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Abstract: The fractional Fisher equation has a wide range of applications in many engineering fields.
The rapid numerical methods for fractional Fisher equation have momentous scientific meaning and
engineering applied value. A parallelized computation method for inhomogeneous time-fractional
Fisher equation (TFFE) is proposed. The main idea is to construct the hybrid alternating segment
Crank-Nicolson (HASC-N) difference scheme based on alternating segment difference technology,
using the classical explicit scheme and classical implicit scheme combined with Crank-Nicolson (C-N)
scheme. The unique existence, unconditional stability and convergence are proved theoretically.
Numerical tests show that the HASC-N difference scheme is unconditionally stable. The HASC-N
difference scheme converges to O(τ2−α + h2) under strong regularity and O(τα + h2) under weak
regularity of fractional derivative discontinuity. The HASC-N difference scheme has high precision
and distinct parallel computing characteristics, which is efficient for solving inhomogeneous TFFE.

Keywords: inhomogeneous TFFE; HASC-N difference scheme; unconditional stability; convergence
order; numerical tests

1. Introduction

The time fractional Fisher equation (TFFE) is a nonlinear physical model with linear
diffusion and nonlinear growth. Derived from population dynamics, chemical dynamics
and other fields, it describes phenomena such as mutant gene reproduction, nonlinear
evolution of population and autocatalytic chemical reaction [1,2]. Exact solutions of TFFE
are difficult to be given explicitly and most of them contain special functions, such as the
multivariable Mittag-Leffler function [3–5]. In the past two decades, with the deepening
of the application of TFFE, the rapid numerical solution for TFFE has become an urgent
research work [6,7].

At present, the finite difference method is still the more widely used and mature
numerical method for solving TFFE. The finite difference method can achieve the preci-
sion and stability of simulation requirements well [8]. Zhang et al. (2014) [9] constructed
a fully discrete scheme of TFFE by combining the finite difference method and locally
discontinuous Galerkin finite element method, and discussed the stability and error es-
timation of the method. Alquran et al. (2015) [10] numerically solved the TFFE based on
the self-collocation method and finite difference method, and analyzed the analytical and
numerical solutions of the equation. Mejía and Piedrahita (2019) [11] proposed an implicit
finite difference scheme for approximating TFFE with variable coefficients, and the numeri-
cal results verified the correctness of the theoretical analysis. There are also many research
results on other numerical solutions of TFFE [12–15], but in most of the above numerical
methods, computational efficiency has not been paid enough attention.

Due to the improvement of cluster technology and the increasing number of CPU
cores, the parallelized numerical method has become one of the main methods for fast
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computing [16,17]. For the past few years, parallel computing has been widely used in the
field of rapid numerical solutions for fractional partial differential equations (FPDEs). At
present, there are three kinds of parallel algorithms using fractional differential equations:
algebraic parallel algorithm, Parareal algorithm and parallel difference scheme.

Based on the algebraic parallel algorithm, Gong et al. (2013) [18] came up with
a parallelized calculation method of explicit difference schemes for fractional reaction-
diffusion equations, which was mainly used for parallel calculation of matrix and vector
in algebraic matrix equation. Sweilam et al. (2014) [19] proposed an algebraic parallel
algorithm for the time-fractional parabolic equation. This method solved the algebraic
equation matrix after discrete-time in parallel. Biala and Khaliq (2018) [20] developed a
C-N scheme similar to integer-order parabolic equations for nonlinear spatio-temporal
fractional parabolic equations, and used the precursor-correction method respectively in
MPI, OpenMP and Hybrid Version.

Using Parareal algorithm, Fu and Wang (2019) [21] constructed a Parareal algo-
rithm to solve the space-time FPDE that models an anomalous diffusion process in a
one-dimensional tube. The numerical advantages of the traditional Parareal algorithm
were well preserved in this method. Yue et al. (2019) [22] proposed a multi-grid time reduc-
tion (MGRIT) algorithm based on time-varying time-grid propagators for two-dimensional
fractional diffusion equations, and presented the two-level convergence theory of the algo-
rithm. Liu et al. (2020) [23] proposed the finite volume method for time-varying fractional
parabolic equations, and parallelized it with the parallel-In-time method to improve the
computational efficiency of the finite volume method. Based on the Parareal method, Lorin
(2020) [24] constructed the Parareal-Gorenflo algorithm for space-time FPDEs, and the
spatial parallelization of this method relied on the parallelization of Riesz derivative and
fast Fourier transform.

