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Abstract: This study is built on the relationship between inequality theory and fractional analysis.
Thanks to the new fractional operators and based on the proportional Caputo-hybrid operators,
integral inequalities containing new approaches are obtained for differentiable convex functions.
In the findings section, firstly, an integral identity is obtained and various integral inequalities are
obtained based on this identity. The peculiarity of the results is that a hybrid operator has been used
in inequality theory, which includes the derivative and integral operators together.
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1. Introduction

The definition of convex functions, which is one of the important concepts of inequality
theory, has been the focus of attention of many researchers because of the inequality and the
aesthetic structure it contains. The concept of inequalities and convexity have continued to
exist in the literature as inseparable pairs. In [1], Pecari¢ et al. have presented a collection of
classical and novel inequalities that can be widely applied in statistics, physics, engineering
sciences, applied sciences, and numerical analysis, as well as mathematical analysis. Many
famous inequalities such as Hermite-Hadamard, Ostrowski, Simpson, Minkowski, Jensen
and Young inequality and their various versions have become motivational points in the
work of researchers. In [2], the authors have proved some new Hadamard type inequalities
for m— and («, m)—functions. Further studies on m—convex functions that are general
forms of the convexity and the star-shaped functions, were obtained by Dragomir and
Toader in [3,4].

Another modification of convex functions is the concept of convexity in coordinates.
We recommend the articles [5-10] to the readers for obtaining more details on the concept of
coordinates convexity, the properties, and inclusions, different types of convexity in coordinates,
and various Hadamard-type integral inequalities obtained for these function classes.

As in all branches of mathematics, fractional analysis, which has recently shown its
effect in many fields such as physics, engineering sciences, mathematical biology, modeling,
control theory, chaos theory and optimization and has brought new orientations to all
of these fields, is based on the calculation of derivatives and integrals of arbitrary order.
The main motivation point of fractional analysis, which has its origins as long as classical
analysis, is to explain physical and mathematical phenomena with the help of operators of
fractional order. While fractional analysis sometimes provides convenience in the solutions
of real world problems, it sometimes causes serious optimization problems in the error
amounts of the solutions. The feature that gives this movement to fractional calculus is
the algebraic structures and properties of the new fractional derivative and associated
integral operators. The kernel structures of fractional derivative and integral operators
have differences in terms of features such as singularity, locality, and general form.
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We present to your attention some studies [11-27], including the innovative and
motivating findings of various researchers on inequalities, disease models, real world
problems and so on, through new concepts of fractional calculus.

2. Preliminaries

Let’s start with the definition of the concept of a convex function, which attracts
attention in many fields such as statistics, convex programming, numerical analysis and
approximation theory.

Definition 1 ([1]). The functionY : [c1, c2] — R, is said to be convex, if we have
Y(Ar+(1—A)s) <AY(r)+ (1 —A)Y(s)
forallr,s € [c1,cp] and A € [0,1].

Besides, the concept of convex function has many useful properties, it also forms the
basis of the Hermite-Hadamard (HH) inequality, one of the well-known fundamental and
famous inequalities in the literature. The HH inequality, which has the potential to produce
lower and upper bounds to the mean value of a convex function in the Cauchy sense, has
inspired many researchers in mathematical analysis with its applications. The statement of
this inequality is as follows.

If amapping Y : ] C R — R is a convex functionon [ and r,s € ], r < s, then

We recommend that readers refer to papers [2-10,28-31] for versions of the HH
inequality for different kinds of convex functions, its modification to co-ordinates, and its
expansions with the help of various new fractional integral operators.

The definition of the Riemann-Liouville fractional integral operator can be given as
following (see [32]):

Definition 2. Let x € L[, v]. The Riemann-Liouville fractional integrals ]Z+ and [, of order
a > Q with u > 0 are defined by

o) = gy [ G 0 ), x>

and
1

Jon() = i o= 2 s(e)dp, x < v

respectively, where T () is the Gamma function defined by T'(a) = [° e~ p*~'dp and ]2+K(x) =

]S,K(x) = x(x).
The following definition is very important for fractional calculus (see [33]).

