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Abstract: The main focus of this research is to solve certain coefficient-related problems for analytic
functions that are subordinated to a unique trigonometric function. For the class S∗sin, with the

quantity z f ′(z)
f (z) subordinated to 1 + sin z, we obtain an estimate on the initial coefficient a4 and an

upper bound of the third Hankel determinant. For functions in the class BT sin, with f ′(z) lie in
an eight-shaped domain in the right-half plane, we prove that its upper bound of third Hankel
determinant is 1

16 . All the results are proven to be sharp.

Keywords: starlike function; bounded turning function; Hankel determinant problems

1. Introduction and Definitions

The purpose of this section is to provide some basic concepts about geometric function
theory that will help with understanding the main findings of the article. In this regard,
let the set that consists of analytic functions in the region U := {z ∈ C : |z| < 1} with the
below Taylor’s series form

f (z) = z +
∞

∑
l=2

alzl (z ∈ U) (1)

be denoted by A. Additionally, the subset S of A represents the set of normalized univa-
lent functions. This class was introduced by Köebe [1] in 1907 and has become the core
ingredient of advanced research in this field. Many people were interested in this concept,
but within a short period, Bieberbach [2] published a paper in which the famous coefficient
hypothesis was proposed. This conjecture states that if f (z) ∈ S and has the series form (1),
then |an| ≤ n for all n ≥ 2. Many mathematicians worked hard to solve this problem, which
remained a challenge for function theorists for 69 years. In 1985, it was de-Branges [3],
who settled this long-lasting conjecture. During these 69 years, there were a lot of papers
devoted to this conjecture and its related coefficient problems. New subfamilies of S were
defined and their coefficient problems were discussed.

For the given functions g1, g2 ∈ A, g1 is said to be subordinated to g2 (mathematically
written as g1 ≺ g2), if an analytic function κ appears in U with the restrictions κ(0) = 0
and |κ(z)| < 1 in such a manner that g1(z) = g2(κ(z)) holds. Moreover, if g2 in U is
univalent, then

g1(z) ≺ g2(z) (z ∈ U)
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if and only if
g1(0) = g2(0) & g1(U) ⊂ g2(U).

In 1992, Ma and Minda [4] presented a unified version of the class S∗(Λ) using
subordination terminology. It was defined by

S∗(Λ) =

{
f ∈ S :

z f ′(z)
f (z)

≺ Λ(z) (z ∈ U)
}

, (2)

where Λ(z) is a univalent function with Λ′(0) > 0 and Re(Λ(z)) > 0. Additionally, the
region Λ(U) is star-shaped about the point Λ(0) = 1 and is symmetric along the real-line
axis. They obtained some interesting results on the distortion, growth, and the theorem
of covering for this family. In the past few years, numerous subfamilies of the collection
S have been introduced as special choices of the class S∗(Λ). For example, by choosing
the function

Λ(z) =
1 +Mz
1 +N z

(M ∈ C, − 1 ≤ N ≤ 0, M 6= N ),

we obtain the class S∗[M,N ] ≡ S∗
(

1+Mz
1+N z

)
which was studied in [5]. For −1 ≤ N <

M ≤ 1, we get the class of Janowski starlike functions investigated in [6]. See also [7].
Assuming thatM = 1− 2ξ1 and N = −1 with 0 ≤ ξ1 < 1 lead to the class S∗(ξ1) ≡
S∗[1− 2ξ1,−1] of starlike function of order ξ1. The following are the recently studied
relevant subclasses of the class S∗(Λ).

(i). SS∗(ξ2) ≡ S∗(Λ(z)) with Λ(z) =
(

1+z
1−z

)ξ2
and 0 < ξ2 ≤ 1 (see [8]).

(ii). S∗L ≡ S∗
(√

1 + z
)

(see [9]), S∗car ≡ S∗
(

1 + 4
3 z + 2

3 z2
)

(see [10]).

(iii). S∗ρ ≡ S∗
(

1 + sinh−1 z
)

(see [11]), S∗e ≡ S∗(ez) (see [12,13]).

(iv). S∗cos ≡ S∗(cos z) (see [14]), S∗cosh ≡ S
∗(cosh z) (see [15]).

(v). S∗tanh ≡ S
∗(1 + tanh z) (see [16]).

Finding bounds for the function coefficients in a given collection is one of the most
fundamental problems in geometric function theory, since it impacts geometric features.
For example, the constraint on the second coefficient provides the growth and distortion
features. The Hankel determinant Hq,n( f ) (n, q ∈ N = {1, 2, . . .}) for the function f ∈ S
was introduced by Pommerenke [17,18] defined by

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣.
It is not hard to note that the first, second, and third order of Hankel determinants of

f can be given by

H2,1( f ) = a3 − a2
2, (3)

H2,2( f ) = a2a4 − a2
3, (4)

H3,1( f ) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5. (5)

There are relatively few results about the Hankel determinant for functions belonging
to the general family class S . The first sharp inequality for the function f ∈ S is given by

|H2,n( f )| ≤ |ν|
√

n,

where ν is constant. This result is due to Hayman [19]. Additionally, for f ∈ S , it is
calculated in [20] that
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|H2,2( f )| ≤ λ, for 1 ≤ λ ≤ 11
3

,

|H3,1( f )| ≤ µ, for
4
9
≤ µ ≤ 32 +

√
285

15
.

The challenges of determining the bounds of Hankel determinants for a certain set of
complex valued functions have attracted the interests of many researchers. For example,
Janteng et al. [21,22] obtained the sharp bounds of |H2,2( f )| for the subfamilies C, S∗ and
BT of S , where BT is the set of bounded turning functions. They give the following
estimates

|H2,2( f )| ≤


1
8 , for f ∈ C,
1, for f ∈ S∗,
4
9 , for f ∈ BT .

For the subclasses S∗(ξ1) (0 ≤ ξ1 < 1) and SS∗(ξ2) (0 < ξ2 ≤ 1) of S , Cho et al. [23,24]
prove that |H2,2( f )| is bounded by (1− ξ1)

2 and ξ2
2, respectively. This determinant was

also investigated in [25–29] for some other interested function classes.
The formulae (3)–(5) make it obvious that determining the bounds of |H3,1( f )| is

substantially more difficult than finding the bounds of |H2,2( f )|. Babalola [30] first stud-
ied the third-order Hankel determinant for the C, S∗ and BT families. Later, many
researchers [31–34] obtained many other results on |H3,1( f )| using a similar approach
for specific subclasses of univalent functions. After that, the readers’ attention was drawn
to Zaprawa’s work [35], in which he enhanced Babalola’s conclusions by employing a new
approach to demonstrate that

|H3,1( f )| ≤


49

540 , for f ∈ C,
1, for f ∈ S∗,
41
60 , for f ∈ BT .

