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Abstract: This article is devoted to exploring the properties on the logarithmic growth of entire
functions represented by Laplace–Stieltjes transforms of zero order. In order to describe the growth
of Laplace–Stieltjes transforms more finely, we introduce some concepts of the logarithmic indexes
of the maximum term and the center index of the maximum term of Laplace–Stieltjes transforms,
and establish some new inequalities focusing on the above logarithmic indexes, the logarithmic
order, the (lower) logarithmic type and the coefficients of Laplace–Stieltjes transforms. Moreover,
we obtain two estimation forms on the (lower) logarithmic type of entire functions represented by
Laplace–Stieltjes transform by applying these inequalities. One estimation is mainly by the center
indexes of the maximum term, the other is by the logarithmic order, exponent and coefficients. Finally,
we obtain the equivalence condition of entire functions with the perfectly logarithmic linear growth.
This result shows that the two estimation forms can be equivalent to some extent.

Keywords: logarithmic order; (lower) logarithmic type; Laplace–Stieltjes transform; inequalities

1. Introduction and Some Basic Notations

As we all know, the following transform

F(s) =
∫ +∞

0
esxdα(x), s = σ + it, (1)

is usually called a Laplace–Stieltjes transform, if α(x) is a bounded variation on any finite
interval [0, Y](0 < Y < +∞), and σ and t are real variables. Laplace–Stieltjes transform
was first named after Pierre-Simon Laplace and Thomas Joannes Stieltjes, and is also an
integral transform similar to the Laplace transform. Over the past 80 years or so, it has
been used in many fields of mathematics, such as functional analysis, and certain areas of
theoretical and applied probability.

Yu [1] in 1963 first studied the growth and convergence of Laplace–Stieltjes trans-
forms (1) and gave the famous Valiron–Knopp–Bohr formula of the associated abscissas of
bounded convergence, absolute convergence and uniform convergence of Laplace–Stieltjes
transforms, and the Borel lines of entire functions represented by Laplace–Stieltjes trans-
forms. After his wonderful results, many mathematicians had paid considerable attention
focusing on the growth and the value distribution of analytic functions defined by Laplace–
Stieltjes transforms convergent in the half-plane and whole complex plane, and obtained a
series of classic and important results. For example, L. N. Shang, Z. S. Gao, Z. X. Xuan, etc.
further investigated the value distributions of analytic functions of some kinds of growth
defined by Laplace–Stieltjes transforms, and obtained some results about the singular
direction and points of Laplace–Stieltjes transforms (see [2–5]); C. Singhal, G. S. Srivastava,
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Y. Y. Kong, S. Y. Liu and H. Y. Xu studied the properties on the approximation of entire
functions represented by Laplace-stieltjes transforms, and obtained some interesting the-
orems on the relationship between the error and growth (see [6–9]); O. Posiko and M. M.
Sheremeta [10] in 2007 explored the relationships between the growth and the maximum
term of Laplace–Stieltjes transform

∫ ∞
0 f (x)exσdF(x), where f (x) ≥ 0, M. S. Dobushovskyi,

M. M. Sheremeta [11,12] in 2017 and 2021, respectively, further analyzed the convergence
and relative growth of such transform; Y. J. Bi and Y. Y. Huo [13] recently considered the
growth of the double Laplace–Stieltjes transforms, and obtained some foundation growth
theorems; Y. Y. Kong and his co-authors studied the growth of analytic functions defined
by Laplace–Stieltjes transforms which converge in the half plane and the whole plane, and
gave a great number of important theorems concerning the zero order, the generalized
order, the finite and infinite order, and so on (see [14–21]).

In order to study the growth of Laplace–Stieltjes transform (1), we usually take a
sequence {λn} satisfying

0 ≤ λ1 < λ2 < · · · < λn < · · · , λn → ∞ as n→ ∞, (2)

and
lim sup
n→+∞

(λn+1 − λn) < +∞. (3)

And denote

A∗n = sup
λn<x≤λn+1,−∞<t<+∞

∣∣∣∣∫ x

λn
eitydα(y)

∣∣∣∣,
if Laplace–Stieltjes transform (1) satisfies

lim sup
n→+∞

log n
λn

= D < ∞, lim sup
n→+∞

log A∗n
λn

= −∞, (4)

then in view of Refs. [1,22,23], we can conclude that σF
u = +∞, i.e., F(s) is analytic on the

whole plane. For convenience, let L∞ to denote the class of all the functions F(s) of the form
(1) which are analytic in the half plane <s < +∞ and the sequence {λn} satisfy (2)–(4).