Definition 3. Let « > Oand o ¢ {1,2,3,...},n = [a] + 1, f € AC"[a, b], the space of functions
having n-th derivatives absolutely continuous. The left-sided and right-sided Caputo fractional
derivatives of order w are defined as follows:

5 )
(D, £) (x) = r(nl_a) / (x{ t)i”ﬂﬂdt (x > a)
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and

L)
(‘Dy-f)(x) = L /( f (x <Db).

I'(n—a)) (t—x)xntl
X

Ifa =n € {1,2,3,...} and usual derivative f(")(x) of order 1 exists, then Caputo
fractional derivative (“D?, f) (x) coincides with f(")(x) whereas (‘DY f)(x) coincides with

£ (x) with exactness to a constant multiplier (—1)". In particular we have

(‘DY: f) (x) = (‘D) ) (x) = f(x),

wheren =1and o = 0.

The proportional Caputo hybrid operator, which was put forward as a non-local and
singular operator containing both derivative and integral operator parts in its definition,
and which is a simple linear combination of the Riemann-Liouville integral and the Caputo
derivative operators, is defined as follows (see [34]).

Definition 4. Let f : [ C R™ — R be a differentiable function on I°. Also let f and f' are locally
L! functions on I. Then, the proportional Caputo-hybrid operator may be defined as

t
[ — 1 ! —u
§DH ) = Fr—y 0/ (Ka(@)f (1) + Ko(a)f (7)) (t - 1) "dr

where « € [0,1] and Ko and Ky are functions satisfing

lim Ko(a) = 0; lim Ko(a) =1, Kp(a)#0, wae€(0,1]; 1)
a—07T a—1-
lim Ky(x) = 0; lim Kj()=1; Ky(a)#0, a€lo1). @)
a—0+ a—1-

Remark 1 (See [34]). We originally wrote this paper using the specific case

Ko(a,t) = at'™®
Ki(a,t) = (1—a)t*

which is afforded special attention in [35].

The main purpose of this study is to obtain an integral identity that is likely to
contribute to the field of inequalities with the help of the proportional-Caputo hybrid
operators and to prove new integral inequalities for the class of differentiable convex
functions based on this identity.

3. Findings
An important integral identity is emboided in the following lemma that will be useful
to prove the main findings as follows:

Lemma 1. Let f : I C RT — R be a twice differentiable function on 1°. Also let f and f' are
locally L' functions on I. Then, the following equality holds:

1 1

Ki(a) / 170 (b + (1 — £)x)dt + Ko(a) / 0 (ta + (1 — B)x)dt
0 0

1 1
+K1(zx)/tl”"f’(tx+ (1- t)b)dt+1<0(oc)/t1*“f”(tx+ (1—t)b)dt
0 0
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_Ki(a)f(a) + Ko(a)f'(a) _ Ka(@)f(x) + Ko(w)f'(x)

xX—a b—x
(S | D)
+r(2 )< (x o a)thx + (b o x)Z*lX

where o € [0,1], a < x < band Ky and Ky are functions satisfing the conditions (1) and (2).

Proof. With the above assumptions it can be written that

1
/tl—“f’(ta + (1 —t)x)dt
0

_ pfla -0y

! _/lf(tcH— (=09 1 oy
0

a—x a—x
0
— x o _
= - x—a/t f(ta+ (1 —t)x)dt
0
a
_ a 1—0(/ X—1u
T x—a  x—a xX—a a—x
X
fl@ 1 /
_ _J\a —& o\
— x—a+(x_a)2_“/(x u) " f(u)du. 3)
a
Similarly, we have
11—«

