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Abstract: This article focuses on designing an adaptive sliding mode controller via state and output
feedback for nonlinear singular fractional-order systems (SFOSs) with mismatched uncertainties.
Firstly, on the basis of extending the dimension of the SFOS, a new integral sliding mode surface is
constructed. Through this special sliding surface, the sliding mode of the descriptor system does not
contain a singular matrix E. Then, the sufficient conditions that ensure the stability of sliding mode
motion are given by using linear matrix inequality. Finally, the control law based on an adaptive
mechanism that is used to update the nonlinear terms is designed to ensure the SFOS satisfies the
reaching condition. The applicability of the proposed method is illustrated by a practical example of
a fractional-order circuit system and two numerical examples.

Keywords: sliding mode controller; singular fractional-order systems; state and output feedback;
adaptive mechanism

1. Introduction

Fractional order systems (FOSs) are especially suitable for describing the memory,
heredity, mechanical and electrical properties of various materials, so they are widely used
in various practical applications [1–3]. By constructing solvable linear matrix inequalities
(LMIs), the robust control problems in FOSs can be effectively solved. In [4–6], the stabiliza-
tion problem of FOSs is solved by designing an observer. In [7], an LMI based on criteria to
ensure the stability or stabilization of FOSs for a given order α: 0 < α < 2 was provided.

The generalized system model can describe a broader practical system, which is more
general than normal systems. Therefore, it is very important to study the generalized system
model [8–10]. As for SFOSs, a large amount of research for the problems of admissibility
and robust stabilization has been reported recently in [11]. In proving the admissibility of
SFOSs, the authors in [12,13] solve the problem by transforming the SFOSs into normal
FOSs through a specific feedback controller. On the other hand, when the fractional-order
0 < α < 1, the authors in [14] extend the admissibility method of integer order singular
systems to SFOSs and present three different LMI conditions for the admissibility [15].
Correspondingly, in [16], this problem with 1 < α < 2 is considered, whereas Theorem 3
in [16] is a bilinear matrix inequality, which is difficult to be used to solve the output
feedback control problem of SFOSs. Since state variables are often difficult to obtain
in practical applications, it is meaningful to research the design of the output feedback
controller. The authors in [17] provide the LMI condition to solve the output feedback
control problem by making the output matrix C satisfy a particular construct. The authors
in [18] investigate the robust stabilization problem for T-S fuzzy FOSs via output feedback
control, but this approach is difficult apply to SFOSs with 0 < α < 1. In [19], this defect has
been overcome by using an intermediate variable to construct a strict LMI condition.
However, this method needs to first know the information of the status variable, which is
conservative.
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As a mature control strategy, sliding mode control [20–23] (SMC) has recently received
much attention in FOSs [24,25]. In practical applications, uncertain nonlinear systems [26]
with disturbances are ubiquitous, and the SMC is a nonlinear robust control method, which
can maintain the stability of systems. In [27], a reduced dimension of a sliding surface is
constructed to get rid of the influence of nonlinear terms, and the control law is designed
to force the FOSs to move along the sliding surface. A discrete-time fractional-order
SMC scheme is proposed in [28]. In [29], the authors design a sliding mode controller for
fractional-order financial systems. In [30], the integral sliding surface is designed for SFOSs,
the attractive part of the this surface is that it enables the trajectory of SFOSs to start from
the constructed sliding surface, which makes SFOSs more robust.

Any actual system has varying degrees of uncertainty. For example, the structure and
parameters of the mathematical model describing the controlled object are not necessarily
known by the designer in advance. In the face of these uncertainties, to design appropriate
control function to make a specific performance index reach and maintain the optimum or
approximate optimum, adaptive control [31] is proposed. Adaptive control, as a control
method to estimate the nonlinear terms that are unknown in FOSs, is presented in [32].
In [33], the adaptive backstepping control schemes are proposed for FOSs. The authors
in [34] used a fuzzy adaptive state observer to estimate the unmeasured state. In [35], the
problem of adaptive control for uncertain T-S fuzzy FOSs with saturated control inputs is
addressed. It is worth noting that adaptive control also plays an important role in the design
of a sliding mode controller for FOSs [36–38]. The authors in [39] study the adaptive fuzzy
SMC problem for chaotic FOSs. In [40], the authors propose the adaptive SMC method for
nonlinear FOSs. For mismatched disturbances in nonlinear systems, the authors in [41]
provide a novel scheme based on a disturbance observer to estimate the disturbances of
FOSs. In [42], the problem of real-time SMC for dynamical systems is solved. Furthermore,
the authors in [43] develop an adaptive sliding mode controller for time-varying delay
singular systems. Furthermore, adaptive SMC is also of great significance in practical
applications. For example, [44,45] studied adaptive SMC of rubber-tired gantry crane. By
using adaptive fractional-order SMC, the controller can track the driving state well in the
case of parameter uncertainty and unknown disturbance. Since the adaptive sliding mode
controller can solve the matching uncertainty with an unknown upper bound and input
saturation, it has more far-reaching significance. For example, it can eliminate the condition
of the nonlinear term [46]. However, the design of the adaptive sliding mode controller
via output feedback for SFOSs [47] with fractional-order 0 < α < 1 is still a difficult and
open problem.

