
τ→0+

{
Y(H)

u
}

u≥0. (11)

Next we show
{

Y(H)
u
}

u≥0s mean and covariance structure are uniquely determined.

Since
{

Z(H)
t
}

t≥0 has covariance stationary increments, for any u ≥ 0, τ > 0, define
the scaled increments

Y(H)
u,τ :=

Z(H)
t+τu − Z(H)

t
τH .

Again by the fact that
{

Z(H)
t
}

t≥0 has covariance stationary increments, using (4) in Theorem 1
we obtain

E
(
Y(H)

u,τ
)
= 0, for all u ≥ 0, τ > 0, (12)

and by (5) in Theorem 1, we have for u1, u2 ≥ 0 and τ > 0,

Cov
(
Y(H)

u1,τ , Y(H)
u2,τ
)

= τ−2HCov
(
Z(H)

t+τu1
− Z(H)

t , Z(H)
t+τu2

− Z(H)
t
)

=
Var

(
Z(H)

1
)

2
(
|u1|2H + |u2|2H − |u1 − u2|2H), (13)

which does not depend on τ.
It follows from (11)–(13) that

E
(
Y(H)

u
)
= lim

τ→0+
E
(
Y(H)

u,τ
)
= 0, for all u ≥ 0;

Cov
(
Y(H)

u1 , Y(H)
u2

)
= lim

τ→0+
Cov

(
Y(H)

u1,τ , Y(H)
u2,τ
)

=
Var

(
Z(H)

1
)

2
(
|u1|2H + |u2|2H − |u1 − u2|2H), for u1, u2 ≥ 0. (14)

(14) implies that all tangent processes of
{

Z(H)
t
}

t≥0 possess zero-mean and equal covariance
functions. By the way it is easy to derive from (14) that these tangent processes have
covariance stationary increments. Proposition 1 is proved.

We remark from Proposition 1 that the tangent processes of
{

Z(H)
t
}

t≥0 may not be
unique in law, but their finite-dimensional subsets have unique first and second order
moments.

Based on the above discussion, throughout this paper, we assume that the observed
datasets are sampled from a known number (denoted by κ) of continuous-time processes
satisfying the following condition:

Assumption 1. The processes are locally asymptotically self-similar; their tangent processes’
increment processes are autocovariance ergodic.

In Assumption 1, the autocovariance-ergodicity means that the sample autocovariance
functions of the covariance stationary process converges in squared mean to the autocovari-
ance functions of the process, i.e., a zero-mean (that is the case for the tangent processes’
increments) continuous-time process {X(t)}t≥0 is autocovariance ergodic if it is covariance
stationary and satisfies

1
T

∫ T

0
X(t + τ)X(t)dt

L2(P)−−−−→
T→+∞

E
(
X(u + τ)X(u)

)
, for all u > 0, τ ≥ 0, (15)

where Xn
L2(P)−−−−→

n→+∞
X denotes the mean squared convergence: E|Xn − X|2 −−−−→

n→+∞
0. Please

note that the above convergence (15) yields
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1
n− τ − 1

n−τ

∑
k=1

X(k)X(k + τ)
P−−−−→

n→+∞
E(X(1)X(1 + τ)), for τ ∈ N. (16)

Thus, Assumption 1 says that the observed processes’ tangent processes have covariance
stationary increments. The typical examples of locally asymptotically self-similar processes
satisfying Assumption 1 are fractional Brownian motion (fBm) [40], multifractional Brown-
ian motion (mBm) [41–43] and the generalized multifractional Brownian motion introduced
in [44]. Below, we focus our attention on mBm, which is used in our simulation study
and real world application (see Sections 5 and 6). MBm is a paradigmatic example of both
multifractional stochastic processes and locally asymptotically self-similar processes. It
naturally extends the classical fBm by allowing its Hurst parameter to vary with time. The
mBm was introduced independently by Peltier and Lévy-Véhel [41] and Benassi et al. [42],
using, respectively, integral moving average type representation and harmonizable integral
representation of the fBm. These two types of mBms share several core features and their
precise connection was studied by Stoev and Taqqu [43], who show that the two types of
mBms generally have different correlation structures. The most recent discussion on the
definition of mBm is also made in [43], where they define a general class of multifractional
Gaussian processes which includes the above two types of mBms as two particular cases.
In this paper, we adopt a definition of mBm through the so-called harmonizable integral
representation (see (1.3) in [43] or see [42,44]). Please note that our analysis and approaches
are valid for all other versions of mBms in the literature.

Definition 3 (Multifractional Brownian motion). A multifractional Brownian motion
{WH(t)(t)}t≥0 is a continuous-time Gaussian process defined by:

WH(0)(0) = 0 a.s. and WH(t)(t) =
∫
R

eitξ − 1
|ξ|H(t)+1/2

dW̃(ξ), for t > 0,

where:

• dW̃(ξ) denotes a complex-valued Gaussian measure (see Proposition 2.1 in [43]) satisfying∫
R

f̃ (ξ)dW̃(ξ) =
∫
R

f (t)dW(t) a.s.

for any

f ∈ L2(R) :=
{{

f : R→ R
}

:
∫
R
| f (u)|2 du < +∞

}
,

with f̃ (ξ) := (2π)−1/2
∫
R eiξu f (u)du being the Fourier transform of f and {W(t)}t∈R

being a standard Brownian motion.
• The Hurst functional parameter H : [0,+∞) −→ (0, 1) is a Hölder function with exponent

β > sup
t∈[0,+∞)

H(t). Subject to this constraint the paths of mBm are almost surely continuous

functions.

Theorem 4.1 in [43] gives the covariance function of {WH(t)(t)}t≥0: for s, t ≥ 0,

Cov
(
WH(s)(s), WH(t)(t)

)
= D(H(s), H(t))

(
sH(s)+H(t) + tH(s)+H(t) − |t− s|H(s)+H(t)), (17)

where

D(s, t) :=

√
Γ(2s + 1)Γ(2t + 1) sin(πs) sin(πt)

2Γ(s + t + 1) sin(π(s + t)/2)
.

It is known that the pointwise Hölder exponent (pHe) of {WH(t)(t)}t≥0 is almost surely
equal to H(•) at each t [42]. Recall that, for a continuous-time nowhere differentiable
process {Y(t)}t≥0, its local Hölder regularity can be measured by the pHe ρY defined by:
for each t0 ≥ 0,
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ρY(t0) := sup
{

α ∈ [0, 1] : lim sup
ε→0+

|Y(t0 + ε)−Y(t0)|
|ε|α = 0

}
.

For a continuous but undifferentiable function, the pHe measures its “local roughness”:
the smaller the pHe is at time t, the more “fractals” should be observed around t in the
path. When H(•) ≡ H becomes a constant, mBm reduces to an fBm with Hurst parameter
equal to H. More generally, it can be seen from [34] that mBm is locally asymptotically
self-similar satisfying Assumption 1. Its tangent process at each t is an fBm {B(H(t))(u)}u
with index H(t):{WH(t+τu)(t + τu)−WH(t)(t)

τH(t)

}
u

f.d.d.−−−→
τ→0+

CH(t)
{

B(H(t))(u)
}

u, (18)

where CH(t) is a deterministic function only depending on H(t). In the literature, some
studies are particularly focused on the statistical inference problems around the pHe
of processes and their applications. This study is motivated by modeling using locally
asymptotically self-similar processes as well. We refer the readers to [45–50].

As one of the most natural extensions of fBm, mBm has, at present, broad applications.
Unlike fBm, mBm allows its Hurst parameter H to change with time. This allows us to
model different regimes of the stochastic process with one single model. For example,
during a financial crisis, asset volatility may rise significantly, while it is much lower in
the peaceful period. Likewise, empirical evidence shows that there have been periods of
different volatilities in either exchange rates or interest rates. An fBm (or a self-similar
process) is unable to capture the above phenomena. This motivates researchers to introduce
mBm into finance as an alternative or improvement of fBm.

The assumption of covariance stationarity inspires us to introduce a covariance-based
dissimilarity measure between the sample paths, in order to capture the level of differences
between the two corresponding covariance stationary processes. Later we show that the
assumption of autocovariance-ergodicity is sufficient for the clustering algorithms to be
approximately asymptotically consistent.

3. Clustering Stochastic Processes
3.1. Covariance-Based Dissimilarity Measure between Autocovariance Ergodic Processes

Let Z be a process satisfying Assumption 1. Denote by Y its tangent process (see (10))
and denote by X an increment process of Y, i.e., there is some u ≥ 0 such that X(t) =
Y(t + u)−Y(u) for all t ≥ 0. In Assumption 1, X is autocovariance ergodic. Since we will
show that clustering distinct Zs is approximately asymptotically equivalent to clustering
the corresponding increment processes Xs, then the dissimilarity measures of Zs can be
constructed based on those of the autocovariance ergodic processes Xs. From (4) we know
that the autocovariance process X is zero-mean. Our first main result is then introduction
to the following covariance-based dissimilarity measure between autocovariance ergodic
processes. We refer the readers to [13] for more features of this dissimilarity measure.