For the study of parallel difference schemes, Wang et al. (2016) [25] parallelized
the implicit difference scheme of the Caputo fractional reaction-diffusion equation, and
changed the serial algorithm to parallel as far as possible without changing the original
serial difference scheme, to reasonably allocate computing tasks. Yang and Wu (2020) [26]
proposed a parallel nature difference method for a multi-term time-fractional diffusion
equation and proved that the method was unconditionally stable and convergent through
theoretical analysis. Numerical experiments showed that the scheme proposed by Yang
and Wu is an efficient scheme for the multi-term time-fractional diffusion equation.

To solve the problem of large computation of fractional Fisher parabolic equation, we
explore the parallelization of the difference scheme for the inhomogeneous TFFE. A new
parallelized computation method is proposed by using an alternate technique appropriately,
which ensures the unconditional stability and spatial convergence order O(h2) of the new
algorithm, and is easy to be used in many types of parallel machines.

2. HASC-N Difference Scheme for Inhomogeneous TFFE
2.1. Inhomogeneous Time Fractional Fisher Equation

Consider the inhomogeneous TFFE as follows [27–29]:
∂αu(x,t)

∂tα = ∂2u(x,t)
∂x2 + u(x, t)(1− u(x, t)) + g(x, t), (x, t) ∈ (0, L)× (0, T],

u(x, 0) = φ(x), x ∈ [0, L],
u(0, t) = ϕ1(t), u(L, t) = ϕ2(t), t ∈ (0, T],

(1)

where φ(x), ϕ1(t), ϕ2(t) are the given functions with suitable smoothness. The nonlinear
source term u(1− u) is a nonlinear function, 0 < α ≤ 1.

For brevity, let f (u(x, t), x, t) = u(1− u) be Lipschitz continuous with respect to
u, and there exists a Lipschitz coefficient l such that | f (u1)− f (u2)| ≤ l|u1 − u2|. The
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inhomogeneous term g(x, t) is a known function independent of u. ∂αu(x,t)
∂tα is the fractional

derivative in the sense of Caputo:

∂αu(x, t)
∂tα

=
1

Γ(1− α)

∫ t

0

∂u(x, s)
∂τ

ds
(t− s)α , 0 < α < 1, (2)

where Γ(•) is the Gamma function. When α = 1, equation is

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 + u(x, t)(1− u(x, t)). (3)

The above Equation (3) is called the classical Fisher equation in general. As α tends
to 1, according to the conclusion in reference [30,31], solution u(x, t) of TFFE tends to
ũ(x, t)(ũ(x, t) is the solution of the classical Fisher equation).

2.2. Construction of HASC-N Difference Scheme for Inhomogeneous TFFE

To construct the HASC-N difference scheme of inhomogeneous TFFE (1), the solution
region Ω = {(x, t)|0 ≤ x ≤ L, 0 ≤ t ≤ T} is meshed. Take the space step h = L

M and
time step τ = T

N ,where M and N are positive integers. Thus, xj = jh(j = 1, 2, . . . , M),
Mh = L, tk = kτ(k = 1, 2, . . . , N), Nτ = T and the grid node is (xj, tk). Define uk

j = u(xj, tk),

f k
j = f (u(xj, tk), xj, tk), gk

j = g(xj, tk).

Lemma 1 ([7,32]). Suppose 0 < α < 1, let y ∈ C2[0, tn]. Then

1
Γ(1−α)

∫ tn
0

y′(ξ)dξ

(t−ξ)α − τ−α

Γ(2−α)
[yn −

n−1
∑

k=1
(ln−k−1 − ln−k)yk − ln−1y0]

≤ 1
Γ(2−α)

[ 1−α
12 + 22−α

2−α − (1 + 2α)] max
0≤t≤tn

|y′′(t)|τ2−α,
(4)

where li = (i + 1)(1−α) − i(1−α), i = 0, 1, 2, · · · , N.