Let

Mu(σ, F) = sup
0<x<+∞,−∞<t<+∞

∣∣∣∣∫ x

0
e(σ+it)ydα(y)

∣∣∣∣,
and

µ(σ, F) = max
n∈N
{A∗neλnσ}(σ < +∞), ν(σ, F) = max

n
{λn|µ(σ, F) = A∗neλnσ}.

Usually, we utilize the order and the type to estimate the growth of F(s), which are defined
as follows.

Definition 1 (see [19]). If F(s) ∈ L∞ and

lim sup
σ→+∞

log+ log+ Mu(σ, F)
σ

= ρ,

we call F(s) is of order ρ in the whole plane; if

lim inf
σ→+∞

log+ log+ Mu(σ, F)
σ

= τ,

we call F(s) is of lower order τ in the whole plane, where log+ x = max{log x, 0}.
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Definition 2 (see [19]). If F(s) ∈ L∞, and is of order ρ(0 < ρ < ∞), then we define the type and
the lower type of Laplace–Stieltjes transform F(s), respectively,

lim sup
σ→+∞

log+ Mu(σ, F)
eσρ = T, lim inf

σ→+∞

log+ Mu(σ, F)
eσρ = t.

For 0 < ρ(F) < ∞, Luo and Kong [19] in 2012 discussed the properties on entire
functions represented by a Laplace–Stieltjes transform of finite order, and obtained

Theorem 1 (see [19,20]). If F(s) ∈ L∞, and is of order ρ(0 < ρ < ∞) and of type T, then

ρ = lim sup
n→+∞

λn log λn

− log A∗n
, T = lim sup

n→+∞

λn

ρe
(A∗n)

ρ
λn ;

Furthermore, if λn ∼ λn−1 and

ψ(n) =
log A∗n − log A∗n+1

λn+1 − λn

form a non-decreasing function of n, then

t = lim inf
n→+∞

λn

ρe
(A∗n)

ρ
λn .

Remark 1. For ρ(F) = 0, we can see that the (lower) order and the (lower) type cannot better
characterize the growth of the maximum module Mu(σ, F) of (1).

In view of Remark 1, Xu and Liu [9] in 2019 investigated the growth of Laplace–
Stieltjes transforms for the case ρ(F) = 0, by using the concepts of the logarithmic order
and the logarithmic type below.

Definition 3 (see [9]). If F(s) ∈ L∞, and is of order ρ = 0, and

lim sup
σ→+∞

log+ log+ Mu(σ, F)
log σ

= ρl , 1 ≤ ρl ≤ +∞,

then ρl is called the logarithmic order of F(s) of zero order. Furthermore, if 1 ≤ ρl < +∞, we
define the logarithmic type Tl and the lower logarithmic type tl of F(s), respectively,

lim sup
σ→+∞

log+ Mu(σ, F)
σρl

= Tl , lim inf
σ→+∞

log+ Mu(σ, F)
σρl

= tl .

Remark 2. We say that F(s) is of perfectly logarithmic linear growth if and only if 0 < tl = Tl <
∞ and 1 < ρl < ∞. Obviously, Tl = ∞ as ρl = 1.

Theorem 2 (see ([9], Theorem 1.5)). If Laplace–Stieltjes transform F(s) ∈ L∞, and is of zero
order and of logarithmic order ρl , then

ρl = lim sup
σ→+∞

log+ log+ Mu(σ, F)
log σ

= lim sup
σ→+∞

log+ log+ µ(σ, F)
log σ

. (5)

Furthermore, we have

ρl =
1

1− lim sup
n→+∞

log λn
log log(A∗n)−1

. (6)
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Theorem 3 (see ([9], Theorem 1.6)). If Laplace–Stieltjes transform F(s) ∈ L∞, and is of zero
order and of logarithmic order ρl(1 < ρl < +∞) and logarithmic type Tl , then

Tl =
(ρl − 1)ρl−1

ρ
ρl
l

lim sup
n→+∞

log 1
A∗n(

1
λn

log 1
A∗n

)ρl
.