Definition 4. The covariance-based dissimilarity measure d between the discrete-time stochastic
processes X(1), X(2) (in fact X(1), X(2) denote two covariance structures, each class may contain
different process distributions but they share the same autocovariance function) is defined by

d
(
X(1), X(2)) :=

+∞

∑
m,l=1

wmwlρ
(
Cov(X(1)

l...l+m−1),Cov(X(2)
l...l+m−1)

)
, (19)

where:

• For any integers l ≥ 1, m ≥ 0, X(1)
l...l+m−1 is the shortcut notation of the row vector(

X(1)
l , . . . , X(1)

l+m−1

)
.
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• The distance ρ between two equal-sized covariance matrixes M1, M2 denotes the Frobe-
nius norm of M1 − M2. Recall that for a matrix AM×N , its Frobenius norm is defined
by ‖AM×N‖F :=

√
∑M

i=1 ∑N
j=1 a2

ij, where for each (i, j) ∈ {1, . . . , M} × {1, . . . , N}, aij

denotes the (i, j)-coefficient of AM×N .
• The sequence of positive weights {wj}j≥1 should be chosen such that d

(
X(1), X(2)) < +∞,

i.e., the series on the right-hand side of Equation (19) is convergent. The choice of {wj}j will
be discussed in the forthcoming simulation study in Section 5.

Remark 1. It is important to note that Definition 4 only defines the dissimilarity measures between
discrete-time stochastic processes (time series). This is the most common object studied in the
literature on clustering stochastic processes. Studying clustering of time series is sufficient for
practical applications for at least two reasons. First, a continuous-time path is not observable in the
real world. Second, any (stochastically) continuous-time process can be well approximated by its
discrete-time paths. In what follows, we will find a mean sample path by a finite-length subsequence
of a discretized stochastic process.

Thanks to the autocovariance-ergodicity of the sample processes, the dissimilarity
measure d can be estimated by the empirical dissimilarity measure d̂ below:

Definition 5. Given two processes’ discrete-time sample paths xj = (X(j)
1 , . . . , X(j)

nj ) for j = 1, 2,
let n = min{n1, n2}, then the empirical covariance-based dissimilarity measure between x1 and x2
is given by

d̂(x1, x2) :=
mn

∑
m=1

n−m+1

∑
l=1

wmwlρ
(
ν(X(1)

l...l+m−1), ν(X(2)
l...l+m−1)

)
, (20)

where:

• mn (≤ n) is the largest dimension of the covariance matrix considered by d̂; in this framework
we take mn = blog nc, i.e., the floor number of log n [12,13].

• For j = 1, 2, 1 ≤ l ≤ n and m ≤ n− l + 1, ν(X(j)
l...l+m−1) denotes the empirical covariance

matrix of the process X(j)s path (X(j)
l , . . . , X(j)

l+m−1), which is given below:

ν
(
X(j)

l...l+m−1

)
:=

∑n−m+1
i=l (X(j)

i . . . X(j)
i+m−1)

T(X(j)
i . . . X(j)

i+m−1)

n−m− l + 2
, (21)

where (•)T denotes the transpose of a matrix.

Remark 2. Since X is autocovariance ergodic, every empirical covariance matrix ν(Xl...l+m−1)
is a consistent estimator of the covariance matrix Cov(Xl...l+m−1) under Frobenius norm and in
probability, i.e., ∥∥ν(Xl...l+m−1)−Cov(Xl...l+m−1)

∥∥
F

P−−−−→
n→+∞

0, for any l ≥ 0. (22)

Furthermore, the fact that both d and d̂ satisfy the triangle inequalities implies that d̂
is a consistent estimator of d. The proof is quite similar to that of Lemma 1 in [13], except
that in the former statement the convergence holds in probability. These ergodicity and
triangle inequalities are the keys to demonstrate that our algorithms in the next section are
approximately asymptotically consistent. We list them in the following paragraphs.

Remark 3. For every pair of paths

x1 =
(
X(1)

1 , . . . , X(1)
n1

)
and x2 =

(
X(2)

1 , . . . , X(2)
n2

)
,

sampled from two autocovariance ergodic processes X(1) and X(2), respectively, we have
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d̂
(
x1, x2

) P−−−−−−→
n1,n2→+∞

d
(
X(1), X(2)), (23)

and
d̂
(
xi, X(j)) P−−−→

ni→∞
d
(
X(i), X(j)), for i, j ∈ {1, 2}, (24)

where the dissimilarity measure d̂
(
xi, X(j)) between the sample path xi and the stochastic process

X(j) is defined to be
d̂
(
xi, X(j)) := d̂

(
xi,
(
X(j)

1 , . . . , X(j)
ni

))
.

Remark 4. Thanks to their definitions, the triangle inequalities hold for the covariance-based
dissimilarity measure d in (19), as well as for its empirical estimates d̂ in (20). Therefore, for
arbitrary processes X(i), i = 1, 2, 3 and arbitrary random vectors xi, i = 1, 2, 3 we have

d
(
X(1), X(2)) ≤ d

(
X(1), X(3))+ d

(
X(2), X(3)),

d̂(x1, x2) ≤ d̂(x1, x3) + d̂(x2, x3),

d̂
(
x1, X(1)) ≤ d̂

(
x1, X(2))+ d

(
X(1), X(2)).

In the next section, we define a proper covariance-based dissimilarity measure between
locally asymptotically self-similar processes satisfying Assumption (A), based on the
dissimilarity measure d.

3.2. Covariance-Based Dissimilarity Measure between Locally Asymptotically
Self-Similar Processes

Now under Assumption (A), we study the asymptotic relationship between the locally
asymptotically self-similar process

{
Z(H(t))

t
}

t in (10) and its tangent process’ increment pro-
cess. The following result reveals the relationship between local asymptotic self-similarity
and covariance stationarity.

Proposition 2. Let
{

Z(H(t))
t

}
t≥0 be a locally asymptotically self-similar process satisfying As-

sumption (A). For each h > 0,

{Z(H(t+τ(u+h)))
t+τ(u+h) − Z(H(t+τu))

t+τu

τH(t)

}
u≥0

f.d.d.
−−−→
τ→0+

{
X(H(t))

u,h
}

u≥0, (25)

where
{

X(H(t))
u,h

}
u≥0 :=

{
Y(H(t))

u+h −Y(H(t))
u

}
u≥0 (see (10)) is an autocovariance ergodic process.

Proof. Let us fix h > 0 and pick any finite discrete-time indexes set T ⊂ [0,+∞). In
Assumption (A), the f.d.d. convergence (10) holds. It then implies

(Z(H(t+τ(u+h)))
t+τ(u+h) − Z(H(t))

t

τH(t)
,

Z(H(t+τu))
t+τu − Z(H(t))

t

τH(t)

)
u∈T

law−−−→
τ→0+

(
Y(H(t))

u+h , Y(H(t))
u

)
u∈T , (26)

where we adopt the notation (au, bu)u∈{u1,...,uN} to denote the vector

(au1 , bu1 , au2 , bu2 , . . . , auN , buN ).

It follows from (26) and the continuous mapping theorem that

(Z(H(t+τ(u+h)))
t+τ(u+h) − Z(H(t))

t

τH(t)
−

Z(H(t+τu))
t+τu − Z(H(t))

t

τH(t)

)
u∈T

law−−−→
τ→0+

(
Y(H(t))

u+h −Y(H(t))
u

)
u∈T . (27)
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(25) then results from (27) and the fact that the choice of T is arbitrary. In Assumption
(A),

{
X(H(t))

u,h
}

u :=
{

Y(H(t))
u+h − Y(H(t))

u
}

u is autocovariance ergodic, hence Proposition 2 is
proved.

From a statistical point of view, the sequence at the left-hand side of (25) cannot
straightforwardly serve to estimate the distribution of the right-hand side

{
XH(t)

u,h
}

u, be-
cause the functional index H(•) at the left-hand side is not observable in practice. To
overcome this inconvenience, we note that (25) can be interpreted as follows: when τ is
sufficiently small,{

Z(H(t+τ(u+h)))
t+τ(u+h) − Z(H(t+τu))

t+τu

}
u∈[0,Kh]

f.d.d.≈
{

τH(t)X(H(t))
u,h

}
u∈[0,Kh]

, (28)

where K is an arbitrary positive integer. Smaller is τ, closer are the two hand sides of
(28). However in practice τ has its optimal value, due to the sample size limitation.
Therefore, when applied to the real world, (28) says that: given a discrete-time path
Z(H(t1))

t1
, . . . , Z(H(tn))

tn
with ti = ih∆t for each i ∈ {1, . . . , n}, sampled from a locally asymp-

totically self-similar process
{

Z(H(t))
t

}
t, its localized increment paths with time index around

ti, i.e.,
z(i) :=

(
Z(H(ti+1))

ti+1
− Z(H(ti))

ti
, . . . , Z(H(ti+1+K))

ti+1+K
− Z(H(ti+K))

ti+K

)
, (29)

is approximately distributed as an autocovariance ergodic increment process of the self-
similar process

{
∆tH(ti)X(H(ti))

u,h
}

u∈[0,Kh]. In this example, ∆t is the smallest value one
can consider for τ in (28). This fact drives us to define the empirical covariance-based
dissimilarity measure between two paths of locally asymptotically self-similar processes z1
and z2 as follows:

d̂∗(z1, z2) :=
1
L

L

∑
i=1

d̂
(
z(i)1 , z(i)2

)
, (30)

where:

• L is chosen from {1, . . . , n− K− 1}.
• z(i)1 , z(i)2 are the localized increment paths defined as in (29). Heuristically speaking, for

i = 1, . . . , n− K− 1, d̂(z(i)1 , z(i)2 ) computes the “distance” between the two covariance

structures (of the increments of
{

ZH(t)
t

}
t) indexed by the time in the neighborhood

of ti, and d̂∗(z1, z2) averages the above distances. It is worth noting that the value K
describes the “sample size” used to approximate each local distance d̂. Therefore, its
value should be picked neither too large nor too small and it can depend on n. It is
suggested that K ≥ 5 in order that the result of estimating the dissimilarity measure d̂
is acceptable. The largest value one can set for K is n− 2 (correspondingly, L = 1).