The discrete formula is defined by Lemma 1:

Dα
t u(xj, tk+1) =

τ−α

Γ(2− α)

(
l0u(xj, tk+1)−

k

∑
i=1

(li−1 − li)u(xj, tk−i+1)− lku(xj, t0)

)
. (5)

The method of processing nonlinear source term f (u) is derived from references [33,34]:

f k
j = 2 f k−1

j − f k−2
j + O(τ2). (6)

Define the space second derivative discrete formula:

δ2
xuk

j :=
1
h2

(
uk

j−1 − 2uk
j + uk

j+1

)
, (7)

δ2
xuk+1

j :=
1
h2

(
uk+1

j−1 − 2uk+1
j + uk+1

j+1

)
, (8)

Duk
j :=

1
2h2

(
uk+1

j−1 − 2uk+1
j + uk+1

j+1 + uk
j−1 − 2uk

j + uk
j+1

)
. (9)

Three difference schemes are obtained:
Classical explicit scheme,

Dα
t u(xj, tk+1) = δ2

xuk
j + f k

j + gk
j . (10)
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Classical implicit scheme,

Dα
t u(xj, tk+1) = δ2

xuk+1
j + f k+1

j + gk+1
j . (11)

Classical C-N scheme,

Dα
t u(xj, tk+1) = Duk

j + f k+ 1
2

j + gk+ 1
2

j . (12)

Further collate the above three difference schemes, we get

uk+1
j = auk

j−1 + (b1 − 2a)uk
j + auk

j+1 +
k

∑
i=2

biuk−i+1
j + lku0

j + c f k
j + cgk

j , (13)

− auk+1
j−1 + (1 + 2a)uk+1

j − auk+1
j+1 = b1uk

j +
k

∑
i=2

biuk−i+1
j + lku0

j + c f k+1
j + cgk+1

j , (14)

− a
2

uk+1
j−1 + (1 + a)uk+1

j − a
2

uk+1
j+1 =

a
2

uk
j−1 + (b1 − a)uk

j +
a
2

uk
j+1 +

k

∑
i=2

biuk−i+1
j + lku0

j + c f k+ 1
2

j + cgk+ 1
2

j , (15)

where bj=lj−1 − lj, c = ταΓ(2− α), a = c
h2 .

According to the thought in references [35,36], the HASC-N difference scheme for
inhomogeneous TFFE (1) is constructed:

M + 1 points are taken at each time layer, except for the first point and the M + 1
point on the boundary, the remaining M− 1 points to be calculated at the same layer are
divided into B segments (B is odd without losing generality). If there are n points in each
segment, nB = M− 1 (n and B are positive integers and n ≥ 3, B ≥ 3). The classical explicit
scheme and classical implicit scheme are used alternately at the boundary points of two
adjacent time layers. At the inner boundary points of two adjacent time layers, the classical
explicit scheme and the classical implicit scheme are used alternately. The C-N scheme is
used at the remaining points of two adjacent time layers. • is the classical explicit scheme,
© is the classical implicit scheme, and � is the classical C-N scheme. HASC-N difference
scheme construction principle is shown in Figure 1:

Figure 1. Construction principle of HASC-N difference scheme.

The HASC-N difference scheme for inhomogeneous TFFE (1) can be as follows:
(I + A1G)Uk+1 = (b1 I − A2G)Uk + ck +

k
∑

i=2
biUk−i+1 + lkU0 + cA1Fk+1 + cA2Fk,

(I + A2G)Uk+2 = (b1 I − A1G)Uk+1 + ck+1 +
k+1
∑

i=2
biUk−i+2 + lk+1U0 + cA2Fk+2 + cA1Fk+1,

k = 0, 2, 4 · · · (16)

where
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G =



2a −a
−a 2a −a

−a 2a −a
. . . . . . . . .

−a 2a −a
−a 2a


(M−1)×(M−1)

A1 =



θ1
θ2

θ3
. . .

θM−2
θM−1


(M−1)×(M−1)

θj =


0, j = n, 2n, ..., (B− 1)n,
1, j = n + 1, 2n + 1, ..., (B− 1)n + 1,
1
2 , elsewhere.

Uk =
(

uk
1, uk

2, · · · , uk
M−1

)T
, ck =

(
auk

0, 0, · · · , 0, auk
M

)T
, f k = ( f k

1 , f k
2 , ..., f k

M−1)
T ,

gk = (gk
1, gk

2, ..., gk
M−1)

T , Fk = f k + gk, A2 = I − A1, I is identity matrix.

3. Existence and Uniqueness of Solution to HASC-N Difference Scheme for
Inhomogeneous TFFE

Lemma 2. The matrices A1G and A2G in HASC-N difference scheme (16) are non-negative
definite matrices.

Proof. According to

A1G =



2θ1a −θ1a
−θ2a 2θ2a −θ2a

−θ3a 2θ3a −θ3a
. . . . . . . . .