Remark 3. In fact, in view of Theorem 3 and Lemma 1, we have

lim sup
σ→+∞

log+ µ(σ, F)
σρl

= Tl , lim inf
σ→+∞

log+ µ(σ, F)
σρl

= tl ,

and
lim sup
n→+∞

λn

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 = Tl .

Motivated by Theorems 2 and 3, one may ask the following questions.

Question 1. What will happened to the parameters ρl , λn, A∗n, if F(s) is of the lower logarithmic
type tl , or F(s) is of perfectly logarithmic linear growth?

Question 2. What can be said about the correlation between the logarithmic growth and the center
index ν(σ, F) of the maximum term µ(σ, F) of Laplace–Stieltjes transform with zero order?

In view of the above questions, we will study the properties of logarithmic growth
of entire functions defined by Laplace–Stieltjes transforms convergent in the whole plane,
including the lower logarithmic type tl , and the relations about the logarithmic type Tl , the
lower logarithmic type tl , ν(σ, F), λn and A∗n. As far as we know, it appears that the study of the
logarithmic growth of Laplace–Stieltjes transforms has seldom been involved in the literature before
now. The paper is organized as follows. In Section 2, we will discuss the lower logarithmic
type tl of entire functions defined by Laplace–Stieltjes transforms. In Section 3, we will
study the relation among the logarithmic order ρl , logarithmic type Tl , lower logarithmic
type tl and the center index ν(σ, F) of the maximum term. In Section 4, we will establish
the expression of the (lower) logarithmic type by the logarithmic order ρl , λn, A∗n, and also
obtain some equivalence conditions between the (lower) logarithmic type Tl(tl) and ν(σ, F).
Finally, the conclusions of this paper will be presented in Section 5.

2. The Lower Logarithmic Type of Laplace–Stieltjes Transform

We first give the following lemma, which is used to prove our two main theorems.

Lemma 1 (see ([19], Lemma 2.1)). If Laplace–Stieltjes transform F(s) ∈ L∞, for any σ(−∞ <
σ < +∞) and ε(> 0), we have

1
2

µ(σ, F) ≤ Mu(σ, F) ≤ Cµ((1 + 2ε)σ, F),

where C is a constant.

In fact, we obtain the main result about the lower logarithmic type of Laplace–Stieltjes
transform F(s) in the case ρ(F) = 0 as follows.

Theorem 4. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞), and of lower logarithmic type tl , and if λn ∼ λn+1 and the function

ψ(n) =
log A∗n − log A∗n+1

λn+1 − λn
(7)
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is a non-decreasing function of n, then

lim inf
n→+∞

λn

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 = tl .

Remark 4. Obviously, Theorem 4 is a good supplement of Theorems 2 and 3.

In order to prove Theorem 4, we only give the proof of Theorems 5 and 6 below.

Theorem 5. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞) and lower logarithmic type tl , and if λn ∼ λn+1, then

lim inf
n→+∞

λn

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 ≤ tl .

Proof. Set
θ = lim inf

n→+∞

λn−1

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 . (8)

Assume that 0 < θ < ∞, for any given ε such that 0 < ε < θ, we have from (8) that
there exists a positive integer n0(ε) such that for all n > n0(ε),

log A∗n > −ρl − 1
ρl

[
λn−1

ρl(θ − ε)

] 1
ρl−1

λn. (9)

Thus, it follows by Lemma 1 and (9) that

log Mu(σ, F) > −ρl − 1
ρl

[
λn−1

ρl(θ − ε)

] 1
ρl−1

λn + λnσ− log 2. (10)

Taking σ =
[

λn−1
ρl(θ−ε)

] 1
ρl−1 , we have from (10) that

log Mu(σ, F) > (1 + o(1))(θ − ε)σρl , f or n > n0(ε). (11)

In view of (11), and combining the definition of lower logarithmic type tl , we have tl ≥ θ.
If θ = 0, the conclusion holds obviously. In the case θ = ∞, similar to the above argument,
we can also obtain the inequality when we replace θ − ε by an arbitrarily large number.