1
/ 0 (b 4 (1
0

Multiplying (3) by £}
we get

fryat = L@ 4

Ja—w wde @

X —da (x_ J

a)2—(X

and (4) by r )) respectively and adding them side by side,

1 1
a g Ko(a) Y
1_a O/tl f'(ta+ (1—t)x )dt+r(10_“)0/t1 f(ta+ (1 — t)x)dt
S N /)

+

1

1—a
+

«)
F(l—uc)( x—a+

e K @F@) + Ko@) f @) ®

(x—a)* *T(1-a) |/

1

_ ,m(Kl(a)f(a> + Ko()f'(a)) +

(x—a

[]/(Ki(“)f(”)4Fh(“)f%u))(xu)“du]

o D)
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Also, it is easy to see that

and similarly

1

o

0

Multiplying (7) b

we get

1
/tl_"‘f’(tx + (1 —t)b)dt
0

_ peflxt(1-nb)

At /f<<b>b><>d
_ _{(_chc+11?:§0/lt"‘f(tx—i—(l—t)b)dt
- () et
B ‘zf(fl (b 1_;)02“ /h<b_u)_“f(u)d”

b

1-a [ —wyf

(l’] _ x)Zfzx J

f'(x)
b—x +

(kx4 (1 — t)b)dt = —

¥ 1 and (7) by £

1
0 f (bx + (1 — t)b)dt
1—04/ f X+ ) +
0

_|_

+

By adding (5) and (8) and multiplying with I'(1 — a), we get the desired result.

O

1—¢x

o[ 45

06) 1—ua e
i (_”—x Tl <u>du)
_(b_x);@_,x) (Ki(a) f(x) + Ko(a) f'(x))
b
(b— x)i_”‘ﬁu —a) [/ (Ky (@) f () + Ko(a) f'()) (b — u)~"du
G (K Ko@) () + o 7D o)

1
10(“2() /tlf“f”(tx+ (1—t)b)dt

(6)

@)

respectively and adding them side by side,

®)
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Theorem 1. Let f : [ C RT — R be a twice differentiable function on I°. Also let f and f' are
locally L! functions on I. If f' and "' are convex on I, then the following inequality holds:

‘_ Ki(a)f(a) + Ko(a)f'(a) _ Ky(a)f(x) + Ko(a)f'(x)

xX—a b—x
- E2 , £510)
(x—a) (b—x)
< Ki@)|f'(a)] + Ko(a)|f"(a)] n Ky (a)|f'(b)| + Ko(a)|f" (b)]
- (3—u) B3—a)2—a)
+K1(0¢)|f'(x)| + Ko(a)|f" (%)
(2—a)

where o € [0,1], a < x < band Ky and Ky are functions satisfing the conditions (1) and (2).

Proof. From Lemma 1 and using properties of absolute value, we have

‘_ Ki(@)f(a) + Ko(@)f'(a) _ Ka(@)f(x) + Ko(a)f'(x)

X —a b—x

@) (chDW) . EEPCDZ‘f(b)> ‘

(x—a)>™  (b—x)*"

1
< Kl(a)/t1*“|f’(m+(1—t)x)|dt
’ 1
Ko () / 0 £ (b + (1 — £)x)|dt
0

1
an / 70| (b + (1 — £)b)|de
0

1

Ko () / B8 £ (kx4 (1 — £)b)|d. )
0

As f"and f" are convex functions on I, one can write

‘_ Ki(a)f(a) + Ko(a)f'(a) _ Ki(a)f(x) + Ko(a)f'(x)

X—a b—x
S L )
(x —a) (b—x)

1
< Kl(oc)/tl—“(t|f’(a)|+(1—t)]f’(x)])dt
0

1
Ko(w) / B (¢ (@) | + (1= O] (x)] )t
0

1

#Ka(@) [ B ()] + (1= D] (0

0

1
+Ko(w) [H (" 0]+ (1= ] )]t
0
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Namely,

‘_ Ki(@)f(a) + Ko(@)f'(a) _ Ki(@)f(x) + Ko(a)f'(x)

xX—a b—x

-2 1)
(x—a) (b—x)

1
= (K@]F )]+ Ko@) W) [ (A0 + 2
0

1

+(Ky (@) |f(a)] + Ko@) | (a)) /tz_”‘dt
0
1

+ (K ()| £ (B)| + Ko@) | (b)) /tl""(l .