−θM−2a 2θM−2a −θM−2a
−θM−1a 2θM−1a


(M−1)×(M−1)

, (17)

we get that A1G is the diagonally dominant tridiagonal matrix, and the main diagonal
elements are non-negative real numbers, So A1G is a non-negative definite matrix. Similarly,
A2G is a non-negative definite matrix. Lemma 2 is proved.

Theorem 1. The solution of HASC-N difference scheme (16) for inhomogeneous TFFE (1) is
existing and unique.

Proof. According to Lemma 2, the inverse matrices (I + A1G)−1 and (I + A2G)−1 of
I + A1G and I + A2G exist, the HASC-N difference scheme (16) has a unique solution.
Therefore, the Theorem 1 is proved.

4. Stability of HASC-N Difference Scheme for Inhomogeneous TFFE

Theorem 2. The HASC-N difference scheme (16) for inhomogeneous TFFE (1) is uncondition-
ally stable.

Proof. Assume that uk
j is the HASC-N difference scheme solution for inhomogeneous

TFFE (1), Uk
j is the approximate solution of HASC-N difference scheme for inhomogeneous

TFFE (1). Error εk
j is defined as εk

j = Uk
j − uk

j , let εk
0 = εk

M = 0, Ek =
(

εk
1, εk

2, · · · , εk
M−1

)
,
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k = 0, 1, 2, · · · , N. Substitute the approximate solution Uk
j of HASC-N difference scheme

and the HASC-N difference scheme solution uk
j into scheme (16), respectively, to get two

equations, and make the difference between the two equations, we get
(I + A1G)Ek+1 = (b1 I − A2G)Ek +

k
∑

i=2
biEk−i+1 + lkE0 + cA1( f

k+1 − f k+1) + cA2( f
k − f k),

(I + A2G)Ek+2 = (b1 I − A1G)Ek+1 +
k+1
∑

i=2
biEk−i+2 + lk+1E0 + cA2( f

k+2 − f k+2) + cA1( f
k+1 − f k+1),

k = 0, 2, 4 · · · (18)

where f k = ( f k
1 , f k

2 , . . . , f k
M), f

k
= ( f

k
1, f

k
2, . . . , f

k
M), f

k
j = f (uk

j , xj, tk).
Since f (u, x, t) satisfifies the Lipschitz condition l, there is the Lipschitz conditional

constant, we have ∣∣∣ f k − f k
∣∣∣ ≤ l

∣∣∣Uk − uk
∣∣∣ ≤ l

∣∣∣Ek
∣∣∣. (19)

Substitute Equation (19) into Equation (18) and we get
((I − lcA1) + A1G)Ek+1 ≤ ((b1 I + lcA2)− A2G)Ek +

k
∑

i=2
biEk−i+1 + lkE0,

((I − lcA2) + A2G)Ek+2 ≤ ((b1 I + lcA1)− A1G)Ek+1 +
k+1
∑

i=2
biEk−i+2 + lk+1E0.

k = 0, 2, 4 · · · (20)

So for simplicity, let αθj = lcθj, βθj = lc
(
1− θj

)
, we have

(
(1− αθj)I + A1G

)
Ek+1 ≤

(
(b1 + βθj)I − A2G

)
Ek +

k
∑

i=2
biEk−i+1 + lkE0,(

(1− βθj)I + A2G
)

Ek+2 ≤
(
(b1 + αθj)I − A1G

)
Ek+1 +

k+1
∑

i=2
biEk−i+2 + lk+1E0.

k = 0, 2, 4 · · · (21)

Define norm
∥∥∥Uk

∥∥∥ =
∥∥∥Uk

∥∥∥
∞
= max

1≤j≤(M−1)

{∣∣∣uk
j

∣∣∣}. Known by the definition of matri-

ces A1, A2, G, A1G and A2G5 are non-negative definite matrices, and they have different
non-negative characteristic values. Let the characteristic value of A1G be λj and the charac-
teristic value of A2G be γj,

∣∣λj
∣∣ ≤ H1,

∣∣γj
∣∣ ≤ H2, H1 and H2 are constants, γj = λj + Kj, Kj

is constant, j = 1, 2, . . . , M− 1.
According to reference [14], there is an unequal relationship between the time process

T of the TFFE and Lipschitz coefficient l. Assume that in the unequal relation between
time process T and Lipschitz coefficient l, the following inequality holds: 2l1 − 1 ≤ αθj ≤
min

{
1, λj

}
,(2l1 − 1) + Kj ≤ βθj ≤ min

{
1 + Kj, γj

}
,where γj = λj + Kj. This is bound to

affect the length of time process T, however, in order to ensure the stability of HASC-N
scheme, the following proofs are carried out under the premise that the above assumption
is true. The results of numerical tests also confirm the feasibility of this assumption.