Therefore, this completes the proof of Theorem 5.

Theorem 6. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞) and lower logarithmic type tl , and if the function (7) form a non-decreasing function of n, then

lim inf
n→+∞

λn

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 ≥ tl .

Proof. Assume that 0 < tl < +∞. From the assumption of Theorem 6, and in view of
Definition 3 and Lemma 1, for any given small number ε(0 < ε < tl), there exists a fixed
σ0 > 0 such that for all σ > σ0,

log µ(σ, F) > (tl − ε)σρl ,

that is,
log A∗n + λnσ > (tl − ε)σρl . (12)
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Let σ > σ0 and let n1 and n2(n2 − 1) be two consecutive maximum terms, then

log A∗n2
+ λn2 σ > (tl − ε)σρl (13)

for all σ satisfying ψ(n2 − 1) ≤ σ < ψ(n2). Let n1 ≤ n < n2 − 1, we have

ψ(n1) = ψ(n1 + 1) = · · · = ψ(n) = · · · = ψ(n2 − 1), (14)

and
A∗neλnσ = A∗n2

eλn2 σ, f or σ = ψ(n). (15)

Thus, it follows from (12)–(15) that

λn

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 >
λn

ρ
ρl
l

(ρl−1)ρl−1

[
− 1

λn
(tl − ε)σρl + σ

]ρl−1 . (16)

Let σ =
(

λn
ρl(tl−ε)

)(ρl−1)−1

, and let n→ +∞, it follows from (16) that

lim inf
n→+∞

λn

ρl

[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 ≥ tl .

Besides, the conclusion holds obviously if tl = 0. By using the same argument as in
the above, we can also prove the inequality in the case tl = ∞ when we replace tl − ε by an
arbitrarily large number.

Therefore, this completes the proof of Theorem 6.

3. Some Inequalities on the Maximum Term Index

In order to further explore the properties of logarithmic growth of Laplace–Stieltjes
transform F(s), we first introduce the following indicators. Let F(s) ∈ L∞ be of logarithmic
order ρl . Here and below, unless otherwise specified, we always assume 1 < ρl < +∞.
Thus, we define

V = lim sup
σ→+∞

ν(σ, F)
σρl−1 , v = lim inf

σ→+∞

ν(σ, F)
σρl−1 ,

and

H = lim sup
σ→+∞

log µ(σ, F)
σν(σ, F)

, h = lim inf
σ→+∞

log µ(σ, F)
σν(σ, F)

.

Obviously, we have v ≤ V and h ≤ H. As for the further relationship between them, we have

Theorem 7. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞), logarithmic type Tl and lower logarithmic type tl . Then we have

v ≤ ρltl ≤ v

[
ρl − (ρl − 1)

( v
V

) 1
ρl−1

]
≤ V, (17)

and

v ≤ V
[

ρlV −V
ρlV − v

]ρl−1
≤ ρlTl ≤ V. (18)

Remark 5. In view of ρlV−V
ρlV−v ≥ 1, by combining with (17) and (18), we have

v ≤ ρltl ≤ ρlTl ≤ V.

To prove this result, we require the following lemma.
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Lemma 2 (see ([20], Lemma 2.2)). If Laplace–Stieltjes transform F(s) ∈ L∞, then we have

log µ(σ, F) = log µ(σ0, F) +
∫ σ

σ0

ν(t, F)dt,

for σ0 > 0.

Proof of Theorem 7. In view of v ≤ V and ρl > 1, it follows that 0 ≤ v
V ≤ 1 and ρlV−V

ρlV−v ≥ 1.
Thus,

v ≤ V
[

ρlV −V
ρlV − v

]ρl−1
(19)

holds obviously. Define f (x) = ρl x− (ρl − 1)x
ρl

ρl−1 − 1, 0 ≤ x ≤ 1, ρl > 1. Since f ′(x) =

ρl

(
1− x

1
ρl−1

)
≥ 0, then f (x) is a increasing function in 0 ≤ ρl ≤ 1. Thus, f (x) ≤ f (1) = 0.