Inspired by the aforementioned discussions, the main contributions of this paper are
listed below.

(1) At present, most papers need feedback control for normal SFOSs [11–13]. Since
the special sliding surface is constructed in this paper, which leads to the sliding motion
being a normalized FOS, this approach can be regarded as a new normalization technique
without the feedback control.

(2) On the basis of extending the dimension of the SFOS, a new integral sliding
mode surface is constructed. Through this special sliding surface, the sliding mode of the
descriptor system does not contain a singular matrix E. Thus, we can use the stability
theorem of the normal system to study the stability of the sliding mode. In [8,9], their
sliding modes contain a singular matrix E, which can only be studied by the admissibility
theorem of the singular system.

(3) The SMC stabilization problems with state feedback and output feedback are both
investigated, and the main results are in terms of LMIs. In addition, the output feedback
SMC scheme does not need to calculate the intermediate variable, which is more effective
than [19].

(4) The adaptive SMC law is proposed such that the finite-time reachability of the
sliding surface can be guaranteed. Furthermore, it can be deal with the nonlinear terms.
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The restriction that the norm of the disturbance of the system should be known in [4] is
removed.

In the following, Section 2 describes the preliminaries. In Section 3, state and output
feedback SMC is considered. In Section 4, the proposed methods are evaluated by a
practical example and two numerical examples. Finally, conclusions of this study are
provided in Section 5.

Notations: In this paper, MT is the transpose of matrix M. Matrix X > 0 (< 0) means
that the X is positive (negative) definite. ∗ indicates the symmetric part of a matrix, such as[

S N
∗ Z

]
=

[
S N

NT Z

]
. || · || represents the induction norm of a matrix or the Euclidean

norm of a vector. a = sin( απ
2 ), b = cos( απ

2 ) and sym(Y) = Y + YT for short in the sequel.

2. Preliminaries

Consider the following nonlinear SFOS with fractional-order 0 < α < 1{
EDαx(t) = (A + ∆A)x(t) + B(u(t) + g(x(t), t)),

y(t) = Cx(t),
(1)

where x(t) ∈ Rn, y(t) ∈ Rp are the system state and the measured output, respectively.
u(t) ∈ Rl is the control input. E ∈ Rn×n is a singular matrix and rank(E) = m < n.
A ∈ Rn×n, B ∈ Rn×l and C ∈ Rp×n. ∆A ∈ Rn×n is the mismatched uncertain matrix,
assuming that ∆A = UF(t)V, where U and V are appropriate dimensions matrices, and
F(t) is an unknown matrix function which satisfies FT(t)F(t) ≤ I. Moreover, the nonlinear
unknown function g(x(t), t) represents the matched uncertainty or disturbance, which is
assumed to satisfy that

||g(x(t), t)|| ≤ β1 + β2||x(t)||, (2)

where β1 and β2 are unknown positive real constants.
The Caputo fractional calculus of a function f (t) is defined as

Dα f (t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α f

′
(τ)dτ,

where Γ(·) is the Gamma function. It is easy to see that System (1) is equivalent to{
ẼDα x̃(t) = Ã∆ x̃(t) + B̃(u(t) + g(x̃(t), t)),

y(t) = C̃x̃(t),
(3)

where

Ẽ =

[
In 0
0 0

]
, Ã∆ =

[
0 In

A + ∆A −E

]
, B̃ =

[
0
B

]
,

x̃(t) =
[

x(t)
Dαx(t)

]
, C̃ =

[
C 0

]
, g(x̃(t), t) = g(x(t), t).

Here, related lemmas are introduced, which play a key role in dealing with SMC
problems. We consider the unforced FOS as follows:

Dαx(t) = Ax(t). (4)

Lemma 1 ([14]). System (4) is stable if and only if there exist matrices X, Y ∈ Rn×n, such that[
X Y
−Y X

]
> 0, (5)

sym(A(aX− bY)) < 0. (6)
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Lemma 2. If X is a positive definite matrix and Y is an antisymmetric matrix, then matrix aX− bY
is nonsingular.