Furthermore, he pointed that these results are not sharp. In 2018, Kwon et al. [36] im-
proved Zaprawa’s inequality for f ∈ S∗ and showed that |H3,1( f )| ≤ 8

9 . Zaprawa et al. [37]
refined this bound in 2021 by proving that |H3,1( f )| ≤ 5

9 . Many researchers attempted to
obtain the determinant’s sharp bounds. In 2018, Kowalczyk et al. [38] and Lecko et al. [39]
obtained the sharp bounds of |H3,1( f )| for the subclasses C and S∗

(
1
2

)
. They proved that

|H3,1( f )| ≤
{ 4

135 , for f ∈ C,
1
9 , for f ∈ S∗

(
1
2

)
.

In 2021, Barukab and his coauthors [40] obtained the sharp bounds of |H3,1( f )| for a
collection of bounded turning functions associated with the petal-shaped domain. At the
end of 2021, Ullah et al. [41] and Wang et al. [42] obtained the following sharp bounds of
the third-order Hankel determinant given by

|H3,1( f )| ≤
{ 1

16 , for f ∈ BT L,
1
9 , for f ∈ S∗tanh,

where the family BT L is defined as

BT L =
{

f ∈ A : f ′(z) ≺
√

1 + z (z ∈ U)
}

.

In 2018, Cho et al. [43] introduced the function classes S∗sin defined by

S∗sin :=
{

z ∈ A :
z f ′(z)

f (z)
≺ 1 + sin z (z ∈ U)

}
. (6)
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For functions belonging to this class, it means that z f ′(z)
f (z) lie in an eight-shaped region

in the right-half plane (see Figure 1).
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-1.5

-1

-0.5

0

0.5

1

1.5

Figure 1. Image of U under 1 + sin z.

Recently, Arif et al. [44] investigated the family BT sin of analytic functions defined by

BT sin =
{

f ∈ A : f ′(z) ≺ 1 + sin z (z ∈ U)
}

.

As Re(1 + sin z) > 0(z ∈ U), it is noted that S∗sin is a subclass of starlike functions and
BT sin is subclass of functions with bounded turning.

Some interesting geometry properties of the two subclasses of univalent functions
have been discussed. For two subclasses of T1 and T2 of S , the T1 radius of T2 is the largest
number ν ∈ (0, 1) such that r−1 f (rz) ∈ T1, 0 < r ≤ ν for all f ∈ T2 and the number ν
is called the T1 radius of the class T2. It is proved that the S∗-radius for the class S∗sin is
r0 = sinh−1(1) ≈ 0.88 and the K-radius for the class S∗sin is r̂0 ≈ 0.345. The non-sharp
upper bounds of the third Hankel determinant were also determined for the family S∗sin.
The authors proved that |H3,1( f )| ≤ 0.51856 for f ∈ S∗sin.

The aim of the present work is to obtain the sharp bounds of an initial coefficient and
the third Hankel determinants for the classes of S∗sin and BT sin.

2. A Set of Lemmas

Let P be the class of analytic functions with positive real parts. From the subordination
principle, we have

P =

{
q ∈ A : q(z) ≺ 1 + z

1− z
(z ∈ U)

}
,

where q has the series expansion of the form

q(z) = 1 +
∞

∑
n=1

pnzn (z ∈ U). (7)

The subsequent Lemmas are essential for the proof of our main results. It includes
the well-known p2 formula [45], the p3 formula introduced by Libera and Zlotkiewicz [46],
and the p4 formula proven in [47].
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Lemma 1. Let q ∈ P be the form of (7). Then, for x, σ, ρ ∈ U, we have

2p2 = p2
1 + x

(
4− p2

1

)
, (8)

4p3 = p3
1 + 2

(
4− p2

1

)
p1x− p1

(
4− p2

1

)
x2 + 2

(
4− p2

1

)(
1− |x|2

)
σ, (9)

8p4 = p4
1 + (4− p2

1)x
[

p2
1

(
x2 − 3x + 3

)
+ 4x

]
− 4(4− p2

1)(1− |x|
2)[

p(x− 1)σ + xσ2 − (1− |σ|2)ρ
]
. (10)

Lemma 2 (see [48]). Let q ∈ P be the form of (7). If B ∈ [0, 1] with B(2B− 1) ≤ D ≤ B, we have∣∣∣p3 − 2Bp1 p2 + Dp3
1

∣∣∣ ≤ 2. (11)

3. Coefficient Related Problems for the Family S∗sin

We start by determining the bound of an initial coefficient a4 for the function f ∈ S∗sin.

Theorem 1. If f ∈ S∗sin has the series expansion of the form (1), then

|a4| ≤
1
3

. (12)

The bound is sharp.

Proof. From the definition of the class S∗sin along with subordination principal, there is a
Schwarz function ω(z), such that

z f ′(z)
f (z)

= 1 + sin(ω(z)).

Assuming that p ∈ P . By writing p in terms of Schwarz function ω, we have

p(z) =
1 + w(z)
1− w(z)

= 1 + p1z + p2z2 + p3z3 + · · · . (13)

It is equivalent to

ω(z) =
p(z)− 1
p(z) + 1

=
p1z + p2z2 + p3z3 + p4z4 + · · ·

2 + p1z + p2z2 + p3z3 + p4z4 + · · · .