The following observation is straightforward.

Remark 5. Based on the definition (30) and Remark 2, d̂∗ is also a (weakly) consistent estimator of
d (see Remark 3) and it also satisfies the triangle inequalities as in Remark 4.

Through employing the dissimilarity measure d̂∗ on locally asymptotically self-similar
processes, we obtain the so-called “approximately asymptotically consistent algorithms”,
which are introduced in the following section.

4. Approximately Asymptotically Consistent Algorithms
4.1. Offline and Online Algorithms

Please note that the covariance-based dissimilarity measure d̂∗ defined in (30) will aim
to cluster covariance structures, not process distributions; therefore the ground truths of
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clustering should be those of covariance structures. We thus define the ground truth as
follows [13].

Definition 6 (Ground truth of covariance structures). Let G =
{

G1, . . . , Gκ

}
be a partitioning

of N into κ disjoint sets Gk, k = 1, . . . , κ, such that the means and covariance structures of xi,
i ∈ N are identical, if and only if i ∈ Gk for some k = 1, . . . , κ. Such G is called ground truth of
covariance structures. For N ≥ 1, we denote by G|N the restriction of G to the first N sequences:

G|N =
{

Gk ∩ {1, . . . , N} : k = 1, . . . , κ
}

.

The processes Z satisfying Assumption 1 are generally not covariance stationary;
however, their tangent processes’ increments X are covariance stationary. In view of (25)
and (28), clustering these processes Z is equivalent to clustering X, based on the covariance
structure ground truth of the latter increments. Below we will introduce algorithms aiming
to approximate the covariance structure ground truth of X.

Depending on how the information is collected, the processes clustering problems
consist of dealing with two separate model settings: the offline and online settings. In
the offline setting, the sample size and each path length are time-independent. However,
in the online setting, they may both grow with time. As stated in [12], using the offline
algorithm in the online setting by simply applying it to the entire data observed at every
time step, does not result in an asymptotically consistent algorithm. As a result, we consider
clustering offline and online datasets as two approaches and study them separately. Hence
the approximated asymptotic consistency will be described in Theorems 2 and 3 below,
respectively, for offline and online clustering algorithms. Our offline and online clustering
algorithms below are obtained by replacing the dissimilarity measures in Algorithms 1 and
2 in [13] with d̂∗.

For the offline setting, we cluster observed data using Algorithm 1 below. It is a
2-point initialization centroid-based clustering approach. From the distance d̂∗ defined in
(30), the algorithm picks the farthest two points to be the first two cluster centers (Lines
1–2). Then, iteratively, each following cluster center is chosen to be the point farthest to
all the previously assigned cluster centers (Lines 3–5). Finally, the algorithm assigns each
remaining point to the nearest cluster (Lines 7–10).

The strategy for clustering online data is presented in Algorithm 2 as follows. At
each time t, first update the collection of sample paths S(t) (Lines 1–2); then for each
j = κ, . . . , N(t), use Algorithm 1 to group the first j paths in S(t) into κ clusters (Lines 6–7);
for each cluster the center is selected as the point having the smallest index among that
cluster, and sort these indexes increasingly (Line 8); calculate the minimum inter-cluster
distance γj and update the normalization factor η (Lines 9–11). Finally, every sample
path in S(t) is assigned to the “nearest” cluster, based on the weighted combination of the
distances (given in Line 15) between this observation and the candidate cluster centers
obtained at each iteration on j (Lines 14–17).
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Algorithm 1: Offline clustering.

Input: sample paths S =
{

z1, . . . , zN
}

; number of clusters κ.
1 (c1, c2)←− arg max

(i,j)∈{1,...,N}2,i<j
d̂∗(zi, zj);

2 C1 ←−
{

c1
}

; C2 ←− {c2};
3 for k = 3, . . . , κ do
4 ck ←− arg max

i=1,...,N
min

j=1,...,k−1
d̂∗(zi, zcj);

5 end
6 Assign the remaining points to the nearest centers:
7 for i = 1, . . . , N do
8 k←− arg min

k∈{1,...,κ}

{
d̂∗(zi, zj) : j ∈ Ck

}
;

9 Ck ←− Ck ∪
{

i
}

;
10 end

Output: The κ clusters f (S, κ, d̂∗) = {C1, . . . , Cκ}.

Algorithm 2: Online clustering.

Input: Sample paths
{

S(t) = {zt
1, . . . , zt

N(t)}
}

t; number of clusters κ; a sequence
of weights {β j}j.

1 for t = 1, . . . , ∞ do
2 Obtain new paths: S(t)←−

{
zt

1, . . . , zt
N(t)

}
;

3 Initialize the normalization factor: η ←− 0;
4 Initialize the κ clusters: Ck(t)←− ∅, k = 1, . . . , κ;
5 Generate N(t)− κ + 1 candidate cluster centers:
6 for j = κ, . . . , N(t) do
7

{
Cj

1, . . . , Cj
κ

}
←− Alg1

({
zt

1, . . . , zt
j
}

, κ, d̂∗
)
;

8 (cj
1, . . . , cj

k)←− sort(min
{

i ∈ Cj
k
}

: k = 1, . . . , κ); \\ Choose the smallest
index to be the one for cluster center, and sort them increasingly;

9 γj ←− min
k,k′∈{1,...,κ},k 6=k′

d̂∗
(
zt

cj
k

, zt
cj

k′

)
;

10 wj ←− β j; \\ wj is the weight used in d̂∗;
11 η ←− η + wjγj; \\ Update the normalization factor;
12 end
13 Assign each point to one of the κ clusters:
14 for i = 1, . . . , N(t) do

15 k←− arg min
k′∈{1,...,κ}

1
η

N(t)
∑

j=κ
wjγjd̂∗

(
zt

i , zt
cj

k′

)
;

16 Ck(t)←− Ck(t) ∪
{

i
}

;
17 end
18 end

Output: The κ clusters f (S(t), κ, d̂∗) =
{

C1(t), . . . , Cκ(t)
}

, t = 1, 2, . . . , ∞.

4.2. Computational Complexity and Consistency of the Algorithms

We describe the computational complexity based on the number of computations of
the distance ρ. For Algorithm 1, the 2-point initialization requires N(N − 1)/2 times calcu-
lations of d̂∗. From (30) we see that each calculation of d̂∗ consists of nmin−K− 1 times com-
putations of d̂. By (20), d̂ can be obtained through computing K− log K + 1 times distances
ρ. Therefore, the total number of computations of ρ is not greater than N(N − 1)(nmin −
K − 1)(K − log K + 1)/2. For Algorithm 2, since at each step j ∈ {κ, . . . , N − κ + 1}, Al-
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gorithm 1 is run on j observations, the total number of ρs computations is then less than
(nmin − K− 1)(K− log K + 1)∑N−κ+1

j=κ j(j− 1)/2. The computational complexity is accept-
able in practice, and it is quite competitive compared with existing algorithms for clustering
stochastic processes.

Now we introduce the notion of approximately asymptotic consistency. Fix a positive
integer K. Let Z(1), Z(2) be two locally asymptotically self-similar processes with respect
functional indexes H1(•), H2(•). Furthermore, let{

z(1)1 , . . . , z(n−K−1)
1

}
and

{
z(1)2 , . . . , z(n−K−1)

2
}

be, respectively, their sample paths z1, z2’ increments, defined as in (29). For j = 1, 2, we
define the normalized increments by taking the following linear transformation:

H
(
z(i)j
)

:=
z(i)j

∆tHj(ti)
, for i = 1, . . . , n− K− 1. (31)

Then using (25) we obtain

H
(
z(i)j
) law−−−→

∆t→0

(
X
(Hj(ti))

0,j , X
(Hj(ti))

h,j , . . . , X
(Hj(ti))

Kh,j
)
, (32)

where
(
X
(Hj(ti))

0,j , X
(Hj(ti))

h,j , . . . , X
(Hj(ti))

Kh,j
)

denotes a discrete-time path of the increment of
a self-similar process with self-similarity index Hj(ti). Fix L ≥ 1. For each empirical
dissimilarity measure d̂∗(z1, z2), we correspondingly define

d̃∗(z1, z2) :=
1
L

L

∑
i=1

d̂
(
H(z(i)1 ),H(z(i)2 )

)
. (33)

d̃∗(z1, z2) is another dissimilarity measure between z1, z2, which has a tight relationship
to the distance d̂∗ between their tangent processes’ increments. Indeed using (32) and the
continuous mapping theorem, it is easy to derive the following result.

Proposition 3. For any N independent sample paths z1, z2, . . . , zN ,

(
d̃∗(zi, zj)

)
i,j∈{1,...,N},i 6=j

law−−−→
∆t→0

(
d̂∗(xi, xj)

)
i,j∈{1,...,N},i 6=j, (34)

where x1, x2 are the increments of the tangent processes corresponding to z1, z2, respectively.