Proof. Assume that matrix aX − bY is singular, there exists a non-zero column vector γ
that makes (aX− bY)γ = 0, so one obtains

γT(aX− bY)γ = 0. (7)

Since matrix X is positive definite and matrix Y is antisymmetric, Equation (8) is
obtained by the transpose of Equation (7)

γT(aX + bY)γ = 0. (8)

By adding Equations (7) and (8), one has 2aγTXγ = 0; considering that X is a positive
definite matrix, the assumption is wrong, so matrix aX− bY is nonsingular.

For SFOS output matrix C, there exists a singular value decomposition of C as follows

C = R1[Q 0]RT
2 , (9)

where matrix Q ∈ Rp×p is diagonal, and R1 ∈ Rp×p and R2 ∈ Rn×n are unitary matrices.

Lemma 3 ([17]). There exists a matrix P̂ satisfying CP = P̂C if and only if P is expressed as

P = R2

[
X11 0
X21 X22

]
RT

2 . (10)

where X11 ∈ Rp×p, X21 ∈ R(n−p)×p and X22 ∈ R(n−p)×(n−p). The matrix P̂ is expressed as
P̂ = R1QX11Q−1R−1

1 .

3. Main Results

In this section, we study the adaptive sliding mode control of uncertain singular
fractional-order systems by state feedback and output feedback, respectively.

3.1. The Design of Sliding Mode State Feedback Controller

In this section, we design the fractional-order sliding mode state feedback controller.
The design process includes, first, designing a novel sliding mode such that the sliding
mode moves into normalized FOS. Second, we design an SMC so that the system can reach
the above-described sliding surface in finite time.

We construct the following integral sliding surface function for System (3)

s(t) = GẼDα−1 x̃(t)−
∫ t

0
G B̃K̃x̃(τ)dτ, (11)

where matrix G = [G1 G2], and G1, G2 ∈ Rl×n are given matrices. We set that matrix G
satisfies det(GB̃) 6= 0. It follows from GB̃ = G2B that we can obtain det(G2B) 6= 0. Matrix
K̃ = [K 0l×n] and K ∈ Rl×n need to be determined in the following part. When the SFOS
moves on the sliding surface, one has ṡ(t) = 0. Thus, consider System (3), we have

ṡ(t) = GÃ∆ x̃(t) + GB̃u(t)

+ GB̃g(x̃(t), t)− GB̃K̃x̃(t) = 0.
(12)

Therefore, the equivalent control law is as follows

ueq(t) = −(GB̃)−1G(Ã∆ − B̃K̃)x̃(t)− g(x̃(t), t). (13)
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Equation (13) together with System (3) gives the sling motion in Equation (14):

ẼDα x̃(t) = Ã∆ x̃(t)− B̃(GB̃)−1GÃ∆ x̃(t) + B̃K̃x̃(t). (14)

Letting G̃ = I2n − B̃(GB̃)−1G, one has

G̃ =

[
In 0
0 In

]
−
[

0
B

]
(G2B)−1[ G1 G2

]
=

[
In 0

−B(G2B)−1G1 In − B(G2B)−1G2

]
.

We set G̃1 = −B(G2B)−1G1, G̃2 = In − B(G2B)−1G2. Thus, Equation (14) is equiva-
lent to [

In 0
0 0

]
Dα x̃(t) =

[
0 In

G̃2 A + G̃2∆A + BK G̃1 − G̃2E

]
x̃(t). (15)

When G1 is a appropriate matrix, G̃1 − G̃2E is invertible.

Dαx(t) = (ĜA + Ĝ∆A + B̂1K)x(t), (16)

where Ĝ = (G̃2E− G̃1)
−1G̃2 and B̂1 = (G̃2E− G̃1)

−1B.

Remark 1. By designing the sliding surface (Equation (11)), the sliding motion (Equation (16))
obtained is a normal system. This needs only one step. According to [13], it takes two steps to obtain
the sliding motion of a normal system; the first step is to design the feedback control to normalize
SFOSs, and the second step is to construct the sliding surface. Therefore, our method is superior
to [13] in design.

Theorem 1. System (16) is stable if there exist matrices X, Y ∈ Rn×n, Z ∈ Rl×n and a scalar
ε > 0, such that Equation (5) and the following LMI hold.[

sym(ĜA(aX− bY) + B̂1Z) + εĜUUTĜT (aX− bY)TVT

∗ −εI

]
< 0, (17)

then matrix K is designed as K = Z(aX− bY)−1.

Proof. One can rewrite Equation (17) as the following inequality from the Schur comple-
ment.

sym((ĜA + B̂1K)(aX− bY)) + εĜUUTĜT+
ε−1(V(aX− bY))TV(aX− bY) < 0.