We will prove
∥∥∥Ek

∥∥∥ ≤ ∥∥E0
∥∥ by mathematical induction.

When k = 0, namely


(
(1− αθj)I + A1G

)
E1 ≤

(
(b1 + βθj)I − A2G

)
E0,(

(1− βθj)I + A2G
)

E2 ≤
(
(b1 + αθj)I − A1G

)
E1 + l1E0.

Firstly, We discuss
(
(1− αθj)I + A1G

)
E1 ≤

(
(b1 + βθj)I − A2G

)
E0. Solve for E1 and

take the norm of both sides, we get∥∥E1
∥∥ ≤ ∥∥∥∥((1− αθj)I + A1G

)−1(
(b1 + βθj)I − A2G

)
E0
∥∥∥∥ ≤ max

{∣∣∣∣ (b1+βθj
)−γj

(1−αθj
)+λj

∣∣∣∣}∥∥E0
∥∥.

Case 1, b1 + βθj > γj,

max

{∣∣∣∣∣ (b1 + βθj)− γj

(1− αθj) + λj

∣∣∣∣∣
}
≤

(b1 + βθj)− γj

(1− αθj) + λj
≤

1− (γj − βθj)

1 + (λj − αθj)
≤ 1. (22)
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Case 2, b1 + βθj ≤ γj,

max

{∣∣∣∣∣ (b1 + βθj)− γj

(1− αθj) + λj

∣∣∣∣∣
}
≤

γj − (b1 + βθj)

λj + (1− αθj)
≤ 1. (23)

According to (22) and (23), we have max
{∣∣∣∣ (b1+βθj

)−λj

(1−αθj
)+λj

∣∣∣∣} ≤ 1,
∥∥E1

∥∥ ≤ ∥∥E0
∥∥.

Secondly, we discuss
(
(1− βθj)I + A2G

)
E2 ≤

(
(b1 + αθj)I − A1G

)
E1 + l1E0. Solve

for E2 and take the norm of both sides, we get∥∥E2
∥∥ ≤ ∥∥∥∥((1− βθj)I + A2G

)−1
[
(
(b1 + αθj)I − A1G

)
E1 + l1E0]

∥∥∥∥
≤ max

{∣∣∣∣∣
∣∣∣(b1+αθj

)−λj

∣∣∣+l1
(1−βθj

)+γj

∣∣∣∣∣
}∥∥E0

∥∥.

Case 1, b1 + αθj > λj,

max


∣∣∣∣∣∣
∣∣∣(b1 + αθj)− λj

∣∣∣+ l1
(1− βθj) + γj

∣∣∣∣∣∣
 ≤ (b1 + αθj)− λj + l1

(1− βθj) + γj
=

1− (λj − αθj)

1 + (γj − βθj)
≤ 1. (24)

Case 2, b1 + αθj ≤ λj,

max


∣∣∣∣∣∣
∣∣∣(b1 + αθj )− λj

∣∣∣+ l1
(1− βθj ) + γj

∣∣∣∣∣∣
 ≤ λj − (b1 + αθj ) + l1

(1− βθj ) + γj
=

λj −
(
(1− 2l1) + αθj

)
λj + (1 + Kj − βθj )

≤ 1. (25)

According to (24) and (25), we have max

{∣∣∣∣∣
∣∣∣(b1+αθj

)−λj

∣∣∣+l1
(1−βθj

)+γj

∣∣∣∣∣
}
≤ 1,

∥∥E2
∥∥ ≤ ∥∥E0

∥∥.

Finally, assuming that the previous layers are all true, namely
∥∥∥Ek

∥∥∥ ≤ ∥∥E0
∥∥.

When the time layer is layer k + 1 and layer k + 2,
(
(1− αθj)I + A1G

)
Ek+1 ≤

(
(b1 + βθj)I − A2G

)
Ek +

k
∑

i=2
biEk−i+1 + lkE0,(

(1− βθj)I + A2G
)

Ek+2 ≤
(
(b1 + αθj)I − A1G

)
Ek+1 +

k+1
∑

i=2
biEk−i+2 + lk+1E0.