Replaced x by v
V , we can easily prove that

v

[
ρl − (ρl − 1)

( v
V

) 1
ρl−1

]
≤ V. (20)

In view of the definitions of v and V, we have that for any ε > 0

(v− ε)σρl−1 < ν(σ, F) < (V + ε)σρl−1, f or σ > σ0(ε). (21)

By Lemma 2, for any σ ≥ σ0 > 0 and η ≥ 1, it follows that

log µ(ση
1
ρl , F) = log µ(σ0, F) +

∫ ση
1
ρl

σ0

ν(t, F)dt

= O(1) +
∫ σ

σ0

ν(t, F)dt +
∫ ση

1
ρl

σ
ν(t, F)dt (22)

holds for any fixed positive number σ0 > 0. Since ν(σ, F) is an increasing function of σ, we
have from (21) and (22) that

log µ(ση
1
ρl , F) < O(1) +

V + ε

ρl
σρl + ν(ση

1
ρl , F)(η

1
ρl − 1)σ, (23)

for all σ > σ0. In view of Remark 1.2, and let σ→ +∞, it follows from (23) that

Tl ≤
V

ηρl
+

V(η
1
ρl − 1)

η
1
ρl

, (24)

tl ≤
V

ηρl
+

v(η
1
ρl − 1)

η
1
ρl

. (25)

Thus, let η = 1 in (24), and let η = (V
v )

ρl
ρl−1 in (25), we have

ρlTl ≤ V, ρltl ≤ v

[
ρl − (ρl − 1)

( v
V

) 1
ρl−1

]
. (26)

By combining with the first inequality and (22), we also obtain that
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Tl ≥
v

ηρl
+

V(η
1
ρl − 1)
η

, (27)

tl ≥
v

ηρl
+

v(η
1
ρl − 1)
η

. (28)

Thus, let η = 1 in (28), and let η =
(

ρlV−V
ρlV−v

)ρl
in (27), we have

ρltl ≥ v, ρlTl ≥ V
(

ρlV −V
ρlV − v

)ρl−1
. (29)

By combining with (19), (20), (26) and (29), we can prove the conclusions of Theorem 7 easily.
Therefore, this completes the proof of Theorem 7.

Next, the following results show the relations among the quotas v, V, h and H.

Theorem 8. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞). Then we have

v
ρlV
≤ h ≤ H ≤ V

ρlv
. (30)

Proof. By making use of Lemma 2 and (21), and combining with the definitions of h and
H, we can prove the conclusions of Theorem 8 easily.

Theorem 9. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞), logarithmic type Tl and lower logarithmic type tl , (0 < tl ≤ Tl < +∞). Then we have

(i)

lim
σ→+∞

log Mu(σ, F)
σρl

= Tl ⇐⇒ lim
σ→+∞

ν(σ, F)
σρl−1 = ρlTl ;

(ii)
0 < tl ≤ Tl < +∞⇐⇒ 0 < v ≤ V < +∞.

Remark 6. From Theorem 9 (i), we can see that tl = Tl ⇐⇒ v = V = ρlTl .

Proof. (i) =⇒: If

lim
σ→+∞

log Mu(σ, F)
σρl

= Tl ,

in view of Lemma 1, it follows tl = Tl and

lim
σ→+∞

log µ(σ, F)
σρl

= Tl .