Using (1), we easily obtain

z f ′(z)
f (z)

= 1 + a2z + (2a3 − a2
2)z

2 + (3a4 − 3a2a3 + a3
2)z

3

+(4a5 − 2a2
3 − 4a2a4 + 4a2

2a3 − a4
2)z

4 + · · · . (14)

From the series expansion of ω(z), we have

1 + sin(ω(z)) = 1 +
1
2

p1z +
(

1
2

p2 −
1
4

p2
1

)
z2 +

(
1
2

p3 +
5

48
p3

1 −
1
2

p1 p2

)
z3

+

(
1
2

p4 −
1
4

p2
2 −

1
32

p4
1 +

5
16

p2
1 p2 −

1
2

p1 p3

)
z4 + · · · . (15)

By comparing (14) and (15), it follows that
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a2 =
1
2

p1, (16)

a3 =
1
4

p2, (17)

a4 =
1
6

p3 −
1

144
p3

1 −
1

24
p1 p2, (18)

a5 =
1
4

(
1
2

p4 −
1
8

p2
2 +

5
288

p4
1 −

1
48

p2
1 p2 −

1
6

p1 p3

)
. (19)

From (18), we deduce that

|a4| =
1
6

∣∣∣∣p3 −
1
4

p1 p2 −
1

24
p3

1

∣∣∣∣. (20)

Let B = 1
8 and D = − 1

24 . It is clear that 0 ≤ B ≤ 1, B ≥ D and

B(2B− 1) =
1
8
(

1
4
− 1) = − 3

32
≤ D.

Thus, all the conditions of Lemma 2 are satisfied. Hence, we have

|a4| ≤
1
3

.

The result is sharp with the extremal defined by

f (z) = z exp

 z∫
0

sin(t3)

t
dt

 = z +
z4

3
+ · · · . (21)

4. Third Hankel Determinant for the Class S∗sin

In this portion, we investigate the sharp bounds of third-order Hankel determinant
for f ∈ S∗sin.

Theorem 2. Let f ∈ S∗sin be the series representation (1). Then

|H3,1( f )| ≤ 1
9

.

Equality can be obtained with the extremal function given by (21).

Proof. From the definition, we know that

H3,1( f ) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5.

In virtue of (16)–(19) along with p1 = p ∈ [0, 2], it can be obtained that

H3,1( f ) =
1

41472

(
−47p6 + 3p4 p2 + 528p3 p3 − 234p2 p2

2 − 1296p2 p4

+1872pp2 p3 − 972p3
2 + 1296p2 p4 − 1152p2

3

)
. (22)

Let t = 4− p2. Using (8)–(10) along with straightforward algebraic computations,
we have
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3p4 p2 =
3
2

(
p6 + p4tx

)
,

528p3 p3 = 132
(

p6 + 2p4tx− p4tx2 + 2p3t
(

1− |x|2
)

σ
)

,

234p2 p2
2 =

117
2

(
p6 + 2p4tx + p2t2x2

)
,

1296p2 p4 = 162p4tx3 − 648p3tx
(

1− |x|2
)

σ− 648p2tx
(

1− |x|2
)

σ2 − 486p4tx2

+ 648p2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 648p3t
(

1− |x|2
)

σ + 486p4tx

+ 162p6 + 648p2tx2,

1872pp2 p3 = −234p2t2x3 − 234p4tx2 + 468pt2x
(

1− |x|2
)

σ + 468p2t2x2

+ 468p3t
(

1− |x|2
)

σ + 702p4tx + 234p6,

972p3
2 =

243
2

(
t3x3 + 3p2t2x2 + 3p4tx + p6

)
,

1296p2 p4 = 324p2tx2 + 324t2x3 + 81p6 + 324p4tx + 324p3t
(

1− |x|2
)

σ

+ 324p2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 243p2t2x2 + 324pt2x
(

1− |x|2
)

σ

+ 324t2x
(

1− |x|2
)(

1− |σ|2
)

ρ− 243p4tx2 − 324p2tx
(

1− |x|2
)

σ2

− 324p3tx
(

1− |x|2
)

σ− 243p2t2x3 − 324t2xx
(

1− |x|2
)

σ2 + 81p4tx3

+ 81p2t2x4 − 324pt2x2
(

1− |x|2
)

σ,

1152p2
3 = 72p2t2x4 − 288pt2x2

(
1− |x|2

)
σ− 288p2t2x3 − 144p4tx2

+288t2
(

1− |x|2
)2

σ2 + 576pt2x
(

1− |x|2
)

σ + 288p2t2x2

+288p3t
(

1− |x|2
)

σ + 288p4tx + 72p6.

Inserting these formulae into (22), it follows that

H3,1( f ) =
1

41472

{
−25

2
p6 + 324t2x3 − 243

2
t3x3 − 324p2tx2 − 81p4tx3 + 21p4tx2

+36p4tx + 9p2t2x4 − 189p2t2x3 − 288t2
(

1− |x|2
)2

σ2 + 120p3t
(

1− |x|2
)

σ

+324p3tx
(

1− |x|2
)

σ + 324p2tx
(

1− |x|2
)

σ2 − 324p2t
(

1− |x|2
)(

1− |σ|2
)

ρ

−36pt2x2
(

1− |x|2
)

σ− 324t2xx
(

1− |x|2
)

σ2 + 216pt2x
(

1− |x|2
)

σ

+324t2x
(

1− |x|2
)(

1− |σ|2
)

ρ
}

.

Thus, we have

H3,1( f ) =
1

41472

(
v1(p, x) + v2(p, x)σ + v3(p, x)σ2 + Ψ(p, x, σ)ρ

)
,

where ρ, x, σ ∈ U, and
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v1(p, x) = −25
2

p6 +
(

4− p2
)[(

4− p2
)(
−162x3 − 135

2
p2x3 + 9p2x4

)
−324p2x2 − 81p4x3 + 21p4x2 + 36p4x

]
,

v2(p, x) =
(

4− p2
)(

1− |x|2
)[(

4− p2
)(

216px− 36px2
)
+ 324p3x + 120p3

]
,

v3(p, x) =
(

4− p2
)(

1− |x|2
)[(

4− p2
)(
−36|x|2 − 288

)
+ 324p2x

]
,

Ψ(p, x, σ) =
(

4− p2
)(

1− |x|2
)(

1− |σ|2
)[
−324p2 + 324x

(
4− p2

)]
.

Let |x| = x and |σ| = y. By noting that |ρ| ≤ 1, we obtain

|H3,1( f )| ≤ 1
41472

(
|v1(p, x)|+ |v2(p, x)|y + |v3(p, x)|y2 + |Ψ(p, x, σ)|

)
.