(18)

According to Lemma 3 of [3] , one has

sym((ĜA + B̂1K)(aX− bY))+
sym(Ĝ∆A(aX− bY)) < 0.

(19)

Now, it is easy to see that System (16) is stable.

Remark 2. For singular systems, the advantage of the sliding motion being the normal system
is that the gain matrix K can be calculated since it follows from Lemma 2 that matrix aX − bY is
invertible. Compared with the sliding control scheme in [43], the sliding motion in [43] is a singular
system, and the obtained gain matrix K needs to compute the inverse matrix of ẼWT + ZTST (see
Theorem 4 in [43]). Since it involves an additional solved variable S that may cause the trouble that
ẼWT + ZTST is not invertible.

In the following theorem, we design an adaptive SMC scheme to ensure the reachability of
the slip mode. The adaptive parameters β̂1(t) and β̂2(t) are defined in order to estimate β1 and β2,
respectively. β1(t) = β̂1(t)− β1 and β2(t) = β̂2(t)− β2 represent the estimation errors. By the
properties of fractional integrals, it yields as β̇i(t) =

˙̂βi(t), where i = 1, 2.
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Theorem 2. Giving adaptive SMC law (20), System (3) can be driven into the sliding surface
(Equation (11)) in finite time:

u(t) = (GB̃)−1(GB̃K̃x̃(t)− λ0s(t)− ρ(t)sgn(s(t))), (20)

where
ρ(t) = λ1 + ||GB̃||β̂1(t)+
||GB̃|| ||x̃(t)||β̂2(t) + σ||G|| ||x̃(t)||

(21)

with λ0 and λ1 being positive constants. σ is the norm bounded of the matrix Ã∆, which satisfies
||Ã∆|| < σ. By increasing λ0, the reaching time is shortened. By decreasing λ1, the chattering is
reduced. The above adaptive laws are chosen as

˙̂β1(t) = ρ1||s(t)|| ||GB̃||,
˙̂β2(t) = ρ2||s(t)|| ||x̃(t)|| ||GB̃||,

(22)

where ρ1 and ρ2 are designed as positive constants.

Proof. We choose the following Lyapunov function

V(t) =
1
2

sT(t)s(t) +
1

2ρ1
β

2
1(t) +

1
2ρ2

β
2
2(t). (23)

By taking the derivative of V(t), we obtain

V̇(t) = sT(t)ṡ(t) +
1
ρ1

β1(t)
˙̂β1(t) +

1
ρ2

β2(t)
˙̂β2(t). (24)

With ṡ(t) = 0 and Equations (20) and (24) are rewritten as

V̇(t) =sT(t)(GÃ∆ x̃(t)− λ0s(t)− ρ(t)sgn(s(t))

+ GB̃g(x(t), t)) +
1
ρ1

β1(t)
˙̂β1(t) +

1
ρ2

β2(t)
˙̂β2(t).

(25)

Thus, substituting Equation (21) into Equation (25), it follows that

V̇(t) ≤− λ0||s(t)||2 − λ1||s(t)|| − β̂1(t)||GB̃|| ||s(t)||
− β̂2(t)||s(t)|| ||x(t)|| ||GB̃||+ β1||GB̃|| ||s(t)||
+ β2||s(t)|| ||x(t)|| ||GB̃||

+
1
ρ1

β1(t)
˙̂β1(t) +

1
ρ2

β2(t)
˙̂β2(t).

(26)

Considering Equations (22) and (26), one has

V̇(t) ≤ −λ0||s(t)||2 − λ1||s(t)|| < 0, ∀||s(t)|| 6= 0. (27)

It is easy to see that System (3) moves to the sliding surface s(t) = 0 in finite time.

3.2. The Design of Sliding Mode Output Feedback Controller

In practical systems, the state of nonlinear system is difficult to obtain, so it is necessary
to further investigate the sliding mode control problem based on output feedback. We give
the following assumption first:

Assumption 1. The system uncertainty g(x(t), t) satisfies the following condition:

||g(x̃(t), t)|| ≤ β3 + β4||y(t)||, (28)
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where β3 and β4 are unknown positive real constants.
Then, we construct the following integral sliding surface function for System (3)

s(t) = SẼDα−1 x̃(t)− S
∫ t

0
B̃LC̃x̃(τ)dτ, (29)

where matrix S =
[

S1 S2
]
, and S1, S2 ∈ Rl×n are two given matrices. We set that matrix S

satisfies det(SB̃) 6= 0 and rank
[

SẼ
C̃

]
= rank C̃. Matrix L ∈ Rl×p needs to be determined in the

following part.