0
The proof is completed by making the necessary calculations. []

ath

Corollary 1. Under the assumptions of Theorem 1, if we choose x = %%, then the following

inequality holds:

|‘ (K@f(@) + K@f@)  (K@s(5) +Ko@r(45))

b—a b—a

421707 (2 — a) (

Ky (a)|f"(a)] + Ko(a)|f" ()]
- 2(3—w)

Ki(@)|f'(b)] + Ko(@)|f" (D)]
2(3—a)(2 —a)
)

£(%52) |+ Kola)
2(2 — )

Theorem 2. Let f : [ C RT — R be a twice differentiable function on 1°. Also let f and f' are

locally L functions on L. If | f'| and | f"|" are convex on I, then the following inequality holds:

‘ Ki(@)f(a) + Ko(@)f'(a) _ Ki(@)f(x) + Ko(a)f'(x)

xX—a b—x

CPCD“M]‘(%) CPCDaf( )
+
(b—a)™" (-0

+

Ki(a)

_I_

[P () £DRf(D)
+F(2 ) ( (x o a)Zﬂx + (b o x)271x

1 1
< Ky () (|f'(a)| "(x)|7) "
< ((1vc)p+1)11’23{ 1@ (|7 @7+ £/ (0)])

Kol (177 @) + 7o)
+K@) ([F @)+ £ @)
@ (1l + @)

-
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where w € [0,1],a < x < b, p,q > 1 with % + % = 1 and Ko and K; are functions satisfing the
conditions (1) and (2).

Proof. By applying Holder’s inequality to (9), we get
‘_K1(w)f(ﬂ) +Ko(a)f'(a)  Ky(a)f(x) + Ko(a)f'(x)

X—a b—x
- (2 S|
(x —a) (b—x)

1 1 %
< Ki(a) {(/t(l“ﬁ’dt) (/|f’ (ta+ (1—t)x |th) }
0 0

1 1 %
+Ko(a) /tl “pdt /\f”(ta+(1—t |th) ]
0 0

1 i
t1=0pgy /|f’(tx +(1- t)b)|‘7dt) ]

=

+Ki (&)
0

[ /1 1 i
4 Ko(a) / t1-)pgp / £ (tx + (1 — t)b) |th> ] :
0

0

o .

==

Using convexity of |f’|7 and |f”|7, we have

’_ Ki(@)f(a) +Ko(@)f'(a) _ Ka(@)f(x) + Ko(a)f'(x)

X—a b—x

T2 a) (ngCsz(x) N EPCDz‘fw)) ‘

(x _ a)Zfac (b _ x)Zfzx

1 q
{ ( [(F@l+ () )dt)
(1=a)p+1)7 d
1 7
+Ko(a (/(t’f” ’q+ (1 —t)’f”(x)“)dt)
0

IN

1 i
/(tyf" \q+(1t)]f”(b)]q)dt) }
0
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With simple calculations, we get

’_ Ki(a)f(a) + Ko(a)f'(a)  Ky(a)f(x) + Ko(a)f'(x)

X —a b—x

i )
(x —a) (b—x)
1 F @I +1f )7\
< — K (o
i <<1«>p+1>v{ ()
anit ()1 % ()| / q %
ko) (LGN (AT
() |7 " q %
N CACIESTATIY }
which is the desired result. [
Corollary 2. Under the assumptions of Theorem 2, if we set x = %b, then the following inequal-
ity holds:
“ (@) @) + Ko@) (K@f(55) + Ko(ef ()
b—a b—a
e CO N =i 1
+2”‘F(2"‘)( (bZJ;S-; ) +(Tb b)i(«)) x 21— a)p+1)7