≤ 1
41472

Γ(p, x, y), (23)

where
Γ(p, x, y) = h1(p, x) + h2(p, x)y + h3(p, x)y2 + h4(p, x)

(
1− y2

)
,

with

h1(p, x) =
25
2

p6 +
(

4− p2
)[(

4− p2
)(

162x3 +
135

2
p2x3 + 9p2x4

)
+ 324p2x2 + 81p4x3 + 21p4x2 + 36p4x

]
,

h2(p, x) =
(

4− p2
)(

1− x2
)[(

4− p2
)(

216px + 36px2
)
+ 324p3x + 120p3

]
,

h3(p, x) =
(

4− p2
)(

1− x2
)[(

4− p2
)(

36x2 + 288
)
+ 324p2x

]
,

h4(p, x) =
(

4− p2
)(

1− x2
)[

324p2 + 324x
(

4− p2
)]

.

Now, we have to maximize Γ(p, x, y) in the closed cuboid Υ : [0, 2]× [0, 1]× [0, 1].
For this, we have to discuss the maximum values of Γ(p, x, y) in the interior of Υ, in

the interior of its six faces and on its twelve edges.
1. Interior points of cuboid Υ:
Let (p, x, y) ∈ (0, 2)× (0, 1)× (0, 1). By taking a partial derivative of Γ(p, x, y) with

respect to y, we get

∂Γ
∂y

= 12
(

4− p2
)
(1− x2)

{
6y(x− 1)

[(
4− p2

)
(x− 8) + 9p2

]
+3p

[
x
(

4− p2
)
(x + 6) + p2

(
9x +

10
3

)]}
.

Plugging ∂Γ
∂y = 0 yields

y =
3p
[

x
(
4− p2)(x + 6) + p2

(
9x + 10

3

)]
6(x− 1)[(4− p2)(8− x)− 9p2]

= y0.

If y0 is a critical point inside Υ, then y0 ∈ (0, 1), which is possible only if

3p3
(

9x +
10
3

)
+ 3px

(
4− p2

)
(x + 6) + 6(1− x)

(
4− p2

)
(8− x) < 54p2(1− x). (24)

and

p2 >
4(8− x)
17− x

. (25)
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Now, we have to obtain the solutions which satisfy both inequalities (24) and (25) for
the existence of the critical points.

Let g(x) = 4(8−x)
17−x . Since g′(x) < 0 for (0, 1), g(x) is decreasing in (0, 1). Hence p2 > 7

4
and a simple exercise shows that (24) does not hold in this case for all values of x ∈ [ 1

3 , 1)
and there is no critical point of Γ in (0, 2)× [ 1

3 , 1)× (0, 1).
Suppose that there is a critical point ( p̃, x̃, ỹ) of Γ existing in the interior of cuboid Υ.

Clearly, it must satisfy that x̃ < 1
3 . From the above discussion, it is also known that p̃2 > 46

25
and ỹ ∈ (0, 1). In the following, we will prove that Γ( p̃, x̃, ỹ) < 4608.

For (p, x, y) ∈
(√

46
5 , 2

)
× (0, 1

3 )× (0, 1), by invoking x < 1
3 and 1− x2 < 1 it is not

hard to observe that

h1(p, x) ≤ 25
2

p6 +
(

4− p2
)[(

4− p2
)(

162(1/3)3 +
135

2
p2(1/3)3 + 9p2(1/3)4

)
+ 324p2(1/3)2 + 81p4(1/3)3 + 21p4(1/3)2 + 36p4(1/3)

]
=

25
2

p6 +
1

18

(
4− p2

)(
265p4 + 728p2 + 432

)
:= φ1(p),

h2(p, x) ≤
(

4− p2
)[(

4− p2
)(

216p(1/3) + 36p(1/3)2
)
+ 324p3(1/3) + 120p3

]
,

= (4− p2)
(

152p3 + 304p
)

:= φ2(p),

h3(p, x) ≤ (4− p2)
[(

4− p2
)(

36(1/3)2 + 288
)
+ 324p2(1/3)

]
,

= (4− p2)
(
−184p2 + 1168

)
:= φ3(p),

h4(p, x) = (4− p2)
[
324p2 + 324(1/3)

(
4− p2

)]
= (4− p2)

(
216p2 + 432

)
:= φ4(p).

Therefore, we have

Γ(p, x, y) ≤ φ1(p) + φ4(p) + φ2(p)y + [φ3(p)− φ4(p)]y2 := Ξ(p, y).

Obviously, it can be seen that

∂Ξ
∂y

= φ2(p) + 2[φ3(p)− φ4(p)]y

and
∂2Ξ
∂y2 = 2[φ3(p)− φ4(p)] = 2(4− p2)(−400p2 + 736).

Since φ3(p)− φ4(p) ≤ 0 for p ∈ (
√

46
5 , 2), we obtain that ∂2Ξ

∂y2 ≤ 0 for y ∈ (0, 1) and
thus it follows that

∂Ξ
∂y
≥ ∂Ξ

∂y
|y=1 = (4− p2)(152p3 − 800p2 + 304p + 1472) ≥ 0, p ∈ (

√
46
5

, 2).

Therefore, we have

Ξ(p, y) ≤ Ξ(p, 1) = φ1(p) + φ2(p) + φ3(p) := ι(p).

It is easy to calculate that ι(p) attains its maximum value 3899.867 at p ≈ 1.356466.
Thus, we have

Γ(p, x, y) < 4608, (p, x, y) ∈
(√

46
5

, 2

)
× (0,

1
3
)× (0, 1).
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Hence Γ( p̃, x̃, ỹ) < 4608. This implies that Γ is less than 4608 at all the critical points in
the interior of Υ. Therefore, Γ has no optimal solution in the interior of Υ.

2. Interior of all the six faces of cuboid Υ:
On p = 0, Γ(p, x, y) reduces to

T1(x, y) = Γ(0, x, y) = 2592x3 + (1− x2)
(

576x2y2 − 5184xy2 + 4608y2

+5184x), x, y ∈ (0, 1) . (26)

Then
∂T1

∂y
= (1− x2)y

(
1152x2 − 10368x + 9216

)
, x, y ∈ (0, 1).

T1(x, y) has no critical point in (0, 1)× (0, 1).
On p = 2, Γ(p, x, y) reduces to

Γ(2, x, y) = 800. (27)

Thus
|H3,1( f )| ≤ 25

1296
.

On x = 0, Γ(p, x, y) reduces to Γ(p, 0, y) given by

T2(p, y) = Γ(p, 0, y) =
25
2

p6 + (4− p2)
(

120p3y + (1152− 288p2)y2

+324p2(1− y2)
)

. (28)

Solving ∂T2
∂y = 0, we get

y =
5p3

3(17p2 − 32)
= y1.