In particular, when ∆t = 1, d̃∗(z1, z2) = d̂∗(z1, z2). In this sense, d̃∗(z1, z2) “approx-
imates” d̂∗. d̃∗ cannot be observed in practice since the functional indexes of the locally
asymptotically self-similar processes are supposed to be unknown. In what follows, d̃∗ only
serves to define the approximate asymptotic consistency. In this concept, “approximate”
means the clustering locally asymptotically self-similar processes problem is “approxi-
mately” equivalent to the clustering their tangent processes problem.

Now we state the consistency theorems. Through Theorems 2 and 3, below we show
that Algorithms 1 and 2 are both approximately asymptotically consistent. Their proofs are
inspired by the ones in [12,13]. However different from the consistency theorems in [12,13],
the convergences in Theorems 2 and 3 have weaker senses, which are in probability, not
almost sure.

Theorem 2. In Assumption 1, Algorithm 1 is approximately asymptotically consistent for clus-
tering the offline sample paths S = {z1, . . . , zN}. This means: if d̂∗ is replaced with d̃∗ in
Algorithm 1, the output clusters converge to the covariance structure ground truths of the incre-
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ments of the corresponding tangent processes S′ = {x1, . . . , xN} in probability, as ∆t → 0 and
nmin := min{n1, . . . , nN} → +∞. More formally,

lim
nmin→+∞

lim
∆t→0

P
(

f (S, κ, d̃∗) = GS′
)
= 1, (35)

where f is given in Algorithm 1 and GS′ denotes the ground truths of the covariance structures that
generate the set of paths S′.

Proof. First, we show

P
(

f (S, κ, d̃∗) = G
)
−−−→
∆t→0

P
(

f (S′, κ, d̂∗) = G
)
, (36)

where G = {C1, . . . , Cκ} denotes any κ-partition of {1, . . . , N}. Since if the estimated
clusters f (S, κ, d̃∗) = G, the samples in S that are generated by the same cluster in G are
closer under d̃∗ to each other than to the rest of the samples. Hence we can write

P
(

f (S, κ, d̃∗) = G
)

= P
( ⋃

ε>0

({
max

l∈{1,...,κ}
i,j∈Cl

d̃∗(zi, zj) < ε
}⋂{

min
k,k′∈{1,...,κ}, k 6=k′

i∈Ck , j∈Ck′

d̃∗(zi, zj) > ε
}))

.

(37)

It follows from (37) and (34) that

lim
∆t→0

P
(

f (S, κ, d̃∗) = G
)

= P
( ⋃

ε>0

({
max

l∈{1,...,κ}
i,j∈Cl

d̂∗(xi, xj) < ε
}⋂{

min
i∈Ck , j∈Ck′
k,k′∈{1,...,κ}

k 6=k′

d̂∗(xi, xj) > ε
}))

= P
(

f (S′, κ, d̂∗) = G
)
,

which proves (36).
Next we show that Algorithm 1 is asymptotically consistent on clustering S′ under d̂∗:

P
(

f (S′, κ, d̂∗) = GS′
)
−−−−−→
nmin→∞

1. (38)

Denote by
GS′ := {G1, . . . , Gκ}.

Fix δ > 0. Let nmin denote the shortest path length in S′:

nmin := min
{

ni : i ∈ {1, . . . , N}
}

.

Denote by δmin the minimal non-zero dissimilarity measure between the processes with
different covariance structures:

δmin := min
{

d
(
X(k), X(k′)) : k, k′ ∈ {1, . . . , κ}, k 6= k′

}
. (39)

Fix ε ∈ (0, δmin/4) and let δ > 0 be arbitrarily small. Since there are a finite number N of
samples, by Remark 3 there is n0 such that for nmin > n0 we have

P
(

max
l∈{1,...,κ}

i∈Gl∩{1,...,N}

d̂∗
(
xi, X(l)) > ε

)
< δ. (40)

On one hand, by applying the triangle inequalities (see Remark 5), we obtain
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max
l∈{1,...,κ}

i,j∈Gl∩{1,...,N}

d̂∗(xi, xj)

≤ max
l∈{1,...,κ}

i,j∈Gl∩{1,...,N}

d̂∗
(
xi, X(l))+ max

l∈{1,...,κ}
i,j∈Gl∩{1,...,N}

d̂∗
(
xj, X(l))

= 2 max
l∈{1,...,κ}

i∈Gl∩{1,...,N}

d̂∗
(
xi, X(l)). (41)

Then by (41) and the fact that 2ε < δmin/2, the following inclusion holds:{
max

l∈{1,...,κ}
i∈Gl∩{1,...,N}

d̂∗
(
xi, X(l)) ≤ ε

}
⊂
{

max
l∈{1,...,κ}

i,j∈Gl∩{1,...,N}

d̂∗(xi, xj) ≤ 2ε <
δmin

2

}
. (42)

On the other hand, by applying the triangle inequalities (see Remark 5) and the fact that
2ε < δmin/2, we also obtain: if

max
l∈{1,...,κ}

i∈Gl∩{1,...,N}

d̂∗
(
xi, X(l)) ≤ ε,

then

min
k,k′∈{1,...,κ}, k 6=k′

i∈Gk∩{1,...,N}
j∈Gk′∩{1,...,N}

d̂∗(xi, xj)

≥ min
k,k′∈{1,...,κ}, k 6=k′

i∈Gk∩{1,...,N}
j∈Gk′∩{1,...,N}

{
d
(
X(k), X(k′))− d̂∗

(
xi, X(k))− d̂∗

(
xj, X(k′))}

≥ δmin − 2ε >
δmin

2
.

Equivalently,{
max

l∈{1,...,κ}
i∈Gl∩{1,...,N}

d̂∗
(
xi, X(l)) ≤ ε

}
⊂
{

min
k,k′∈{1,...,κ}, k 6=k′

i∈Gk∩{1,...,N}
j∈Gk′∩{1,...,N}

d̂∗(xi, xj) >
δmin

2

}
. (43)

It follows from (42), (43) and (40) that for nmin > n0,

P
({

max
l∈{1,...,κ}

i,j∈Gl∩{1,...,N}

d̂∗(xi, xj) ≥
δmin

2

}⋃{
min

k,k′∈{1,...,κ}, k 6=k′
i∈Gk∩{1,...,N}
j∈Gk′∩{1,...,N}

d̂∗(xi, xj) ≤
δmin

2

})

≤ P
(

max
l∈{1,...,κ}

i∈Gl∩{1,...,N}

d̂∗
(
xi, X(l)) > ε

)
< δ. (44)

Please note that (44) is equivalent to

P
({

max
l∈{1,...,κ}

i,j∈Gl∩{1,...,N}

d̂∗(xi, xj) <
δmin

2

}⋂{
min

k,k′∈{1,...,κ}, k 6=k′
i∈Gk∩{1,...,N}
j∈Gk′∩{1,...,N}

d̂∗(xi, xj) >
δmin

2

})

−−−−−−→
nmin→+∞

1.
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This tells us that the sample paths in S that are generated by the same covariance structures
are closer to each other than to the rest of sample paths. Then, by (44), for nmin > n0, each
sample path should be “close” enough to its cluster center, i.e.,

P
(

max
i∈{1,...,N}

min
k∈{1,...,κ−1}

d̂∗(xi, xck ) ≤
δmin

2

)
< δ, (45)

where the κ cluster centers’ indexes c1, . . . , cκ are determined by Algorithm 1 in the follow-
ing way:

(c1, c2) := arg max
i,j∈{1,...,N}, i<j

d̂∗(xi, xj),

and
ck := arg max

i∈{1,...,N}
min

j∈{1,...,k−1}
d̂∗(xi, xcj), k = 3, . . . , κ.

These c1, . . . , cκ are chosen to index sample paths generated by different process covariance
structures. Then by (44), each remaining sample path will be assigned to the cluster center
corresponding to the sample path generated by the same process covariance structure.
Finally, (38) results from (44) and (45); and (35) is proved by combining (36) and (38).

Below we state the consistency theorem concerning the online clustering algorithm.

Theorem 3. In Assumption 1, Algorithm 2 is approximately asymptotically consistent for clus-
tering the online sample paths S(t) = {zt

1, . . . , zt
N(t)}, t = 1, 2, . . .. This means: if d̂∗ is replaced

with d̃∗ in Algorithm 2, for any integer N ≥ 1, the output clusters of the first N paths in S(t)

S(t)|N :=
{

zt
1, . . . , zt

N
}

,

converge to the covariance structure ground truths of the increments of the corresponding tangent
processes S′(t)|N := {xt

1, . . . , xt
N} in probability, as ∆t→ 0 and t→ +∞. In other words,

lim
t→+∞

lim
∆t→0

P
(

f (S(t), κ, d̃∗)|N = GS′(t)|N
)
= 1, (46)

where f (S(t), κ, d̃∗)|N denotes the clustering f (S(t), κ, d̃∗) restricted to the first N sample paths in
S(t). We also recall that GS′(t)|N is the restriction of GS′(t) to the first N sample paths {xt

1, . . . , xt
N}

in S′(t) (see Definition 6).