Remark 3. In order to ensure that there exists a matrix J that satisfies SẼ = JC̃, we propose

a restriction condition that rank
[

SẼ
C̃

]
= rank C̃. In this case, the surface function s(t) is

converted to

s(t) = JDα−1y(t)− S
∫ t

0
B̃Ly(τ)dτ, (30)

thus, the slide surface shown in Equation (30) only contains output information, which can be easily
designed in practice.

From SMC theory, when the sliding motion takes place, it follows that s(t) = 0 and ṡ(t) = 0.
From Equation (30),

ṡ(t) = S(Ã∆ − B̃LC̃)x̃(t) + SB̃u(t) + SB̃g(x̃(t), t) = 0. (31)

Therefore, the equivalent control law is as follows

ueq(t) = −(SB̃)−1S(Ã∆ − B̃LC̃)x̃(t)− g(x̃(t), t). (32)

By substituting Equation (32) into System (3), Equation (33) is obtained

ẼDα x̃(t) = (Ã∆ − B̃(SB̃)−1SÃ∆ + B̃LC̃)x̃(t). (33)

For notational simplicity, letting S̃ = I2n − B̃(SB̃)−1S, we have

S̃ =

[
In 0
0 In

]
−
[

0
B

]
(S2B)−1[ S1 S2

]
=

[
In 0

−B(S2B)−1S1 In − B(S2B)−1S2

]
.

Defining S̃1 = −B(S2B)−1S1 and S̃2 = In − B(S2B)−1S2, Equation (33) is represented as[
In 0
0 0

]
Dα x̃(t) =

[
0 In

S̃2 A + S̃2∆A + BLC S̃1 − S̃2E

]
x̃(t). (34)

By choosing the appropriate matrix S1, it follows that S̃1− S̃2E is invertible. Thus, Equation (34)
is represented as

Dαx(t) = (ŜA + Ŝ∆A + B̂2LC)x(t), (35)

where Ŝ = (S̃2E− S̃1)
−1S̃2 and B̂2 = (S̃2E− S̃1)

−1B.

Theorem 3. System (35) is stable if there exist matrices X11, Y11 ∈ Rp×p, X12 ∈ Rp×(n−p),
X22, Y22 ∈ R(n−p)×(n−p), H ∈ Rl×p and a scalar η > 0, such that Equation (5) and the following
LMI hold [

sym(ŜA(aX− bY) + B̂2HC) + ηŜUUTŜT (aX− bY)TVT

∗ −η I

]
< 0, (36)



Fractal Fract. 2022, 6, 253 8 of 19

where

X = R2

[
X11

b
a X12

b
a XT

12 X22

]
RT

2 ,

Y = R2

[
Y11 X12
−XT

12 Y22

]
RT

2 ,

R1, R2 and Q are defined in Equation (9), and then the matrix L is designed as L = HR1Q(aX11−
bY11)

−1Q−1 R−1
1 .

Proof. One can rewrite Equation (36) as the following inequality from the Schur comple-
ment.

sym(ŜA(aX− bY) + B̂2HC) + ηŜUUTŜT

+η−1(V(aX− bY))TV(aX− bY) < 0.
(37)

According to Lemma 3 of [3] , one has

sym(ŜA(aX− bY) + B̂2HC) + sym(Ŝ∆A(aX− bY)) < 0. (38)

According to H = LR1Q(aX11 − bY11)Q−1R−1
1 and using Lemma 3, one has

B̂2HC = B̂2LC(aX− bY). (39)

Thus, Equation (40) is obtained

sym((ŜA + Ŝ∆A + B̂2LC)(aX− bY)) < 0. (40)

Combining to Lemma 1, System (34) is stable.

Remark 4. In [17], rankE = rank, C needs to be assumed first, and matrix C has a special
structure C = [C1 0], which is conservative. Theorem 3 in this paper does not require assumptions
for the SFOSs, and the obtained result is more extensive.

Remark 5. Since the unknown matrices X11, X12, X22, and the coefficient b
a are difficult to define

X in the MATLAB LMI box, which results in the LMI condition in Equations (5) and (36) of the
calculation Theorem 3. The next theorem overcomes this defect, which can be easily calculated in the
MATLAB LMI box.

Theorem 4. System (35) is stable if there exist matrices X11, Y11 ∈ Rp×p, X12 ∈ Rp×(n−p),
X22, Y22 ∈ R(n−p)×(n−p), H ∈ Rl×p and a scalar η > 0, such that the following LMIs hold[

X
a

Y
b

−Y
b

X
a

]
> 0, (41)

[
sym(ŜA(X−Y) + B̂2HC) + ηŜUUTŜT (X−Y)TVT

∗ −η I

]
< 0, (42)

where

X = R2

[
X11 X12

XT
12 X22

]
RT

2 ,

Y = R2

[
Y11 X12

−XT
12 Y22

]
RT

2 ,

R2 has the same definition as in Theorem 3. Then, matrix L is designed as L = HR1Q(X11 −
Y11)

−1Q−1R−1
1 .
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Proof. There exist X11 = aX11, X12 = bX12, X22 = aX22, Y11 = bY11, and Y22 = bY22; then,
we have X = aX and Y = bY. Equations (41) and (5) are equivalent to Equations (42) and (36),
respectively.