For the given range of y, y1 should belong to (0, 1), which is possible only if p > p0,
p0 ≈ 1.484217030. Another derivative of T2(p, y), partially with respect to p, is

∂T2

∂p
= 75p5 +

(
4− p2

)(
360p2y− 576py2 + 648p

(
1− y2

))
− 648p3

(
1− y2

)
− 240p4y + 2p

(
288p2 − 1152

)
y2. (29)

By substituting the value of y in (29), plugging ∂T2
∂p = 0 and simplifying, we obtain

∂T2

∂p
= 9p

(
1275p8 − 44816p6 + 239904p4 − 460800p2 + 294912

)
= 0. (30)

A calculation gives the solution of (30) in (0, 2) that is p ≈ 1.20622871. Thus T2(p, y)
has no optimal point in (0, 2)× (0, 1).

On x = 1, Γ(p, x, y) reduces to

T3(p, y) = Γ(p, 1, y) = −49p6 − 222p4 + 1224p2 + 2592. (31)

Solving ∂T3
∂p = 0, we reach the critical point at p0 ≈ 1.32161749. Thus, T3(p, y) achieves

its maximum at p0 that is 3791.5209. Hence

|H3,1( f )| ≤ 0.09142363.

On y = 0, Γ(p, x, y) yields
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T4(p, x) = Γ(p, x, 0) =
25
2

p6 − 378p4x3 + 2376p2x3 − 2592x3 − 27
2

p6x3

+ 9p6x4 − 72p4x4 + 144p2x4 + 84p4x2 − 21p6x2 − 36p6x

+ 468p4x− 324p4 − 2592p2x + 1296p2 + 5184x.

A calculation shows that there is no existing solution for the system of equations
∂T4
∂x = 0 and ∂T4

∂p = 0 in (0, 2)× (0, 1).
On y = 1, Γ(p, x, y) reduces to

T5(p, x) = Γ(p, x, 1) = 4608− 120p5 − 27
2

p6x3 + 9p6x4 − 21p6x2

− 36p6x− 36p5x4 + 108p5x3 + 156p5x2 + 288p3x4

− 108p5x + 432p3x3 − 768p3x2 − 576px4 − 3456px3

− 108p4x4 − 576x4 + 288p4 +
25
2

p6 − 2304p2

+ 2592x3 − 4032x2 + 480p3 − 1512p2x3 + 432p2x4

+ 3312p2x2 + 270p4x3 − 492p4x2 − 180p4x + 3456px

+ 576px2 − 432p3x + 1296p2x.

A calculation shows that there is no existing solution for the system of equations
∂T5
∂x = 0 and ∂T5

∂p = 0 in (0, 2)× (0, 1).
3. On the edges of cuboid Υ :
Putting y = 0 in Γ(p, x, y), we have

Γ(p, 0, 0) =
25
2

p6 − 324p4 + 1296p2 = T6(p).

Clearly T′6(p) = 0 for p0 ≈ 1.51933049 in [0, 2], where the maximum point of T6(p) is
achieved at p0. Thus, we say that

|H3,1( f )| ≤ 0.0342145.

By putting y = 1 in Γ(p, x, y), we get

Γ(p, 0, 1) =
25
2

p6 − 120p5 + 480p3 + 288p4 − 2304p2 + 4608 = T7(p).

Since T′7(p) < 0 for [0, 2]. Therefore, T7(p) decreases in [0, 2] and hence, maximum is
achieved at p = 0. Thus,

|H3,1( f )| ≤ 1
9

.

By putting p = 0 in Γ(p, x, y), we get

Γ(0, 0, y) = 4608y2.

A simple calculation gives

|H3,1( f )| ≤ 1
9

.

Since Γ(p, 1, y) is independent of y, we have

Γ(p, 1, 0) = Γ(p, 1, 1) = −49p6 − 222p4 + 1224p2 + 2592 = T8(p).

Now, T′8(p) = 0, for p0 ≈ 1.321617491 in [0, 2], where the maximum point of T8(p) is
achieved at p0. We conclude that

|H3,1( f )| ≤ 0.09142363.
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By putting p = 0 in Γ(p, x, y), we obtain

Γ(0, 1, y) = 2592.

Hence,

|H3,1( f )| ≤ 1
16

.

Γ(2, x, y) is independent of x and y, therefore

Γ(2, 1, y) = Γ(2, 0, y) = Γ(2, x, 0) = Γ(2, x, 1) = 800.

Thus,

|H3,1( f )| ≤ 25
1296

.

By putting y = 1 in Γ(p, x, y), we get

Γ(0, x, 1) = −576x4 + 2592x3 − 4032x2 + 4608 = T9(x).

Since T′9(x) < 0 for [0, 1]. Therefore, T9(x) is decreasing in [0, 1] and hence maximum
is achieved at x = 0. Thus

|H3,1( f )| ≤ 1
9

.

By putting y = 0 in Γ(p, x, y), we get

Γ(0, x, 0) = −2592x3 + 5184x = T10(x).

Clearly T′10(x) = 0 for x0 ≈ 0.8164965 in [0, 1], where the maximum point of T10(x) is
achieved at x0. We conclude that

|H3,1( f )| ≤ 0.06804138.

Thus, from the above cases we conclude that

Γ(p, x, y) ≤ 4608 on [0, 2]× [0, 1]× [0, 1].

Therefore, we can write

|H3,1( f )| ≤ 1
41472

(Γ(p, x, y)) ≤ 1
9

.

If f ∈ S∗sin, then the sharp bound for this Hankel determinant is determined by

|H3,1( f )| = 1
9
≈ 0.1111,

with an extremal function

f (z) = z exp

(∫ z

0

sin
(
t3)

t
dt

)
= z +

1
3

z4 + · · · .

5. Third Hankel Determinant for the Class BT sin

In the following, we discuss the bounds of the third-order Hankel determinant for
f ∈ BT sin.

Theorem 3. Let f ∈ BT sin be the series representation (1). Then
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|H3,1( f )| ≤ 1
16

.

This bound is sharp.