Proof. Let us fix N ≥ 1. First, similar to the derivation of (36) in the proof of Theorem 2,
we can obtain

P
(

f (S(t), κ, d̃∗)|N = GS′(t)|N
)
−−−→
∆t→0

P
(

f (S′(t), κ, d̂∗)|N = GS′(t)|N
)
. (47)

Then it remains to prove

P
(

f (S′(t), κ, d̂∗)|N = GS′(t)|N
)
−−−−→
t→+∞

1. (48)

In what follows we prove (48).
Let δ > 0 be arbitrarily small. Fix ε ∈ (0, δmin/4), where δmin is defined as in (39).
Denote by

δmax := max
{

d
(
X(k), X(k′)) : k, k′ ∈ {1, . . . , κ}

}
. (49)

For k ∈ {1, . . . , κ}, denote by sk the index of the first path in S′(t) sampled from X(k), i.e.,

sk := min
{

i ∈ Gk ∩ {1, . . . , N(t)}
}

. (50)
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Please note that sk does not depend on t but only on k. Then denote by

m := max
k∈{1,...,κ}

sk. (51)

For j ≥ 1 denote by S′(t)|j the first j sample paths in S(t). Then from (51) we see that,
m ≤ N(t) and S′(t)|m contains paths sampled from all κ distinct processes (covariance
structures). Using the fact that ∑+∞

j=1 wj < +∞, we can find a fixed value J ≥ m such that

+∞

∑
j=J+1

wj ≤ ε. (52)

Recall that in the online setting, the ith sample path’s length ni(t) grows with time t.
Therefore, by Remark 5, for every j ∈ {1, . . . , J} there exists some T1(j) > 0 such that

sup
t≥T1(j)

P
(

max
k∈{1,...,κ}

i∈Gk∩{1,...,j}

d̂∗
(
xt

i , X(k)) > ε

)
< δ. (53)

Since J ≥ m, by Theorem 2 for every j ∈ {m, . . . , J} there exists T2(j) > 0 such that
Alg1(S′(t)|j, κ, d̂∗) is asymptotically consistent for all t ≥ T2(j). Since N(t) is increasing as
t→ +∞, there is T3 > 0 such that N(t) > J for t ≥ T3. Let

T := max
{

max
i∈{1,2}

j∈{1,...,J}

Ti(j), T3

}
.

From Algorithm 2 (Lines 9, 11) we see

ηt :=
N(t)

∑
j=1

wjγ
t
j , with γt

j := min
k,k′∈{1,...,κ}

k 6=k′

d̂∗
(
xt

cj
k
, xt

cj
k′

)
. (54)

Below we provide upper bounds in probability of ηt and γt
j .

Upper bound of γt
j : Similar to how (43) is derived, we use the triangle inequalities (Remark 5)

and (39) to obtain:

sup
t≥T

P
(

min
j∈{1,...,N(t)}

γt
j <

δmin

2

)
≤ sup

t≥T
P
(

min
j∈{1,...,N(t)}
k,k′∈{1,...,κ}

k 6=k′

(
d
(
X(k), X(k′))− 2d̂∗

(
xt

cj
k
, X(k))) < δmin

2

)
(55)

≤ sup
t≥T

P
(

max
j∈{1,...,N(t)}

k∈{1,...,κ}

d̂∗
(
xt

cj
k
, X(k)) > δmin

4

)
.

Since the clusters are sorted in the order of appearance of the distinct process covari-
ance structures, we have xt

cj
k

= xt
sk

for all j ≥ m and k ∈ {1, . . . , κ}, where we recall

that the index sk is defined in (50). It follows from (55), the fact that ε < δmin/4 and
(53) that

sup
t≥T

P
(

min
j∈{1,...,N(t)}

γt
j <

δmin

2

)
≤ sup

t≥T
P
(

max
j∈{1,...,m}
k∈{1,...,κ}

d̂∗
(
xt

cj
k
, X(k)) > ε

)
< mδ. (56)
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For j ∈ {1, . . . , N(t)}, by (54), the triangle inequality, (49) and (56), we have

sup
t≥T

P
(

max
j∈{1,...,N(t)}

γt
j > δmax + 2ε

)
≤ sup

t≥T
P
(

max
j∈{1,...,N(t)}
k,k′∈{1,...,κ}

k 6=k′

(
d
(
X(k), X(k′))+ 2d̂∗

(
xt

cj
k
, X(k))) > δmax + 2ε

)
(57)

≤ sup
t≥T

P
(

max
j∈{1,...,m}
k∈{1,...,κ}

d̂∗
(
xt

cj
k
, X(k)) > ε

)
< mδ.

Upper bound of ηt: By (56) and the fact that ∑
N(t)
j=1 wj ≥ wm, we have

sup
t≥T

P
(

ηt <
wmδmin

2

)
≤ sup

t≥T
P
(

min
j∈{1,...,N(t)}

γt
j

N(t)

∑
j=1

wj <
wmδmin

2

)
≤ sup

t≥T
P
(

min
j∈{1,...,N(t)}

γt
j <

δmin

2

)
< mδ. (58)

Recall that N(t) > J for t ≥ T. Therefore for every k ∈ {1, . . . , κ} we can write

1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) = 1

ηt

m−1

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k))

+
1
ηt

J

∑
j=m

wjγ
t
j d̂∗
(
xt

cj
k
, X(k))+ 1

ηt

N(t)

∑
j=J+1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)).

(59)

Now we provide upper bounds in probability of the three terms on the right-hand side
of (59).

Upper bound of the first term: Using (53) and the fact that (ηt)−1 ∑m−1
j=1 wjγ

t
j ≤ 1, we

obtain

sup
t≥T

P
(

1
ηt

m−1

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) > ε

)
≤ sup

t≥T
P
(

max
j∈{1,...,m−1}

k∈{1,...,κ}

d̂∗
(
xt

cj
k
, X(k)) > ε

)
≤ (m− 1)δ. (60)

Upper bound of the second term: Recall that xt
cj

k

= xt
sk

for all j ∈ {m, . . . , J} and k ∈

{1, . . . , κ}. Therefore, by (53) and the fact that (ηt)−1 ∑J
j=m wjγ

t
j ≤ 1, for every k ∈

{1, . . . , κ} we have

sup
t≥T

P
(

1
ηt

J

∑
j=m

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) > ε

)
= sup

t≥T
P
(

d̂∗
(
xt

sk
, X(k)) 1

ηt

J

∑
j=m

wjγ
t
j > ε

)
≤ sup

t≥T
P
(
d̂∗
(
xt

sk
, X(k)) > ε

)
< δ. (61)

Upper bound of the third term: By (52), (58) and (57),
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sup
t≥T

P
(

1
ηt

N(t)

∑
j=J+1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) > 2ε2(δmax + 2ε)

wmδmin

)

≤ sup
t≥T

P
(

max
j∈{1,...,N(t)}

k∈{1,...,κ}

d̂∗
(
xt

cj
k
, X(k)) > ε

)

+ sup
t≥T

P
(

max
j∈{1,...,N(t)}

γt
j > δmax + 2ε

)
< 2mδ. (62)

Combining (59)–(62) we obtain, for k ∈ {1, . . . , κ},

sup
t≥T

P
(

1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) > ε

(
2 +

2ε2(δmax + 2ε)

wmδmin

))
< 3mδ. (63)

Now we explain how to use (63) to prove the asymptotic consistency of Algorithm 2.
Consider an index i ∈ Gk′ for some k′ ∈ {1, . . . , κ}. On one hand, using the triangle
inequalities, we obtain for k ∈ {1, . . . , κ}, k 6= k′,

1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

i , xt
cj

k

)
≥ 1

ηt

N(t)

∑
j=1

wjγ
t
jd
∗(X(k), X(k′))

−
( 1

ηt

N(t)

∑
j=1

wjγ
t
j

)
d̂∗
(
xt

i , X(k′))− 1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k))

≥ δmin − d̂∗
(
xt

i , X(k′))+ 1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)).

Then applying (53) and (63) we obtain

sup
t≥T

P
(

1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

i , xt
cj

k

)
< δmin − ε

(
3 +

2ε2(δmax + 2ε)

wmδmin

))

≤ sup
t≥T

P
(

d̂∗
(
xt

i , X(k′))+ 1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) > ε

(
3 +

2ε2(δmax + 2ε)

wmδmin

))
≤ sup

t≥T
P
(
d̂∗
(
xt

i , X(k′)) > ε
)

+ sup
t≥T

P
( 1

ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k
, X(k)) > ε

(
2 +

2ε2(δmax + 2ε)

wmδmin

))
< (3m + 1)δ. (64)

On the other hand, from (53) we see for any N ≥ 1,

sup
t≥T1(N)

P
(

max
k∈{1,...,κ}

i∈Gk∩{1,...,N}

d̂∗
(
xt

i , X(k)) > ε

)
< δ. (65)

Using again the triangle inequalities, we obtain
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1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

i , xt
cj

k′

)
≤
( 1

ηt

N(t)

∑
j=1

wjγ
t
j

)
d̂∗
(
xt

i , X(k′))+ 1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k′

, X(k′))
≤ d̂∗

(
xt

i , X(k′))+ 1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k′

, X(k′)). (66)

Let T′ := max{T, T1(N)}. It results from (66), (65) and (63) that

sup
t≥T′

P
( 1

ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

i , xt
cj

k′

)
> ε
(
3 +

2ε2(δmax + 2ε)

wmδmin

))

≤ sup
t≥T′

P
(

d̂∗
(
xt

i , X(k′))+ 1
ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k′

, X(k′)) > ε
(
3 +

2ε2(δmax + 2ε)

wmδmin

))
≤ sup

t≥T′
P
(
d̂∗
(
xt

i , X(k′)) > ε
)

+ sup
t≥T′

P
( 1

ηt

N(t)

∑
j=1

wjγ
t
j d̂∗
(
xt

cj
k′

, X(k′)) > ε
(
2 +

2ε2(δmax + 2ε)

wmδmin

))
< (3m + 1)δ. (67)

Since δ and ε can be chosen arbitrarily small, it follows from (64) and (67) that

P
(

arg min
k∈{1,...,κ}

1
ηt

N(t)

∑
j=1

wjγjd̂∗
(
xt

i , xt
cj

k

)
= k′

)
−−−−→
t→+∞

1, (68)

for all i ∈ {1, . . . , N}. (48) as well as Theorem 3 is proved.