Solve for Ek+1 and Ek+2 and take the norm of both sides, we get
∥∥∥Ek+1

∥∥∥ ≤ ∥∥∥∥((1− αθj )I + A1G
)−1

[
(
(b1 + βθj )I − A2G

)
Ek +

k
∑

i=2
biEk−i+1 + lkE0]

∥∥∥∥,∥∥∥Ek+2
∥∥∥ ≤ ∥∥∥∥((1− βθj )I + A2G

)−1
[
(
(b1 + αθj )I − A1G

)
Ek+1 +

k+1
∑

i=2
biEk−i+2 + lk+1E0]

∥∥∥∥.

According to
∥∥∥Ek

∥∥∥ ≤ ∥∥E0
∥∥ and bj=lj−1 − lj, we get∥∥∥Ek+1

∥∥∥ =

∥∥∥∥((1− αθj)I + A1G
)−1

[
(
(b1 + βθj)I − A2G

)
Ek +

k
∑

i=2
biEk−i+1 + lkE0]

∥∥∥∥
=

∥∥∥∥((1− αθj)I + A1G
)−1

[
(
(b1 + βθj)I − A2G

)
Ek + b2Ek−1 + · · ·+ bkE1 + lkE0]

∥∥∥∥
≤
∥∥∥∥((1− αθj)I + A1G

)−1
[
(
(b1 + βθj)I − A2G

)
E0 + b2E0 + · · ·+ bkE0 + lkE0]

∥∥∥∥
=

∥∥∥∥((1− αθj)I + A1G
)−1

[
(
(b1 + βθj)I − A2G

)
E0 + l1E0]

∥∥∥∥
≤
∥∥∥∥((1− αθj)I + A1G

)−1
[
(
(b1 + βθj)I − A2G

)
+ l1]

∥∥∥∥∥∥E0
∥∥

≤ max

{∣∣∣∣∣
∣∣∣(b1+βθj

)−γj

∣∣∣+l1
(1−αθj

)+λj

∣∣∣∣∣
}∥∥E0

∥∥.
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Case 1, b1 + αθj > λj,

max


∣∣∣∣∣∣
∣∣∣(b1 + βθj)− γj

∣∣∣+ l1
(1− αθj) + λj

∣∣∣∣∣∣
 ≤ (b1 + βθj)− γj + l1

(1− αθj) + λj
=

1− (γj − βθj)

1 + (λj − αθj)
≤ 1. (26)

Case 2, b1 + αθj ≤ λj,

max


∣∣∣∣∣∣
∣∣∣(b1 + βθj)− γj

∣∣∣+ l1
(1− αθj) + λj

∣∣∣∣∣∣
 ≤ γj − (b1 + βθj) + l1

(1− αθj) + λj
=

λj −
(
(1− 2l1) + βθj − Kj

)
λj + (1− αθj)

≤ 1. (27)

According to (26) and (27), we have max

{∣∣∣∣∣
∣∣∣(b1+βθj

)−γj

∣∣∣+l1
(1−αθj

)+λj

∣∣∣∣∣
}
≤ 1,

∥∥∥Ek+1
∥∥∥ ≤ ∥∥E0

∥∥.

Similarly, according to
∥∥∥Ek+1

∥∥∥ ≤ ∥∥E0
∥∥ and bj=lj−1 − lj, we get∥∥∥Ek+2

∥∥∥ =

∥∥∥∥((1− βθj )I + A2G
)−1

[
(
(b1 + αθj )I − A1G

)
Ek+1 +

k+1
∑

i=2
biEk−i+2 + lk+1E0]

∥∥∥∥
=

∥∥∥∥((1− βθj )I + A2G
)−1

[
(
(b1 + αθj )I − A1G

)
Ek+1 + b2Ek + · · ·+ bk+1E1 + lk+1E0]

∥∥∥∥
≤
∥∥∥∥((1− βθj )I + A2G

)−1
[
(
(b1 + αθj )I − A1G

)
E0 + b2E0 + · · ·+ bk+1E0 + lk+1E0]

∥∥∥∥
=

∥∥∥∥((1− βθj )I + A2G
)−1

[
(
(b1 + αθj )I − A1G

)
E0 + l1E0]

∥∥∥∥
≤
∥∥∥∥((1− βθj )I + A2G

)−1
[
(
(b1 + αθj )I − A1G

)
+ l1]

∥∥∥∥∥∥E0
∥∥

≤ max

{∣∣∣∣∣
∣∣∣(b1+αθj )−λj

∣∣∣+l1
(1−βθj )+γj

∣∣∣∣∣
}∥∥E0

∥∥ ≤ ∥∥E0
∥∥.