Proof. Suppose that f ∈ BT sin. From the definition, we know that there is a Schwarz
function ω(z), such that

f ′(z) = 1 + sin(ω(z)). (32)

From (1), we easily have

f ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · . (33)

Combing (32), (33) and the series expansion of 1 + sin(ω(z)) in (15), we obtain that

a2 =
1
4

p1, (34)

a3 =
1
3

(
1
2

p2 −
1
4

p2
1

)
, (35)

a4 =
1
4

(
1
2

p3 +
5
48

p3
1 −

1
2

p1 p2

)
, (36)

a5 =
1
5

(
1
2

p4 −
1
4

p2
2 −

1
32

p4
1 +

5
16

p2
1 p2 −

1
2

p1 p3

)
. (37)

Substituting (34)–(37) into the expression of H3,1( f ) along with p1 = p ∈ [0, 2], we get

H3,1( f ) =
1

552960

(
−151p6 + 144p4 p2 + 1584p3 p3 − 768p2 p2

2 − 8064p2 p4

+13824pp2 p3 − 7168p3
2 + 9216p2 p4 − 8640p2

3

)
. (38)

Let t = 4− p2. Using (8)–(10) along with the straightforward algebraic computations,
we have

144p4 p2 = 72
(

p6 + p4tx
)

,

1584p3 p3 = 396p6 + 792p4tx− 396p4tx2 + 792p3t
(

1− |x|2
)

σ,

768p2 p2
2 = 192p6 + 384p4tx + 192p2t2x2,

8064p2 p4 = 1008p4tx3 − 4032p3tx
(

1− |x|2
)

σ− 4032p2tx
(

1− |x|2
)

σ2

−3024p4tx2 + 4032p2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 4032p3t
(

1− |x|2
)

σ

+3024p4tx + 1008p6 + 4032p2tx2,

13824pp2 p3 = −1728p2t2x3 − 1728p4tx2 + 3456pt2x
(

1− |x|2
)

σ + 3456p2t2x2

+3456p3t
(

1− |x|2
)

σ + 5184p4tx + 1728p6,

7168p3
2 = 896t3x3 + 2688p2t2x2 + 2688p4tx + 896p6,

9216p2 p4 = 2304p2tx2 + 2304t2x3 + 576p6 + 2304p4tx + 2304p3t
(

1− |x|2
)

σ

+2304p2t
(

1− |x|2
)(

1− |σ|2
)

ρ + 1728p2t2x2 + 2304pt2x
(

1− |x|2
)

σ

+2304t2x
(

1− |x|2
)(

1− |σ|2
)

ρ− 1728p4tx2 − 2304p2tx
(

1− |x|2
)

σ2

−2304p3tx
(

1− |x|2
)

σ− 1728p2t2x3 − 2304t2xx
(

1− |x|2
)

σ2

+576p4tx3 + 576p2t2x4 − 2304pt2x2
(

1− |x|2
)

σ,

8640p2
3 = 540p2t2x4 − 2160pt2x2

(
1− |x|2

)
σ− 2160p2t2x3 − 1080p4tx2

+2160t2
(

1− |x|2
)2

σ2 + 4320pt2x
(

1− |x|2
)

σ + 2160p2t2x2

+2160p3t
(

1− |x|2
)

σ + 2160p4tx + 540p6.
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By plugging these expressions into (38) and performing some basic computations, we
can get

H3,1( f ) =
1

552960

{
−15p6 + 2304t2x3 − 896t3x3 − 1728p2tx2 − 432p4tx3 + 252p4tx2

+96p4tx + 36p2t2x4 − 1296p2t2x3 + 144p2t2x2 − 2160t2
(

1− |x|2
)2

σ2

+360p3t
(

1− |x|2
)

σ + 1728p3tx
(

1− |x|2
)

σ + 1728p2tx
(

1− |x|2
)

σ2

−1728p2t
(

1− |x|2
)(

1− |σ|2
)

ρ− 144pt2x2
(

1− |x|2
)

σ− 2304t2xx
(

1− |x|2
)

σ2

+1440pt2x
(

1− |x|2
)

σ + 2304t2x
(

1− |x|2
)(

1− |σ|2
)

ρ
}

.

Therefore,

H3,1( f ) =
1

552960

(
v1(p, x) + v2(p, x)σ + v3(p, x)σ2 + Ψ(p, x, σ)ρ

)
,

where ρ, x, σ ∈ U, and

v1(p, x) = −15p6 +
(

4− p2
)[(

4− p2
)(
−1280x3 − 400p2x3 + 36p2x4 + 144p2x2

)
−1728p2x2 − 432p4x3 + 252p4x2 + 96p4x

]
,

v2(p, x) =
(

4− p2
)(

1− |x|2
)[(

4− p2
)(

1440px− 144px2
)
+ 1728p3x + 360p3

]
,

v3(p, x) =
(

4− p2
)(

1− |x|2
)[(

4− p2
)(
−144|x|2 − 2160

)
+ 1728p2x

]
,

Ψ(p, x, σ) =
(

4− p2
)(

1− |x|2
)(

1− |σ|2
)[
−1728p2 + 2304x

(
4− p2

)]
.

Now, employing |x| = x, |σ| = y, and utilizing the assumption |ρ| ≤ 1, we obtain

|H3,1( f )| ≤ 1
552960

(
|v1(p, x)|+ |v2(p, x)|y + |v3(p, x)|y2 + |Ψ(p, x, σ)|

)
. (39)

≤ 1
552960

G(p, x, y), (40)

where
G(p, x, y) = k1(p, x) + k2(p, x)y + k3(p, x)y2 + k4(p, x)

(
1− y2

)
,

with

k1(p, x) = 15p6 +
(

4− p2
)[(

4− p2
)(

1280x3 + 400p2x3 + 36p2x4 + 144p2x2
)

+1728p2x2 + 432p4x3 + 252p4x2 + 96p4x
]
,

k2(p, x) =
(

4− p2
)(

1− x2
)[(

4− p2
)(

1440px + 144px2
)
+ 1728p3x + 360p3

]
,

k3(p, x) =
(

4− p2
)(

1− x2
)[(

4− p2
)(

144x2 + 2160
)
+ 1728p2x

]
k4(p, x) =

(
4− p2

)(
1− x2

)[
1728p2 + 2304x

(
4− p2

)]
.