5. Tests on Simulated Data: Clustering Multifractional Brownian Motions
5.1. Efficiency Improvement: log∗-Transformation

In this section, we show the performance of the proposed clustering approaches
(Algorithms 1 and 2) on clustering simulated mBms given in Definition 3. Recall that
mBm is a paradigmatic example of locally asymptotically self-similar processes. Its tan-
gent process is an fBm, which is self-similar. Since the covariance structure of the fBm
is nonlinearly dependent on its self-similarity index, we can then apply the so-called
log∗-transformation to the covariance matrixes of its increments, in order to improve the
efficiency of the clustering algorithms. More precisely, in our clustering algorithms, we
replace in d̂∗ the coefficients of all the covariance matrixes and their estimators with their
log∗-transformations. For x ∈ R, its log∗-transformation is defined to be

log∗(x) :=


log x, if x > 0;
− log(−x), if x < 0;
0, if x = 0.

(69)

By applying such transformation, the observations assigned to any two clusters by the
covariance structure ground truths become well separated thus the clustering algorithms
become more efficient. For more detail on this efficiency enhancement approach, we refer
the reader to Section 3 in [13].
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5.2. Simulation Methodology

We select Wood–Chan’s method [51,52] to simulate mBm, and use the implementation
(MATLAB) of Wood–Chan’s method in FracLab (version 2.2) by INRIA in our simulation
study (https://project.inria.fr/fraclab/download/overview/, accessed on 1 January 2022).
This method outputs independent sample paths of the following form:{

WH(i/n)
( i

n
)}

i=0,1,...,n
, (70)

where n ≥ 1 is an input integer. Now we would select wj = 1/(j2(j + 1)2) so that d
(see (19)) is a convergent series (well-defined). To show that this choice is reasonable, we
consider the stochastic process {

WH(i∆)
(
i∆
)}

i=0,1,..., (71)

where ∆ > 0 is some given mesh. For each t0 = 0, ∆, 2∆, . . ., the increments of the tangent
process (see the right-hand side of (28)){

CH(t0)
n−H(t0)B(H(t0))

(
i∆
)}

i=0,1,...

is given by: for i = 0, 1, . . .,

X(H(t0))
(
i∆
)
= CH(t0)

n−H(t0)
(

B(H(t0))
(
(i + 1)∆

)
− B(H(t0))

(
i∆
))

.

As increments of fBm, X(H(t0))(•) is autocovariance ergodic. Moreover for i, j = 0, 1, . . .,
we have, using the definition of log∗ (see (69)), the covariance function of fBm (see (5)) and
the fact that sups≥0 H(s) ≤ 1,

log∗
(
Cov

(
XH(t0))

(
i∆
)
, X(H(t0))

(
j∆
)))

= log∗
(C2

H(t0)
∆2H(t0)

2
(∣∣i− j− 1

∣∣2H(t0) +
∣∣i− j + 1

∣∣2H(t0) − 2
∣∣i− j

∣∣2H(t0))) (72)

= O
(

log(|i− j|+ 1)
)
, as |i− j| → +∞.

From the definition of d in (19) and (72) we can see that, by taking wj = 1/(j2(j + 1)2) and
using (72), for any t0, t′0 = 0, ∆, 2∆, . . .,

d
(
X(H(t0)), X(H(t′0))

)
= O

( +∞

∑
l,m=1

∑l+m−1
i,j=l log(|i− j|+ 1)

l2(l + 1)2m2(m + 1)2

)
,

where

+∞

∑
l,m=1

∑l+m−1
i,j=l log(|i− j|+ 1)

l2(l + 1)2m2(m + 1)2 = 2
+∞

∑
l,m=1

∑m−1
k=1 (m− k) log(k + 1)
l2(l + 1)2m2(m + 1)2

≤ 2
+∞

∑
l,m=1

log m
l2(l + 1)2(m + 1)2 < +∞.

Therefore, we showed that the choice wj = 1/(j2(j + 1)2) makes d well-defined.

5.3. Synthetic Datasets

To construct a collection of the mBm paths with distinct functional indexes H(•), we
set the function form of H(•) in each of the predetermined clusters. Two functional forms
of H(•) are selected for synthetic data study:

https://project.inria.fr/fraclab/download/overview/
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• Case 1 (Monotonic function): The general form is taken to be

H(t) = 0.5 + h · t/Q, t ∈ [0, Q], (73)

where Q > 0 is a fixed integer and different values of h correspond to different clusters.
We then predetermine five clusters with various hs to separate different clusters. In
this study, we set Q = 100, h1 = −0.4, h2 = −0.2, h3 = 0, h4 = 0.2 and h5 = 0.4. The
trajectories of the five functional forms of H(•) in different clusters are illustrated in
the left graph of Figure 1.

• Case 2 (Periodic function): The general form is taken to be

H(t) = 0.5 + h · sin(πt/Q), t ∈ [0, Q], (74)

where different values of h lead to different clusters. Specifically, we take Q = 100,
h1 = 0.4, h2 = 0.2, h3 = 0, h4 = −0.2 and h5 = −0.4. The trajectories of the
corresponding five functional forms of H(•) are illustrated in the left graph of Figure 2.

• Case 3 (Small turbulence on H): We proceed to examine if the proposed algorithm
has the capacity of distinguishing processes with very similar behaviors. To this end
we take consider clustering an fBm with Hurst parameter H f , and an mBm with the
Hurst functional parameter

H(t) = H f + 0.1 · sin(πt/Q), t ∈ [0, Q], (75)

We perform the tests using two values of H f : (i) H f = 0.2 and (ii) H f = 0.8. In both
cases, the index H(t) of the corresponding mBm is regarded to be H f plus some noise.

We demonstrate the approximated asymptotic consistency of the proposed algorithms
by conducting both offline and online clustering analysis. We denote the number of
observed data points in each time series by n(t), and denote the number of time series
paths by N(t).

In the offline setting, the number of observed paths does not depend on time t;
however, the lengths do. To construct offline datasets, we perform the following:

1. For i = 1, . . . , 5, simulate 20 mBm paths in group i (corresponding to hi), each path is
with length of 305. Then the total number of paths N = 100. To be more explicit we
denote by

S :=


x1,1 x1,2 · · · x1,305
x2,1 x2,2 · · · x2,305

...
...

. . .
...

x100,1 x100,2 · · · x100,305

, (76)

where each row is an mBm discrete-time path. For i = 1, . . . , 5, the data from the ith
group are given as:

S(i) :=

x20(i−1)+1,1 x20(i−1)+1,2 · · · x20(i−1)+1,305
...

...
. . .

...
x20i,1 x20i,2 · · · x20i,305

. (77)

2. At each t = 1, . . . , 100, we observe the first n(t) = 3t + 5 values of each path, i.e.,

Soffline(t) :=


x1,1 x1,2 · · · x1,3t+5
x2,1 x2,2 · · · x2,3t+5

...
...

. . .
...

x100,1 x100,2 · · · x100,3t+5

.
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The online dataset does not require observed paths to be of equal length, and can
be regarded as an extension of the offline case. Introducing the online dataset aims at
mimicking the situation where new time series are observed as time goes. In our simulation
study, we use the following method to construct online datasets:

1. For i = 1, . . . , 5, simulate 20 mBm paths in group i (corresponding to hi), each path is
with length of 305 (see (76) and (77)).

2. At each t = 1, . . . , 100 and i = 1, . . . , 5, we observe the following dataset in the ith
group:

S(i)
online(t) :=


x̃1,1 x̃1,2 · · · · · · · · · · · · x̃1,n1(t)
x̃2,1 x̃2,2 · · · · · · · · · x̃2,n2(t)

...
...

. . .
...

x̃Ni(t),1 x̃Ni(t),2 · · · x̃Ni(t),nNi(t)
(t)

,

where

• x̃k,ls are the (k, l)-coefficients in S(i) given in (77).
• Ni(t) := 6 + b(t− 1)/10c denotes the number of paths in the ith group. Here

b•c denotes the floor number. That is, starting from 6 paths in each group, 1 new
path will be added into each group as t increases by 10.

• nl(t) := 3
(
t− (l − 6)+

)+
+ 5, with (•)+ := max(•, 0). This means each path

observes three new values as t increases by 1.