() i (5
f,(a;b) f"(a;b)

Theorem 3. Let f : I C R* — R be a twice differentiable function on I°. Also let f and f’ are
locally L' functions on L. If | f'|" and | f"|" are convex on I, then the following inequality holds:

‘_ Ki(@)f(a) + Ko(@)f'(a) _ Ka(a)f(x) + Ko(a)f'(x)

< Kl(vc)<!f/(a)!q "

q)%

q q
+ ’f"(b)’q> )

+1<1<oc)( "+ |f’(b)\q)$ +K0("<)(

X—a b—x

N TR AL T\ TS

(x _ a)ZﬂX (b _ x)Zﬂx

=

F@F @Y F@I ey
: {Kl("‘)<<3—a>+<z—a><3—a>> 0o (G20 as )

)

where w € [0,1],a < x < b,q > 1and Ky and K are functions satisfing the conditions (1) and (2).

FEF . FOP N I )
*Kl(“)(@—a)*(z—a)(z—a)) +KO(”((a—oc) *(z—oo(s—a))

<
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Proof. By applying power mean inequality to (9), we get

‘_ Ki(@)f(a) + Ko(a)f'(a)  Ky(a)f(x) + Ko(a)f'(x)

X—a b—x

B CPCDaf( ) EPCDZ‘f(b)
+T(2 oc)((x e + (b—x)2“") |
1 =7 /1 i
< Ki(a) tl’"dt) ( H8 f (ta+ (1 —t)x {th)
(J) (1
1 -7 /1 7
+Ko(a) /tHdt /tlf“}f”(twr (1- t)x)|"dt>
0 0
1 -3 /1 i
+Ky(a) | [ t1at H f (bx + (1 — £)b) Wt)
[ Al
1 -7 /1 i
+Ko(a) | [ t1*at tl_"“f”(tx+(1—t)b)|th> :
Jra) (]

Using convexity of |f'|7 and |f”|7, we have

’_ Ki(@)f(a) +Ko(@)f'(a) _ Ka(@)f(x) + Ko(a)f'(x)

X—a b—x

T2 a) <§PCsz<x> N EPCDZ“f(b)> ‘

(x o )2—0( (b . x)Z—tJL

)1 q{ ( fl “(t]f'(a |q+(1—f)|f'(x)|q>df)
1 G
Ko (a (/t1 “(¢]f"(a) t)\f”(x)|‘7)dt)
0
1 7
(/H “ t\f t)\f’(b)ﬁ)dt)
0

1 g
+Ko(w (/tl * t " (x) —t)|f”(b)|q>dt) }
0
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Making necessary calculations, we get

’_Kl(w)f(aHKo(vc)f’( ) _ Kale) ) + Kol @) f(x)
X —a b—
(CPCDaf CPCDacf ‘

= \f’()l" CN 7

§<“> oo (el )

11 q 11
i (L

P P\
r(55E 26w }

So, the proof is completed. O

O\ F@I . FB N\
3 «)) *Kl("‘)< 3—a +<2—o<><3—a>)

~— | —~

Corollary 3. Under the assumptions of Theorem 3, if we take x = %, then the following

inequality is valid:

b—a b—a

. uCPCD@f(uzib> cpcDaf() -
+2°7T(2 — ) b + (b—a)z . X (2—a) 7

(a q % 1 a+b %
Far, ()] rrar, ()
) {Kl(a) (3—a) * (2—a)3—u) * Ko(a) (3—a) " (2—a)(3—«)

R PR e )
(3—u) +(2—11)(3—0() +Ko(a) (3—a) +(2—0¢)(3—¢x) '

Theorem 4. Let f : [ C RT — R be a twice differentiable function on 1°. Also let f and f' are
locally L' functions on L. If | f'|" and | f"|" are convex on I, then the following inequality holds:

’ Ki(@)f(a) + Ko(@)f"(a) _ Ki(w)f(x) + Ko(a)f'(x)

‘_ (K@)f(a) + Ko(a)f'(@)  (Ki@)f (52) + Ko(@)f'(*5) )

+K1(D¢)

xX—a b—x

o[t | £7DR)
e )<<x—a>“ N
Z(K (“)"’KO( )) Kl("‘) / / /
p(l Sy Ty (F@F 2@+ o))

5 zq (@) 21 @)+ o))

<

where x € [0,1],a < x < b, % + % =1,q > 1and Ky and Ky are functions satisfing (1) and (2).
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Proof. Taking into account the Young inequality as mn < m + " in (9), we get

‘_ Ki(@)f(a) + Ko(@)f'(a) _ Ka(@)f(x) + Ko(a)f'(x)

X—a b—x

SPeDf(x) | §PODRF(D)
(x _ a)Zfzx (b _ x)Zfzx

1 1
< Ki(a) [;/tl’(l—"‘)dt+;/]f’(ta+ (1- t)x)\th]
0 0

+T'(2 — ) (

+Kp (Dé)

+Ki(a)

+K0 (0()

1 1
1 1
= p(1—a) = 17 _ q
po/t dt+q0/\f (ta+ (1—t)x)| dt]
1 1
1 1
2 O=m g = [ F (x4 (1 — £)b)|7dt
po/ q0/|f( (1 t)b)|

- 1 1

1 1

= [ p(1-a) - " — q
p/t dt+q0/\f (tx + (1 t)b)\dt].

L 0

Using convexity of |f/|7 and |f”|7, we have

- e) - Ko ) _ Ko + Kol ()
ol )

< 1<1<a>[ e +;O/l (tf'(a <x>|q)dt]
Kola >_M+f]o/l(t!f” @[+ =0 @)]")d ]
K () pz(l_l)ﬂ, + 0/1 (@I +a-n !f’(b>|q)df]
+Ko () pz(l_lHP + 0/1 (el ()" + (1 - f)}f”(b)V)df] -

By making necessary computations, we get

RECILEICID

_ Ky(a)f(x) + Ko(a)f' ()

+T(2—a) (“

X—a b—x

¢PCDEf (b)
P (oo x>“> ‘

i CDYf (x)

S LUTENL Y

p>(1—a)+p 29

1 L@l If”(X)Iq}

p?(1—a)+p 2q

1 GOl If’(b)q]

p>(1—a)+p 2q
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References

1 ()T + | f"(b)]
@ | Ty T 2q }

which completes the proof. [

Corollary 4. Under the assumptions of Theorem 4, if we select x = ”é—b, then we have

Ki(@)f(a) + Ko(e)f'(a)  Kr@)f(52) + Ko(e)f' ()

b—a b—a
creps, f(52) D)
ey <2><“2 ) o
! b 1 !
o) B0 (1) o)
q
el (!f”(a)\"+2 f”(”gb)] =10,

Remark 2. Several special cases can be considered by choosing the functions Ko(«) and Ky («) as
in Remark 1.

4. Conclusions

The main motivation point of studies in the field of inequality theory is to obtain new
and general inequalities. Different kinds of convex functions, some classical inequalities
such as Holder’s inequality, Power-mean inequality, Young’s inequality, and basic mathe-
matical analysis methods are used to create some known inequalities in the literature and
various new versions of these inequalities. Recent developments in the field of fractional
analysis have also affected the field of inequalities, and several new studies have been
performed to optimize the bounds with the help of different fractional integral operators.
Within the scope of the study, it is aimed to prove various new inequalities by using propor-
tional Caputo-hybrid fractional operators for differentiable convex functions. With the help
of this new operator, which we used for the first time in the field of inequalities, new results
can be produced for different kinds of convex functions and different types of inequalities.
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