The next theorem is proposed such that the reachability condition is ensured. Here,
the adaptive parameters β̂3, β̂4 are defined to estimate β3(t) and β4(t), respectively.
β3(t) = β̂3(t)− β3 and β4(t) = β̂4(t) − β4 represent the estimation errors. When we
obtain matrix L by LMIs (41) and (42), it is easy to see that the system state x(t) is bounded,
and we set

sup
0≤t<∞

||x̃(t)|| ≤ β5, (43)

where β5 is an unknown positive constant. The adaptive parameter β̂5(t) is defined to
estimate β5, and the estimation errors are expressed as β5(t) = β̂5(t)− β5. By the properties

of fractional integrals, one obtains that β̇i(t) =
˙̂βi(t), where i = 3, 4, 5.

Theorem 5. Given the adaptive SMC law, System (3) is converged to the sliding surface (Equation (29))
in finite time.

u(t) = (SB̃)−1(SB̃LC̃x̃(t)− γ0s(t)−v(t)sgn(s(t))), (44)

where
v(t) = γ1 + ||SB̃||β̂3(t) + ||SB̃|| ||y(t)||β̂4(t) + σ||S||β̂5(t) (45)

with γ0 and γ1 being positive constants. By increasing γ0, the reaching time is shortened. By
decreasing γ1, the chattering is reduced. σ is defined in Theorem 2. The above adaptive laws are
chosen as

˙̂β3(t) = ρ3||s(t)|| ||SB̃||,
˙̂β4(t) = ρ4||s(t)|| ||y(t)|| ||SB̃||,
˙̂β5(t) = ρ5σ||s(t)|| ||S||,

(46)

where ρ3, ρ4 and ρ5 are designed as positive constants.

Proof. We choose the following Lyapunov function

V(t) =
1
2

sT(t)s(t) +
1

2ρ3
β

2
3(t) +

1
2ρ4

β
2
4(t) +

1
2ρ5

β
2
5(t). (47)

Therefore, the derivative of V(t) can be formulated as

V̇(t) =sT(t)ṡ(t) +
1
ρ3

β3(t)
˙̂β3(t)

+
1
ρ4

β4(t)
˙̂β4(t) +

1
ρ5

β5(t)
˙̂β5(t).

(48)

According to Equations (31) and (44), Equation (49) is derived as

V̇(t) =sT(t)(SÃ∆ x̃(t)− γ0s(t)−v(t)
s(t)
||s(t)||

+ SB̃g(x̃(t), t)) +
1
ρ3

β3(t)
˙̂β3(t)

+
1
ρ4

β4(t)
˙̂β4(t) +

1
ρ5

β5(t)
˙̂β5(t).

(49)
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Thus, substituting Equation (45) into Equation (49), Equation (50) is obtained

V̇(t) ≤β5||s(t)||σ||S|| − γ0||s(t)||2 − γ1||s(t)||
− β̂3(t)||s(t)|| ||SB̃|| − β̂4(t)||s(t)|| ||y(t)|| ||SB̃||
− β̂5(t)||s(t)||σ||S||+ β3||s(t)|| ||SB̃||

+ β4||s(t)|| ||y(t)|| ||SB̃||+ 1
ρ3

β3(t)
˙̂β3(t)

+
1
ρ4

β4(t)
˙̂β4(t) +

1
ρ5

β5(t)
˙̂β5(t).

(50)

Considering Equations (46) and (50), one has

V̇(t) ≤ −γ0||s(t)||2 − γ1||s(t)|| < 0, ∀||s(t)|| 6= 0. (51)

It is easy to see that System (3) moves to the sliding surface (Equation (29)) in fi-
nite time.

Remark 6. When the derivative matrix E is nonsingular, the SMC scheme proposed in this paper
is still valid for normal fractional-order systems. In addition, when the fractional-order α = 1, the
SMC scheme is also valid for integer-order systems.

Remark 7. In order to solve the problem that the system reaches the sliding surface in finite time,
similar to the sliding mode control method of the integer-order system, we take the integer-order
derivative of Lyapunov functional candidate V(t) in Theorems 2 and 5. Therefore, the problem of
stability in finite time is solved.