By Lemma 2, for η = 1 + ϑ, ϑ > 0, we have

Tl

[
(ση

1
ρl )ρl − σρl + o(σρl )

]
= log µ

(
ση

1
ρl , F

)
− log µ(σ, F)

=
∫ ση

1
ρl

σ
ν(t, F)dt < ν

(
ση

1
ρl , F

)
σ(η

1
ρl − 1). (31)

Dividing (ση
1
ρl )ρl−1 into two side of (31), and let σ→ +∞, we have

lim inf
σ→+∞

ν

(
ση

1
ρl , F

)
(ση

1
ρl )ρl−1

≥ Tl(η − 1)

(η
1
ρl − 1)η

ρl−1
ρl

=
ϑTl[

(1 + ϑ)− (1 + ϑ)
ρl−1

ρl

] . (32)
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By applying L’Hospital’s rule, and let ϑ→ 0+, it is easy to obtain

lim
ϑ→0+

ϑTl[
(1 + ϑ)− (1 + ϑ)

ρl−1
ρl

] = ρlTl . (33)

Thus, in view of (32) and (33), we have v ≥ ρlTl. Similarly, let η = 1− ϑ, 0 < ϑ < 1, we have

Tl

[
σρl − (ση

1
ρl )ρl + o(σρl )

]
= log µ(σ, F)− log µ

(
ση

1
ρl , F

)
=
∫ σ

ση
1
ρl

ν(t, F)dt > ν

(
ση

1
ρl , F

)
σ(1− η

1
ρl ),

and

V = lim sup
σ→+∞

ν

(
ση

1
ρl , F

)
(ση

1
ρl )ρl−1

≤ ρlTl .

By combining with v ≤ V, we have

v = V = lim
σ→+∞

ν(σ, F)
σρl−1 = ρlTl .

Now, we will prove the sufficiency of Theorem 9 (i). Let lim
σ→+∞

ν(σ,F)
σρl−1 = ρlTl , in view of

the definitions of v and V, we have v = V = ρlTl . By combining with Remark 5, we obtain
that tl = Tl , that is,

lim
σ→+∞

log Mu(σ, F)
σρl

= Tl .

Therefore, this completes the conclusion (i) of Theorem 9.

(ii) We first prove the sufficiency of Theorem 9 (ii). Let 0 < v ≤ V < +∞. In view of
Remark 5 and 0 < ρl < +∞, it follows that Tl < +∞ and tl > 0. Furthermore, in view of
Theorem 7 (i), we can obtain that tl = Tl if v = V. Thus, the sufficiency of Theorem 9 (ii) is
proved.

Next, we will prove the necessity of Theorem 9 (ii). Let 0 < tl ≤ Tl < +∞. Then it
follows that v > 0 and V < +∞. Otherwise, if v = 0, then we have from (25) that Tl ≥ ηρltl .
This is a contradiction since Tl < +∞ and η is arbitrary. Similarly, if V = +∞, then we have

from (27) that Tl ≥
V(η

1
ρl −1)
η . This is a contradiction since Tl < +∞ and η > 1. Besides, in

view of Theorem 7 (i), we can obtain that v = V if tl = Tl . Thus, the necessity of Theorem 9
(ii) is proved.

Therefore, we complete the proof of Theorem 9.

4. Applications

In this section, we will establish some results to reveal the relationship between the
logarithm order ρl , the logarithm type Tl , the lower logarithm type tl , the form exponent
λn and the form coefficients A∗n of Laplace–Stieltjes transformation of small growth, by
applying the inequalities given in Sections 1 and 2. Denote

w = lim inf
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 , W = lim sup
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 .
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Theorem 10. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞), logarithmic type Tl and lower logarithmic type tl . If λn ∼ λn+1 and

n−1

∑
m=n0

λk
m(λm+1 − λm) ∼

λk+1
n

k + 1
, (k ≥ 0, n0 ≥ 1), (34)

then we have
w ≤ ρltl ≤ ρlTl ≤W. (35)

The following example shows that the inequalities in (35) are best possible to some extent.

Example 1. Let λn = n and α(x) satisfy

α(x) = 1 + e−1 + e−22
+ · · ·+ e−(n−1)2

, (n− 1 < x < n, n = 1, 2, . . . , ).

Then (1) can be expressed as the form

F(s) =
∞

∑
n=1

e−n2
esn.

In view of Theorems 2-4, by simple calculation, we have ρl(F) = 2, Tl(F) = tl(F) = 1
4 and

w = W = 1
2 . Thus, this shows that the equal sign situation in (35) can be attained.