Since at each time t, the covariance structure ground truth being known, we can then
evaluate the clustering performance in terms of the so-called “misclassification rate”, which
is calculated based on averaging the proportion of mis-clustered paths in each scenario. For
more detail on this notion of misclassification rate we refer the readers to Section 4 in [13].

5.4. Experimental Results

We demonstrate the asymptotic consistency of our clustering algorithms by computing
the misclassification rates using simulated offline and online datasets. Below we summarize
the simulation study results.

Case 1 (Monotonic function):

When H(•)s are chosen to be give monotonic functionals of the form (73) (see the left graph
in Figure 1), the right graph in Figure 1 illustrates the behavior of the misclassification rates
corresponding to Algorithm 1 applied to offline data setting (solid line), and Algorithm 2
applied to online data setting (dashed line). From this result we observe the following:

(1) Both algorithms attempt to be consistent in their circumstances, as the time t increases,
in the sense that the corresponding misclassification rates decrease to 0.

(2) Clustering mBms are asymptotically equivalent to clustering their tangent processes’
increments.

(3) The online algorithm seems to have an overall better performance: its misclassification
rates are 5–10% lower than that of offline algorithm. The reason may be that at early
time steps the differences among the H(•)s are not significant. Unlike the offline
clustering algorithm, the online one is flexible enough to catch these small differences.

Case 2 (Periodic function):

The same converging behaviors are found in the case of periodic functional form of H(•) as
specified in (74). Their trajectories are illustrated in the left graph of Figure 2. The clustering
performance shown in the right graph of Figure 2 indicates the following:

(1) Both misclassification rates of the clustering algorithms have generally a declining
trend as time increases.
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(2) As the differences among the periodic function H(•)s values go up and down, the
misclassification rates go down and up accordingly.

(3) The online clustering algorithm has an overall worse performance than the offline
one. This may be because starting from t = 20 the differences among H(•)s become
significantly large. In this situation, the offline clustering algorithm can better catch
these differences, since it has a larger sample size (20 paths in each group) than the
online one.

Figure 1. The functional form of H(•) follows Equation (73): H(t) = 0.5 + hi · t/100 with t =

0, 1, . . . , 100. The left graph plots H(•) correspond to 5 different clusters. The right graph illustrates
the misclassification rates output by (i) offline algorithm on offline dataset (solid line) and (ii)
online algorithm on online dataset (dashed line). Both algorithms are performed based on the log∗-
transformed covariance-based dissimilarity measure.

Figure 2. The functional form of H(•) follows Equation (74): H(t) = 0.5 + hi · sin(πt/100) with
t = 0, 1, . . . , 100. The left graph plots H(•) corresponding to 5 different clusters. The right graph
illustrates the misclassification rates output by (i) offline algorithm on offline dataset (solid line) and
(ii) online algorithm on online dataset (dashed line). Both algorithms are performed based on the
log∗- transformed covariance-based dissimilarity measure.

Case 3 (Small turbulence on H):

We continue the simulation analysis using the case where we intend to distinguish the
classical fBm process with the mBm process with similar function H. We take two values
of H f (as a constant) for the fBm: (i) H f = 0.2 and (ii) H f = 0.8. In both cases, the
corresponding mBm has the H function slightly different with H f . The functional form of
H for mBm is specified in Equation (75).

The clustering results are presented in Figure 3. We find general convergence perfor-
mance in both cases (for H f = 0.2, 0.8). More specifically, the online algorithm outperforms
the offline algorithm for both datasets. The misclassification rate is lower than 20% when
t ≥ 40 for the online algorithm results. In both cases, as the difference between the two
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Hurst parameters goes up and down, we see the corresponding misclassification rates go
down and up, which is in line with the consistency of our clustering algorithms. When
H f = 0.8, the percent changes between the Hurst parameters of fBm and mBm are smaller
than those for H f = 0.2, therefore the performance of clustering presented in the right
graph is slightly worse. In conclusion, the proposed algorithms demonstrate a robust
convergence feature when clustering fBm and mBm with similar Hurst parameters.

Figure 3. The clustering performance using fBm with H f and mBm with H(•) given in Equation (74):
H(t) = H f + 0.1 · sin(πt/100) with t = 0, 1, . . . , 100. The left graph is the case where H f = 0.2, and
the right graph is the case where H f = 0.8. Both graphs illustrate the misclassification rates output
by (i) offline algorithm on offline dataset (solid line) and (ii) online algorithm on online dataset
(dashed line). Both algorithms are performed based on the log∗- transformed covariance-based
dissimilarity measure.

Please note that for each pair of paths with length n(t), we took K = n(t)− 2 and
L = 1 in d̂∗; however, any other value of K could be taken. We have provided easily
readable and editable MATLAB codes of the proposed algorithms and simulation study
replications. All the codes used in this section can be found publicly online (https://github.
com/researchcoding/clustering_locally_asymptotically_self_similar_processes/, accessed
on 1 January 2022).

5.5. Comparison to Traditional Approaches Designed for Clustering Finite-Dimensional Vectors

In this section, we use the benchmark methods to cluster the simulated dataset pro-
posed in Section 5.3 and compare them to our novel approach. For the specification of the
benchmark method, we select K-means and hierarchical clustering with Euclidean distance,
which are commonly used in clustering analysis of non-stochastic vectors or processes. First
of all, performing both approaches is more time-consuming than our clustering algorithms.
More importantly, the misclassification rates from these two traditional algorithms are
plotted in Figures 4 and 5.

As opposed to the performance shown in Figures 1 and 2, the benchmark algorithms
do not converge when clustering locally asymptotically self-similar processes. Though the
numbers of clusters are clearly predetermined in both algorithms, none of the benchmark
algorithm demonstrates declining misclassification rate with the increased number of
observations. Figure 4 shows the diverging performance of the clustering algorithm with an
increased then flat misclassification over time. Figure 5 shows almost flat misclassification
rates. None of the results shows a misclassification rate lower than 60%.

From the simulation analysis, we conclude that the conventional approaches have
failed to cluster the locally asymptotically self-similar processes (with different functional
forms of H(•)) in this particular case. The proposed methods in this paper are tailored
to cluster the locally asymptotically self-similar stochastic processes with known number
of clusters.

https://github.com/researchcoding/clustering_locally_asymptotically_self_similar_processes/
https://github.com/researchcoding/clustering_locally_asymptotically_self_similar_processes/
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Figure 4. The functional form of H(•) follows Equation (73): H(t) = 0.5 + hi · t/100 with
t = 0, 1, . . . , 100. The left graph plots the misclassification rates output by K-means and hierar-
chical clustering methods using the offline dataset. The right graph shows the misclassification rates
using the online dataset.

Figure 5. The functional form of H(•) follows Equation (74): H(t) = 0.5 + hi · sin(πt/100) with
t = 0, 1, . . . , 100. The left graph plots the misclassification rates output by K-means and hierarchical
clustering methods using the offline dataset. The right graph shows the misclassification rates using
the online dataset.

6. Real World Application: Clustering Global Financial Markets
6.1. Motivation

In this section, we apply the proposed clustering algorithm on the real world datasets.
We select a global equity return data to perform the clustering analysis. Conventionally,
stock returns of countries in the same region are considered to have similar patterns due
to the common regional economic factors. In other words, economic entities in close
geographical distance have potentially more trades and other economic ties. Therefore,
these countries are influenced by similar economic and finance factors. However, recent
empirical evidence regarding the financial markets show that globalization has broken the
geographical barrier and creates new economic factors in contrast to the geographical ones.
As a result, global economic clusters switch from “geographical centriods” to “economic
development centriods”. Emerging markets demonstrate increasingly similar financial
market patterns and correlations [53], whereas developed economic entities share increasing
financial market similarity [54].

Bianchi and Pianese [15] pioneered the stock returns modeling using locally asymptot-
ically self-similar processes (e.g., mBm process). Bianchi et al. [18] and Peng and Zhao [27]
provide empirical support on this time-varying self-similar feature of the financial time se-
ries. Given this fact, the financial market index is a perfect example of stochastic processes,
where our proposed clustering algorithms are applicable. We examine the connection of
global financial markets by answering as to whether economic entities are well-behaved
and clustered by geographical distribution or by development level.
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6.2. Data and Methodology

In empirical cluster analysis, we use two asset classes from global financial markets:
the country-level stock index and the sovereign credit default swap spread. The stock index
return captures the upside (growth) characteristics, and the sovereign CDS spread captures
the downside (credit risk) characteristics of underlying economic entities. We provide a
more detailed description below.

• Equity indexes returns: We cluster the global stock indexes based on their empirical
time-varying covariance structure. We use Algorithms 1 and 2 as the clustering
approach. We select the index constituents of MSCI ACWI (All Country World Index)
as the underlying stochastic processes in the datasets for clustering analysis. Each
of the indexes is a realized path representing the historical monthly returns of the
underlying economic entities. MSCI ACWI is the leading global equity market index
and covers more than 85% of the market capitalization of the global stock market
(As of December 2018, as reported on https://www.msci.com/acwi, accessed on 1
January 2022).