4. Simulation Examples

In this section, we will use a practical example, a comparison with other article and a
numerical example to illustrate the effectiveness of our results.

Example 1. We consider the fractional singular electrical circuit in [2] with given resistances
Ri, i = 1, 2, where R2 is the nonlinear resistance with the voltage uR2 = f (i2), inductances Li,
i = 1, 2, and source current iz. The circuit is shown in Figure 1.

Figure 1. Electronic network.

Using Kirchhoff’s laws, it is easy to see that

L1
dαi1
dtα + R1i1 = L2

dαi2
dtα + R2i2,

iz = i1 + i2
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Thus, System (52) is obtained

EDαx(t) = Ax(t) + Bu(t), (52)

where
α = 0.4, x(t) =

[
i1 i2

]T, u(t) = iz,

E =

[
L1 −L2
0 0

]
, A =

[
−R1 R2
−1 −1

]
,

B =

[
0
1

]
.

When there are some disturbances in the circuit loop, that is, there are some uncertain-
ties and disturbances, then System (52) can be written as follows.

EDαx(t) = (A + ∆A)x(t) + B(u(t) + g(x(t), t)). (53)

We set Li = 1, i = 1, 2, R1 = 1, R2 = 1, and G1 =
[

1 3
]
, G2 =

[
0 1

]
,

U =
[
−1 1

]T, V =
[
−1 −2

]
, g(x(t), t) = x2 sin(x2(t)). By using the LMI toolbox,

Equations (5) and (17) are feasible, which indicates that the sliding motion of System (53) is
stable, and the feasible solution is

X =

[
36.7641 −12.2149
−12.2149 21.1580

]
, Y =

[
0 0.4900

−0.4900 0

]

Z =
[
−24.1874 −54.3561

]
, ε = 34.9970,

matrix K is computed as
K =

[
−3.0804 −6.2473

]
.

Then, through the designed adaptive SMC law (20), System (53) moves to the sliding
surface in finite time.

In addition, we select
x(0) =

[
0.05− 0.06

]T.

According to the above parameters, we obtain the simulation results. State responses
of System (3) are drawn in Figure 2.

0 5 10 15 20 25 30

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

S
y

s
te

m
 s

ta
te

Figure 2. State trajectories of System (3) under the adaptive SMC law.



Fractal Fract. 2022, 6, 253 12 of 19

Example 2. Here, we compare our method with Theorem 4 of [43]. We consider uncertain SFOSs in
System (3) with α = 0.6 and

E =

 1 0 0
1 1 −1
0 0 0

, A =

 −1 0 −1
0 0 0
0 −1 −1

, B =

 1
0
1

,

U =
[

1 0 0
]T, V =

[
2 4 6

]
.

The state feedback SMC problem is considered, the system uncertainty g(x(t), t) =
x1 sin(x1(t)), G1 =

[
1 2 5

]
and G2 =

[
1 0 0

]
such that (G2B)−1 = 1.

Now, according to Theorem 1 and using the MATLAB LMI toolbox, we can obtain:

X =

 620.8555 −116.5513 −93.7812
−116.5513 496.5470 −225.0537
−93.7812 −225.0537 283.6576

,

Y =

 0 −3.4474 1.7696
3.4474 0 −0.9207
−1.7696 0.9207 0

,

Z = 103 ×
[
−1.6802 −0.9611 −2.6413

]
, ε = 786.5716.

and
K =

[
11.7937 43.4645 −58.4639

]
.

Thus, System (16) is stable. By SMC law (20), System (3)’s trajectory can be driven to
the sliding surface (Equation (11)) within finite time.

In addition, we select

x(0) =
[
1.3 − 0.02 − 1.1

]T,

and initial estimates are given as β̂1(0) = 0.5, β̂2(0) = 0.2. According to the above
parameters, we used our method obtain the simulation results. State responses of System (3)
are drawn in Figure 3. It reveals that its state x(t) converges to zero as t → +∞, and the
resulting system is asymptotically stable. Figure 4 denotes the integral-type sliding mode
surfaces s(t). Figure 5 plots the control input u(t). The adaptive parameters are shown in
Figures 6 and 7.

For comparison, we give the followiing parameters to solve Theorem 4 in [43].

E0 =

 1 0 0
1 1 −1
0 0 0

, A0 =

 −1 0 −1
0 0 0
0 −1 −1

, Ad =

 3 5 5
−1.5 1 1

3 −1 10

 B0 =

 1
0
1

,

Bw =

 1
1
1

, C0 =

 1.5
2

2.5

, Cd =

 0.3
0.4
0.5

, U1 =
[

0 0 0 1 0 0
]T,

V1 =
[

2 4 6 −0.1 −0.1 −0.1
]
, V2 =

[
−0.1 0.1 0.1 0 0 0

]
,

G =
[

1 2 5 1 0 0
]
, Dw = 0.2, d0 = 0.2.