Proof. Assume that 0 < w ≤ W < +∞. From the definitions of w and W, for a fixed
positive integer n0, then we obtain that for any ε > 0, the following inequalities

1
W
− ε <

[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1

λn
<

1
w

+ ε (36)

hold for all n ≥ n0. Thus, for any positive integer m ≥ n0, we have

[
(

1
W
− ε)λm

] 1
ρl−1

(λm+1 − λm) < log A∗m − log A∗m+1 <

[
(

1
w

+ ε)λm

] 1
ρl−1

(λm+1 − λm). (37)

Let m = n0, n0 + 1, . . . , n− 1 in (37), adding them, then it follows that

(
1

W
− ε)

1
ρl−1

n−1

∑
m=n0

λ
1

ρl−1
m (λm+1 − λm) < log A∗n0

− log A∗n

< (
1
w

+ ε)
1

ρl−1
n−1

∑
m=n0

λ
1

ρl−1
m (λm+1 − λm). (38)

In view of (34) and (38), for all n ≥ n0, then we obtain that

(
1

W
− ε)

1
ρl−1 λ

1
ρl−1+1
n

ρl
ρl−1

< log A∗n0
− log A∗n < (

1
w

+ ε)
1

ρl−1 λ
1

ρl−1+1
n

ρl
ρl−1

. (39)

Thus, it follows from (39) that

w ≤ lim inf
n→+∞

λn[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 ≤ lim sup
n→+∞

λn[
1

ρl−1 log(A∗n)
− ρl

λn

]ρl−1 ≤W. (40)

By combining with Remark 3 and Theorem 4, we have from (40) that
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w ≤ ρltl ≤ ρlTl ≤W. (41)

If w = 0 or W = +∞, the conclusions (41) are obvious. If w = +∞, then W = +∞. We
can obtain (40) by replacing w, W by an arbitrarily large number. If W = 0, then w = 0. We
also obtain (38) by replacing 1

W − ε by an arbitrarily large number. Thus, we can obtain (41)
in either case.

Therefore, this completes the proof of Theorem 10.

Theorem 11. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞) and logarithmic type Tl(0 < Tl < +∞). If the sequence {λn} satisfy (34) and ψ(n) form a
non-decreasing function of n(≥ n0), then we have

ρlTl ≤W ≤
(

ρl
ρl − 1

)ρl−1
ρlTl < eρlTl . (42)

Proof. From the assumptions of Theorem 11, and the definitions of logarithmic type Tl , for
any given ε > 0, there exists a positive integer n0(ε) such that for all n > n0(ε), we have

λ

ρl
ρl−1
n < − ρl

ρl − 1
(ρlTl + ε)

1
ρl−1 log A∗n. (43)

Thus, it follows that

A∗n < exp

[
−ρl − 1

ρl
(ρlTl + ε)

− 1
ρl−1 λ

ρl
ρl−1
n

]
, n > n0(ε), (44)

and

log A∗m + log
A∗m+1

A∗m
+ · · ·+ log

A∗n
A∗n−1

< −ρl − 1
ρl

(ρlTl + ε)
− 1

ρl−1 λ

ρl
ρl−1
n , m > n0(ε). (45)

By combining with the non-decreasing function ψ(m), we obtain

log A∗m − (λn − λm)ψ(n− 1) < −ρl − 1
ρl

(ρlTl + ε)
− 1

ρl−1 λ

ρl
ρl−1
n ,

that is,
λn

ψ(n− 1)ρl−1 <

(
ρl − 1

ρl

)ρl−1
(ρlTl + ε)

(
λn − λm

λn

)ρl−1
(1 + o(1)). (46)

In view of ψ(n− 1) ≤ ψ(n), and let n→ +∞, then we obtain from (46) that

W = lim sup
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 ≤
(

ρl − 1
ρl

)ρl−1
ρlTl . (47)

By combining with the fact that ex > 1 + x for 0 < x < +∞, it follows from (47) that

W ≤
(

ρl − 1
ρl

)ρl−1
ρlTl < eρlTl . (48)