In summary, stability is proved.

5. Convergence of HASC-N Difference Scheme for Inhomogeneous TFFE

Lemma 3 ([6]). Suppose 0 < α < 1, let y ∈ C2[0, tn+1]. Then we have
∂α+1y(tn+1)

∂tα+1 = 1
Γ(1−α)

∫ t
0

∂2y(ξ)
∂ξ2

dξ
(tn+1−ξ)α = 1

Γ(1−α)

n
∑

j=0

∫ (j+1)τ
jτ

∂2y(ξ)
∂ξ2

dξ
(tn+1−ξ)α

≤ 1
Γ(1−α)

max
0≤t≤tn+1

{∣∣∣ ∂2y(t)
∂t2

∣∣∣} n
∑

j=0

∫ (j+1)τ
jτ

dξ
(tn+1−ξ)α =

Cy
Γ(1−α)

n
∑

j=0

∫ (j+1)τ
jτ

dξ
(tn+1−ξ)α .

=
Cyτ1−α

Γ(2−α)

n
∑

j=0

∫ (j+1)τ
jτ

[
(n + 1− j)1−α − (n− j)1−α

]
≤ (n+1)1−αCy

Γ(2−α)
τ1−α,

where Cy = max
0≤t≤tn+1

{∣∣∣ ∂2y(t)
∂t2

∣∣∣}.

The solution of the inhomogeneous TFFE (1) satisfies the strong regularity condition
as follows,

∂γu
∂tγ
∈ C([0, L]× [0, T]),

∂δu
∂xδ
∈ C([0, L]× [0, T]), (28)

where γ ∈ {1, 2} and δ ∈ {0, 1, 2, 3, 4}.
Consider the explicit scheme on the time layer k + 1,

Dα
t u(xj, tk+1) =

1
h2 (u

k
j−1 − 2uk

j + uk
j+1) + Fk

j , (29)

and the implicit scheme on the time layer k + 2,

Dα
t u(xj, tk+2) =

1
h2 (u

k+2
j−1 − 2uk+2

j + uk+2
j+1 ) + Fk+2

j . (30)
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Taylor expansion is performed at uk+1
j for scheme (29) and scheme (30) to obtain

truncation error,

R1(τ, h) =
∂αu(xj, tk+1)

∂tα
− uxx + τuxxt −

1
12

h2uxxxx − τ
∂F(u)

∂t
+ O(τ2−α + h2), (31)

R2(τ, h) =
∂αu(xj, tk+1)

∂tα
+ τ

∂α+1u(xj, tk+1)

∂tα+1 − uxx − τuxxt −
1

12
h2uxxxx + τ

∂F(u)
∂t

+ O(τ2−α + h2). (32)

Consider the C-N scheme on the time layer k + 1,

Dα
t u(xj, tk+1) =

1
2h2 (u

k+1
j−1 − 2uk+1

j + uk+1
j+1 + uk

j−1 − 2uk
j + uk

j+1) +
1
2

(
Fk+1

j + Fk
j

)
, (33)

and the C-N scheme on the time layer k + 2,

Dα
t u(xj, tk+2) =

1
2h2 (u

k+2
j−1 − 2uk+2

j + uk+2
j+1 + uk+1

j−1 − 2uk+1
j + uk+1

j+1 ) +
1
2

(
Fk+2

j + Fk+1
j

)
. (34)

Taylor expansion is performed at uk+1
j for scheme (33) and scheme (34) to obtain

truncation error,

R3(τ, h) =
∂αu(xj, tk+1)

∂tα
− uxx +

τ

2
uxxt −

1
12

h2uxxxx −
τ

2
∂F(u)

∂t
+ O(τ2−α + h2), (35)

R4(τ, h) =
∂αu(xj, tk+1)

∂tα
+ τ

∂α+1u(xj, tk+1)

∂tα+1 − uxx −
τ

2
uxxt −

1
12

h2uxxxx +
τ

2
∂F(u)

∂t
+ O(τ2−α + h2). (36)

According to Lemma 1, the calculation precision of
∂αu(xj ,tk+1)

∂tα is O(τ2−α), the calcu-

lation precision of τ
∂α+1u(xj ,tk+1)

∂tα+1 is also O(τ2−α) according to Lemma 3. By using explicit
and implicit schemes alternately at the inner boundary points of adjacent time layers, two
basic error components with opposite signs are generated, and the two partially cancel
each other, so as to obtain ideal calculation precision.