According to Theorem 4 in [43] solving LMI (45) of [43], we obtain

t = 0.0570.

From the result, we could not establish feasibility nor infeasibility. Therefore, the LMI
is not strictly feasible.
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From the above simulation, we can see that since aX − bY in our method must be
invertible, the LMI of our method must have a feasible solution, but ẼWT + ZTST of
Theorem 4 in [43] is not necessarily invertible. For example, the LMI in Theorem 4 has
no strict feasible solution. We can use the simple MATLAB commands and figures in the
Appendix A to show the uncertainty of matrix A and fractional-order model in Example 2.
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Figure 3. State trajectories of System (3) under the adaptive SMC law.
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Figure 4. Surface function s(t).
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Figure 5. Adaptive SMC law u(t).
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Figure 6. Adaptive parameter β̂1(t).
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Figure 7. Adaptive parameter β̂2(t).

Example 3. Considering uncertain SFOSs in System (3).

α = 0.6,

C =

[
0 1 0
1 0 0

]
, E =

 1 1 0
0 1 0
0 0 0

,

and

A =

 3 5 5
−1.5 1 1

3 −1 10

, B =

 1
1
1

,

U =
[

1 −1 2
]T, V =

[
1 0 −2

]
.

The system uncertainly g(x(t), t) is assumed as g(x(t), t) = sin(x2(t)). S1 and S2
are chosen as S1 =

[
1 1 0

]
and S2 =

[
3 −1 −1

]
, respectively. It follows from

Equation (9) that

R1 =

[
−1 0
0 −1

]
, Q =

[
1 0
0 1

]
,

R2 =

 0 −1 0
−1 0 0
0 0 1

.
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It is found that LMIs (41) and (42) are feasible, and the solutions are

X =

 21.7043 −19.1222 −3.0762
−19.1222 54.7421 4.9304
−3.0762 4.9304 35.2072

,

Y =

 0 −18.8349 −3.0762
18.8349 0 4.9304
3.0762 −4.9304 0

,

η = 2.6388, H =
[

159.9039 −208.8719
]
.

It follows form L = HR1Q(X11 −Y11)
−1Q−1R−1

1 that

L =
[

2.7857− 25.7836
]
.

We select the initial condition

x(0) =
[
− 0.3 0.2 0.02

]T,

and the initial estimates are given as β̂3(0) = β̂4(0) = β̂5(0) = 0.001. The system state
x(t) of System (3) is given in Figure 8. The sliding function s(t) is presented in Figure 9,
and the control input u(t)is shown in Figure 10. The adaptive parameters are depicted in
Figures 11–13.
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Figure 8. State trajectories of System (1) under the adaptive SMC law.
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Figure 9. Surface function s(t).



Fractal Fract. 2022, 6, 253 16 of 19

0 2 4 6 8 10

Time(s)

-8

-6

-4

-2

0

2

4

6

8

C
o

n
tr

o
l 

in
p

u
t

Figure 10. Adaptive SMC law u(t).
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Figure 11. Adaptive parameter β̂3(t).
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Figure 12. Adaptive parameter β̂4(t).
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Figure 13. Adaptive parameter β̂5(t).

5. Conclusions

In this paper, the SMC of SFOSs is studied by means of state feedback and output
feedback. By designing a special sliding surface, the sliding motion of the SFOS is a normal
FOS, which can be regarded as a new normalization method. A practical example and two
numerical examples are utilized to prove the correctness and validity of the conclusions.
The adaptive sliding mode design for Takagi-Sugeno fuzzy SFOSs by approximating the
neural network is interesting and will be our future research direction.
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Appendix A

Figure A1 shows the part of the simulation of Example 2. The uncertainty of A is given
in the MATLAB function module. The code of the main MATLAB function module is given
as follows:

function dx1 = fcn(x1,x2,x3,s1,u)
A=[-1 0 -1;0 0 0;0 -1 -1];
B=[1;0;1];
U=[1;0;0];
V1=[2 4 6];
OO=A+U*s1*V1;
dx1 =OO(1,1)*x1+OO(1,2)*x2+OO(1,3)*x3+B(1,1)*(u+x1*sin(x1));

where OO represents the uncertainty of matrix A. Figure A2 shows the fractional-order
model. Furthermore, Figure A2 shows the fractional module in Figure A1. In the simulation,
we can adjust the initial value of the fractional order system by changing the value in the
integration module.
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Figure A1. Part of the simulation of Example 2.
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Figure A1. Part of the simulation of Example 2

Figure A2. Fractional-order model.
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