Now, we have to maximize G(p, x, y) in the closed cuboid Υ : [0, 2]× [0, 1]× [0, 1].
For this, we have to discuss the maximum values of G(p, x, y) in the interior of Υ, in

the interior of its six faces and on its twelve edges.
1. Interior points of cuboid Υ :
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Let (p, x, y) ∈ (0, 2) × (0, 1) × (0, 1). By taking partial derivative of G(p, x, y) with
respect to y, we get

∂G
∂y

= 72
(

4− p2
)
(1− x2)

{
4y(x− 1)

[(
4− p2

)
(x− 15) + 12p2

]
+2p

[
x
(

4− p2
)
(x + 10) + p2

(
12x +

5
2

)]}
.

Plugging ∂G
∂y = 0 yields

y =
2p
[
x
(
4− p2)(x + 10) + p2(12x + 5

2
)]

4(x− 1)[(4− p2)(15− x)− 12p2]
= y0.

If y0 is a critical point inside Υ, then y0 ∈ (0, 1),. This is possible only if

2p3
(

12x +
5
2

)
+ 2px

(
4− p2

)
(x + 10) + 4(1− x)

(
4− p2

)
(15− x) < 48p2(1− x). (41)

and

p2 >
4(15− x)

27− x
. (42)

Now, we have to obtain the solutions which satisfy both inequalities (41) and (42) for
the existence of the critical points.

Let g(x) = 4(15−x)
27−x . Since g′(x) < 0 for (0, 1), g(x) is decreasing in (0, 1). Hence

p2 > 28
13 and a simple exercise shows that (41) does not hold in this case for all values of

x ∈ [ 2
5 , 1), and there is no critical point of G in (0, 2)× [ 2

5 , 1)× (0, 1).
For any critical point ( p̂, x̂, ŷ) of G existing in the interior of cuboid Υ, it is obvious

that x̂ < 2
5 . Then we see p̂2 > 292

133 and ŷ ∈ (0, 1). Now we are going to prove that
G( p̂, x̂, ŷ) < 34560.

Let (p, x, y) ∈
(√

292
133 , 2

)
× (0, 2

5 )× (0, 1). Using x < 2
5 and 1− x2 < 1, it follows that

k1(p, x) ≤ 15p6 +
(

4− p2
)[(

4− p2
)(

1280(2/5)3 + 400p2(2/5)3 + 36p2(2/5)4 + 144p2(2/5)2
)

+1728p2(2/5)2 + 432p4(2/5)3 + 252p4(2/5)2 + 96p4(2/5)
]

= 15p6 +
1

625

(
4− p2

)(
23504p4 + 245504p2 + 204800

)
:= ζ1(p),

k2(p, x) ≤
(

4− p2
)[(

4− p2
)(

1440p(2/5) + 144p(2/5)2
)
+ 1728p3(2/5) + 360p3

]
=

1
25

(4− p2)(11304p3 + 59904p) := ζ2(p),

k3(p, x) ≤ (4− p2)
[(

4− p2
)(

144(2/5)2 + 2160
)
+ 1728p2(2/5)

]
=

1
25

(4− p2)
(
−37296p2 + 218304

)
:= ζ3(p),

k4(p, x) ≤ (4− p2)
[
1728p2 + 2304(2/5)

(
4− p2

)]
=

1
5
(4− p2)

(
4032p2 + 18432

)
:= ζ4(p).

This yields

G(p, x, y) ≤ ζ1(p) + ζ4(p) + ζ2(p)y + [ζ3(p)− ζ4(p)]y2 := Θ(p, y).

It is noted that
∂Θ
∂y

= ζ2(p) + 2[ζ3(p)− ζ4(p)]y
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and
∂2Θ
∂y2 = 2[ζ3(p)− ζ4(p)] =

2
25

(
−57456p2 + 126144

)
.

In virtue of ζ3(p)− ζ4(p) ≤ 0 for p ∈ (
√

292
133 , 2), we find that ∂2Θ

∂y2 ≤ 0 for y ∈ (0, 1)
and thus

∂Θ
∂y
≥ ∂Θ

∂y
|y=1 =

1
25

(
4− p2

)(
11304p3 − 114912p2 + 59904p + 252288

)
≥ 0, p ∈ (

√
292
133

, 2).

Then, we have

Θ(p, y) ≤ Θ(p, 1) = ζ1(p) + ζ2(p) + ζ3(p) := v(p).

Some simple calculations show that v(p) attains its maximum value 21708.38 at
p ≈ 1.481718. Hence, we see that

G(p, x, y) < 34560, (p, x, y) ∈
(√

292
133

, 2

)
× (0,

2
5
)× (0, 1).

This means that G( p̂, x̂, ŷ) < 34560. Thus, we know G is less than 34560 at all the
critical points in the interior of Υ. That is to say that G has no optimal solution in the
interior of Υ.

2. Interior of all the six faces of cuboid Υ :
On p = 0, G(p, x, y) reduces to

T1(x, y) = G(0, x, y) = 20480x3 + (1− x2)
(

2304x2y2 − 36864xy2 + 34560y2

+36864x), x, y ∈ (0, 1) . (43)

Then
∂T1

∂y
= (1− x2)y

(
1152x2 − 10368x + 9216

)
, x, y ∈ (0, 1).

T1(x, y) has no critical point in (0, 1)× (0, 1).
On p = 2, G(p, x, y) reduces to

G(2, x, y) = 960. (44)

Thus
|H3(1)| ≤

1
576

.

On x = 0, G(p, x, y) reduces to G(p, 0, y), given by

T2(p, y) = G(p, 0, y) = 15p6 + (4− p2)
(

360p3y + (8640− 2160p2)y2

+1728p2(1− y2)
)

. (45)

Solving ∂T2
∂y = 0, we get

y =
5p3

12(9p2 − 20)
= y1.

For the given range of y, y1 should belong to (0, 1), which is possible only if p > p0,
p0 ≈ 1.547150535. Also derivative of T2(p, y) partially with respect to p is

∂T2

∂p
= 90p5 +

(
4− p2

)(
1080p2y− 4320py2 + 3456p

(
1− y2

))
− 3456p3

(
1− y2

)
− 720p4y + 2p

(
2160p2 − 8640

)
y2. (46)
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By substituting the value of y in (46), plugging ∂T2
∂p = 0 and simplifying, we get

∂T2

∂p
= 24p

(
135p8 − 23728p6 + 150336p4 − 322560p2 + 230400

)
= 0. (47)

A calculation gives the solution of (47) in (0, 2); that is, p ≈ 1.338189368. Thus, T2(p, y)
has no optimal point in (0, 2)× (0, 1).