• Sovereign CDS spreads: We cluster the sovereign credit default swap (CDS) spreads
of global economic entities. The sovereign CDS is an insurance-like financial prod-
uct that provides default protection of treasury bonds for the economic entity (e.g.,
the government). The CDS spread reflects the cost to insurer of the exposure on a
sovereign entity’s default. We select a five-year sovereign CDS spread as the indicator
of sovereign credit risk, as the five-year product has the best liquidity on the CDS mar-
ket. We overlap the sample of economic entities between the stock and CDS datasets,
and the same set of underlying economics entities are present in the clustering analysis.
Our CDS data source is Bloomberg.

The extant literature [15,18,27] shows that these types of financial time series demon-
strate a “long memory” path feature. These stochastic processes are naturally modeled
as locally asymptotically self-similar processes such as fBm and mBm. In the fBm and
mBm cases, the proposed algorithms are applicable to cluster the stock returns and CDS
spreads. Similar to Section 5, we cluster the increments of the indexes returns with
the log∗-transformed dissimilarity measure. The data sample consists of stock indexes
and sovereign CDS spreads including 23 developed economic entities and 24 emerg-
ing markets. The detailed constituents are present in Table 1 from the data source at
https://www.msci.com/acwi, accessed on 1 January 2022. The geographical regions
include the Americas, EMEA (Europe, Middle East and Africa), the Pacific, and Asia.

We construct both offline and online datasets using monthly returns of stock indexes
and monthly spreads of sovereign CDS. The offline dataset of the monthly return of stock
index data starts in June 2005, includes the financial crisis period in September 2007, and
ends in November 2019. We include the global financial market crisis to present the
systematic risk contagion effect in our clustering analysis. The online dataset starts on
January 1989, which covers the 1997 Asian financial crisis, 2003 dot-com bubble andthe
2007 subprime mortgage crisis, and ends in November 2019. The offline dataset contains
47 observed paths, and each has 174 time points. In the online setting, the longest stochastic
path has 371 observations, and the shortest time series have 174 observations. The online
dataset begins with 33 economic entities and ends with 47 economic entities.

As for monthly sovereign CDS spreads, we remove the Netherlands, Qatar, Singapore,
Greece and United Arabic from the sample due to insufficient observations. We end up with
42 economic entities with CDS spread in the clustering analysis. The offline dateset starts
in June 2005 and ends in November 2019, and each economic entity has 174 observations.

6.3. Clustering Results

We compare the clustering results using offline and online datasets with the number of
clusters based on (i) geographical regions (four groups: Americas, Europe and the Middle
East, the Pacific, and Asia) and (ii) development level (two groups: emerging markets and

https://www.msci.com/acwi
https://www.msci.com/acwi
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developed markets). The clustering factor (geographical region or development level) with
the lower misclassification rate represents the most relevant partition of the economics
entities. We examine whether the geographical region or development level differentiates
between the financial market’s behaviors the most.

Table 1. The categories of major stock and sovereign CDS markets in the MSCI ACWI (All Country
World Index). There are 23 developed economic entities and 24 emerging countries or areas. The
geographical regions contain Americas, EMEA (Europe, Middle East and Africa), Pacific and Asia.
Markets with * have missing sovereign CDS data in our data sample.

Developed Markets Emerging Markets

Americas Europe & Middle
East Pacific Americas Europe & Middle

East & Africa Asia

Canada Austria Australia Brazil Czech Republic China (Mainland)
USA Belgium Hong Kong Chile Greece * India

Denmark Japan Colombia Hungary Indonesia
Finland New Zealand Mexico Poland Korea
France Singapore * Peru Russia Malaysia

Germany Turkey Pakistan
Ireland Egypt Philippines
Israel South Africa Taiwan
Italy Qatar * Thailand

The Netherlands * United Arab
Emirates *

Norway
Portugal

Spain
Sweden

Switzerland
United Kingdom

Source: MSCI ACWI (All Country World Index) market allocation. https://www.msci.com/acwi, accessed on 1
January 2022.

Table 2 shows that the misclassification rates for clustering using development levels
are significantly and consistently lower than that of the geographical region. The empirical
result is robust, using offline or online settings and using stock indexes or sovereign CDS
spreads. The clustering performance tends to support the dominance of the development
level in comparison to the geographical region, in terms of characterizing the financial
market features in recent decades. The best results (lowest misclassification rate) are (i)
clustering the offline dataset using offline algorithm, and (ii) clustering the online dataset
using an online algorithm, when the cluster factor is using the development level (emerging
markets vs. developed markets). There are 30% to 50% decreases on misclassification rates
when clustering using development level compared to when clustering using region.

Table 3 presents misclassified economic entities in the cluster analysis, when we use
the development level as the clustering factor. For global stock indexes, the misclassification
often occurs in the case where developed economic entities is clustered into the emerging
market group. Stock index returns from Austria, Finland, and Portugal are clustered in the
emerging market group in both offline and online algorithms. The misclassification within
the developed market group demonstrates a more random pattern. For sovereign CDS
spreads, the misclassification occurs in the cases where emerging economic entities are
clustered into the developed market group. Sovereign CDS spreads of Chile, China (Main-
land), Czech Republic, Korea, Malaysia, Mexico, Poland, and Thailand are consistently
misclassified into the developed market group. A plausible reason is that these economic
entities have low sovereign credit risk compared to their peers in the most recent years.

https://www.msci.com/acwi
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Table 2. The misclassification rates of clustering algorithms on different datasets. The clustering
facts are geographical region and development level, respectively. Panel A presents the results from
clustering global stock indexes, and Panel B presents the results from clustering sovereign CDS
spreads.

Panel A Offline Algorithm Online Algorithm

Stock Returns Regions Emerging/Developed Regions Emerging/Developed

offline dataset 61.70% 29.79% 55.32% 36.17%
online dataset 53.19% 44.68% 51.06% 14.89%

Panel B Offline Algorithm Online Algorithm

CDS Spreads Regions Emerging/Developed Regions Emerging/Developed

offline dataset 64.29% 28.57% 71.43% 26.19%
online dataset 54.76% 47.62% 59.52% 26.19%

In both stock and CDS cases, we show that clustering financial time series by devel-
opment level outperforms geographical region in our sample. This empirical evidence
supports that economic globalization is breaking the geographic barrier and enhances the
comovement of financial market performance by economics development status.

Table 3. The misclassification cases when using offline algorithm on offline dataset and online
algorithm on online dataset. Panel A reports the mis-categorized economics entities in the stock
index clustering case, and Panel B reports the mis-categorized economics entities in the sovereign
CDS spreads clustering case. The algorithm clusters the dataset into two groups: emerging market
group and developed market group. The mis-categorized outcome are reported, where (i) entities
from developed markets incorrectly clusters in emerging market, or (ii) vice versa.

Panel A: Equity Indexes Returns

Group 1 (Emerging Markets) Group 2 (Developed Markets)

Incorrect-Offline Incorrect-Online Incorrect-Offline Incorrect-Online

Austria Austria Korea Czech Republic
Finland Finland Chile Qatar

Germany Portugal Philippines Peru
Ireland Malaysia South Africa

Italy Mexico
Norway
Portugal

Spain
New Zealand

Panel B: Sovereign CDS Spreads

Group 1 (Emerging Markets) Group 2 (Developed Markets)

Incorrect-Offline Incorrect-Online Incorrect-Offline Incorrect-Online

Ireland Ireland Chile Chile
Italy Portugal China (Mainland) China (Mainland)

Portugal Czech Republic Czech Republic
Spain Korea Hungary

Malaysia Korea
Mexico Malaysia
Poland Mexico

Thailand Poland
Thailand
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7. Conclusions and Future Prospects

In this paper, we introduce the problem of clustering locally asymptotically self-similar
processes. A novel covariance-based dissimilarity measure is proposed to obtain approxi-
mately asymptotically consistent clustering algorithms for both offline and online settings.
We showed that the recommended algorithms are competitive for at least three reasons:

(1) Given their flexibility, our algorithms are applicable to clustering any distribution
stationary ergodic processes with finite variances, any autocovariance ergodic pro-
cesses, and locally asymptotically self-similar processes whose tangent processes
have autocovariance ergodic increments. Multifractional Brownian motion (mBm) is
an excellent representative of the latter class of processes.

(2) Our algorithms are efficient enough in terms of their computational complexity. A
simulation study is performed on clustering mBm. The results show that both offline
and online algorithms are approximately asymptotically consistent.

(3) Our algorithms are successfully applied to cluster the real world financial time series
(equity returns and sovereign CDS spreads) via the development level and via regions.
The outcomes are self-consistent with the financial markets behavior and they reveal
the level of impact between the economic development and regions on equity returns.

Finally, we list the following open problems which could be left for future research.

(1) The clustering framework proposed in our paper only focuses on the cases where
the true number of clusters κ is known. The problem for which κ is supposed to be
unknown remains open.

(2) If we drop the Gaussianity assumption, the class of stationary incremental self-similar
processes becomes much larger. This will yield an introduction to a more general class
of locally asymptotically self-similar processes, whose autocovariances do not exist.
This class includes linear multifractional stable motion [55,56] as a paradigmatic
example. Cluster analysis of such stable processes will no doubt lead to a wide
range of applications, especially when the process distributions exhibit heavy-tailed
phenomena. Neither the distribution dissimilarity measure introduced in [12] nor the
covariance-based dissimilarity measures used in this paper would work in this case,
hence new techniques are required to cluster such processes, such as considering
replacing the covariances with covariations [35] or symmetric covariations [57] in the
dissimilarity measures.
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