Thus, we can obtain (42) from (35) and (48) immediately.
Therefore, we complete the proof of Theorem 11.
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Theorem 12. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞). If λn satisfy λn ∼ λn+1 and ψ(n) form a non-decreasing function of n(≥ n0), then we have

w = v and W = V. (49)

Proof. From the assumptions of Theorem 12, and the definitions of v and V, for any positive
number ε, there exists σ0(ε) such that for all σ > σ0(ε),

v− ε <
ν(σ, F)
σρl−1 < V + ε. (50)

Since ψ(n) is an increasing function of n, taking

log A∗n−1 − log A∗n
λn − λn−1

≤ σ <
log A∗n − log A∗n+1

λn+1 − λn
, (51)

then we have that A∗neλnσ is the maximum term for <s = σ, that is, λn = ν(σ, F). In view
of (50) and (51), we have

(v− ε)

[
log A∗n−1 − log A∗n

λn − λn−1

]ρl−1

< λn < (V + ε)

[
log A∗n − log A∗n+1

λn+1 − λn

]ρl−1

, (52)

for all n > n0. Thus, let n→ +∞, it follows from (52) that

V ≥ lim sup
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 , v ≤ lim inf
n→+∞

λn+1[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 . (53)

and in view of λn ∼ λn+1, the second inequality in (53) becomes

v ≤ lim inf
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 . (54)

Obviously, (53) and (40) hold for v = 0 and V = +∞. Besides, if v = +∞, we can obtain
(54) by replacing v− ε by an arbitrary large number in (50). Similarly, we can obtain (53)
for V = 0.

On the other hand, from the definition of V, we have ν(σ, F) > (V − ε)σρl−1 for a
sequence of values of σ = σ1, σ2, . . ., tending to ∞. Thus, in view of (51), corresponding to
the sequence {σn}, we obtain

λn > (V − ε)

[
1

λn − λn−1
log

A∗n−1
A∗n

]ρl−1

.

In view of λn ∼ λn+1, for a sequence of values of n→ +∞, we have

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 > V − ε. (55)

Hence, we obtain

lim sup
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 ≥ V. (56)

Similar to the above argument, we have

lim inf
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 ≤ v. (57)
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Thus, in view of (54)–(56), we can obtain w = v and W = V.
Therefore, this completes the proof of Theorem 12.

Theorem 13. If Laplace–Stieltjes transform F(s) ∈ L∞, and is of logarithmic order ρl(1 < ρl <
+∞). If λn satisfy λn ∼ λn+1 and ψ(n) form a non-decreasing function of n(≥ n0). We have

(i) F(s) is of perfectly logarithmic linear growth if, and only if,

lim
n→+∞

λn[
1

λn+1−λn
log A∗n

A∗n+1

]ρl−1 = ρlTl ;

(ii) if 0 < tl ≤ Tl < ∞, then 0 < w ≤W < ∞.

Proof. (i) From Theorem 9 (i) and Theorem 12, we can obtain Theorem 13 (i) easily.
(ii) Similar to the argument as in the proof of Theorem 9 (ii), and combining with the

conclusions of Theorem 12, we can prove Theorem 13 (ii).
Therefore, this completes the proof of Theorem 13.

5. Conclusions

In view of Theorems 7–13, we can see that these results reveal the relationships
between the logarithmic growth and some indexes of entire functions represented by
Laplace–Stieltjes transforms of finite logarithmic order ρl . In fact, Theorems 7–11 and
Remark 5 exhibit the relationships concerning some indexes including ρl , tl , Tl , v, V, h, H.
These theorems show that the (lower) logarithmic type Tl(tl) of Laplace–Stieltjes trans-
form can be bounded not only by the center indexes ν(σ, F) of the maximum terms (see
Theorems 7 and 8), but also by the logarithmic order ρl , A∗n and λn (see Theorems 10 and 11).
Finally, Theorems 12 and 13 depict the equivalence conditions between the (lower) loga-
rithmic type Tl(tl) and ν(σ, F) of Laplace–Stieltjes transforms with certain restricts. These
are very obvious differences since the growth indexes are usual estimated by A∗n, λn (can
be founded in Theorems 1–3).
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