On x = 1, G(p, x, y) reduces to

T3(p, y) = G(p, 1, y) = −185p6 − 1968p4 + 5952p2 + 20480. (48)

Solving ∂T3
∂p = 0, we get the critical point at p0 ≈ 1.131750917. Thus, T3(p, y) achieves

its maximum at p0 that is 24486.2176. Hence,

|H3,1( f )| ≤ 0.0442820.

On y = 0, G(p, x, y) yields

T4(p, x) = G(p, x, 0) = 36p6x4 − 32p6x3 − 108p6x2 − 288p4x4 − 96p6x

− 2496p4x3 + 15p6 − 144p4x2 + 576p2x4 + 2688p4x

+ 14592p2x3 − 1728p4 + 2304p2x2 − 18432p2x

− 16384x3 + 6912p3 + 36864x.

A calculation shows that there is no existing solution for the system of equations
∂T4
∂x = 0 and ∂T4

∂p = 0 in (0, 2)× (0, 1).
On y = 1, G(p, x, y) reduces to

T5(p, x) = G(p, x, 1) = 36p6x4 − 32p6x3 − 144p5x4 − 108p6x2 + 288p5x3

− 432p4x4 − 96p6x + 504p5x2 + 1536p4x3 + 1152p3x4

+ 15p6 − 288p5x− 3888p4x2 + 4608p3x3 + 1728p2x4

− 360p5 − 1344p4x− 2592p3x2 − 10752p2x3 − 2304px4

+ 2160p4 − 4608p3x + 25344p2x2 − 23040px3 − 2304x4

+ 1440p3 + 6912p2x + 2304px2 + 20480x3 − 17280p2

+ 23040px− 32256x2 + 34560.

A calculation shows that there is no existing solution for the system of equations
∂T5
∂x = 0 and ∂T5

∂p = 0 in (0, 2)× (0, 1).
3. On the edges of cuboid Υ :
By putting y = 0 in G(p, x, y), we have

G(p, 0, 0) = 15p6 − 1728p4 + 6912p2 = T6(p).

Clearly T′6(p) = 0 for p0 ≈ 1.433522440 in [0, 2], where the maximum point of T6(p) is
achieved at p0. Thus, we say that

|H3,1( f )| ≤ 0.01272596.

By putting y = 1 in G(p, x, y), we get

G(p, 0, 1) = 15p6 − 360p5 + 2160p4 + 1440p3 − 17280p2 + 34560 = T7(p).

since T′7(p) < 0 for [0, 2]. Therefore, T7(p) is decreasing in [0, 2], and hence the maxi-
mum is achieved at p = 0. Thus,



Fractal Fract. 2022, 6, 223 18 of 21

|H3,1( f )| ≤ 1
16

.

By putting p = 0 in G(p, x, y), we get

G(0, 0, y) = 34560y2.

A simple calculation gives

|H3,1( f )| ≤ 1
16

.

We see that G(p, 1, y) is independent of y, we have

G(p, 1, 0) = G(p, 1, 1) = −185p6 − 1968p4 + 5952p2 + 20480 = T8(p).

Now, T′8(p) = 0, for p0 ≈ 1.13175091 in [0, 2], where the maximum point of T8(p) is
achieved at p0. We conclude that

|H3,1( f )| ≤ 0.04428207.

By putting p = 0 in G(p, x, y), we get

G(0, 1, y) = 20480.

Hence,

|H3,1( f )| ≤ 1
27

.

As G(2, x, y) is independent of x and y, therefore

G(2, 1, y) = G(2, 0, y) = G(2, x, 0) = G(2, x, 1) = 960.

Thus,

|H3,1( f )| ≤ 1
576

.

By putting y = 1 in G(p, x, y), we get

G(0, x, 1) = −2304x4 + 20480x3 − 32256x2 + 34560 = T9(x)

since T′9(x) < 0 for [0, 1]. Therefore, T9(x) is decreasing in [0, 1], and hence the maximum is
achieved at x = 0. Thus,

|H3,1( f )| ≤ 1
16

.

By putting y = 0 in G(p, x, y), we get

G(0, x, 0) = −16384x3 + 36864x = T10(x).

Clearly T′10(x) = 0 for x0 ≈ 0.8660254 in [0, 1], where the maximum point of T10(x) is
achieved at x0. We know that

|H3,1( f )| ≤ 0.03849001.

Thus, from the above cases, we conclude that

G(p, x, y) ≤ 34560 on [0, 2]× [0, 1]× [0, 1].

Hence, we can write

|H3,1( f )| ≤ 1
552960

(G(p, x, y)) ≤ 1
16

.
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If f ∈ BT sin, then sharp bound for this Hankel determinant is determined by

|H3,1( f )| = 1
16
≈ 0.0625,

with an extremal function

f (z) =
∫ z

0

(
1 + sin

(
t3
))

dt = z +
1
4

z4 + · · · .

6. Conclusions

In the current article, we considered a subclass of starlike functions denoted as S∗sin
and a subclass of functions with bounded turning denoted as BT sin. The two subfamilies
of univalent functions were all connected with an eight-shaped domain with z f ′(z)

f (z) and
f ′(z) subordinated to 1 + sin z, respectively. We gave an estimate for an initial coefficient
and the bounds of the third-order Hankel determinant for these classes were determined.
All the estimations were proven to be sharp.

In proving our main results, the third Hankel determinant of functions belonging to
S∗sin and BT sin were represented in terms of the well-known formulas for the coefficient
c2, c3 and c4 of functions with positive real part, respectively. Using triangle inequalities,
the problem of finding the upper bound of the third Hankel determinant is reducing it
to discuss the maximum values of a function with three variables. Based on analysis of
all the possibilities that the maxima might occur, we obtained the sharp upper bounds of
third Hankel determinant. Clearly, this method can be extended to find upper bounds for
functions of different subfamilies of univalent functions. The difficulty is that formulae for
the coefficient c2, c3 and c4 consist of three complex variables in the closed-unit disk. It is
not easy to get sharp results.
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37. Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas

FíSicas Nat. Serie A Mat. 2021, 115, 1–6. [CrossRef]
38. Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust.

Math. Soc. 2018, 97, 435–445. [CrossRef]
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