Add (31) and (32) to get

R1(τ, h) + R2(τ, h) = 2
∂αu(xj ,tk+1)

∂tα + τ
∂α+1u(xj ,tk+1)

∂tα+1 − 2uxx − 1
6 h2uxxxx + O(τ2−α + h2).

At the inner boundary points, the calculation precision is O(τ2−α + h2). Similarly, C-N
scheme is alternately used at interior points of adjacent time layers, (35) and (36) are added to

obtain R3(τ, h) + R4(τ, h) = 2
∂αu(xj ,tk+1)

∂tα + τ
∂α+1u(xj ,tk+1)

∂tα+1 − 2uxx− 1
6 h2uxxxx +O(τ2−α + h2).

So the precision at the interior points is also O(τ2−α + h2).

Theorem 3. Assuming that the solution of Equation (1) satisfies the strong regularity condi-
tion (28), the HASC-N difference scheme (16) for inhomogeneous TFFE (1) is convergent, and
‖en‖ ≤ C(τ2−α + h2), n = 1, 2, · · · , N, C > 0.

Proof. Let Uk
j = U(xj, tk) be the exact solution of inhomogeneous TFFE (1) at t = tk,

x = xj under strong regularity. Define ek
j = Uk

j − uk
j , 1 ≤ j ≤ M − 1, ek

0 = ek
M = 0,

ek = (ek
1, · · · , ek

M−1), e0 = 0.
Substitute the exact solution Uk

j and the HASC-N difference scheme solution uk
j into

scheme (16), respectively, to get two equations, and make the difference between the two
equations, we get
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(I + A1G)ek+1 = (b1 I − A2G)ek +

k
∑

i=2
biek−i+1 + cA1( f

k+1 − f k+1) + cA2( f
k − f k) + R̃k+1,

(I + A2G)ek+2 = (b1 I − A1G)ek+1 +
k+1
∑

i=2
biek−i+2 + cA2( f

k+2 − f k+2) + cA1( f
k+1 − f k+1) + R̃k+2,

k = 0, 2, 4 · · · (37)

where R̃k+1 = ταO(τ2−α + h2),
∥∥∥R̃k+1

∥∥∥ ≤ C1τα(τ2−α + h2) = C1(τ
2 + ταh2), C1 is a

real constant.
Similar to stability analysis, convergence is studied:

When k = 0,


(
(1− αθj)I + A1G

)
e1 ≤

(
(b1 + βθj)I − A2G

)
e0 + R̃1,(

(1− βθj)I + A2G
)

e2 ≤
(
(b1 + αθj)I − A1G

)
e1 + R̃2.

Solve for e1 and e2 and take the norm, we get
∥∥e1
∥∥ ≤ ∥∥∥∥((1− αθj)I + A1G

)−1
[
(
(b1 + βθj)I − A2G

)
e0 + R̃1]

∥∥∥∥,∥∥e2
∥∥ ≤ ∥∥∥∥((1− βθj)I + A2G

)−1
[
(
(b1 + αθj)I − A1G

)
e1 + R̃2]

∥∥∥∥.

Firstly,
∥∥e1
∥∥ ≤ ∥∥∥∥((1− αθj)I + A1G

)−1
[
(
(b1 + βθj)I − A2G

)
e0 + R̃1]

∥∥∥∥,

and, e0 = 0, we get
∥∥e1
∥∥ ≤ ∥∥∥∥((1− αθj)I + A1G

)−1
R̃1
∥∥∥∥ ≤ max

{
1

1+
∣∣∣λj−αθj

∣∣∣
}∥∥∥R̃1

∥∥∥ ≤
l−1
0 C1(τ

2 + ταh2).

Secondly,

∥∥e2
∥∥ ≤ ∥∥∥∥((1− βθj)I + A2G

)−1
[
(
(b1 + αθj)I − A1G

)
e1 + R̃2]

∥∥∥∥
≤ l−1

1

∥∥∥∥((1− βθj)I + A2G
)−1

[
(
(b1 + αθj)I − A1G

)
+ l1]

∥∥∥∥∥∥∥R̃2
∥∥∥

≤ l−1
1 max

{∣∣∣∣∣
∣∣∣(b1+αθj

)
−λj

∣∣∣+l1(
1−βθj

)
+γj

∣∣∣∣∣
}

C1(τ
2 + ταh2) ≤ l−1

1 C1(τ
2 + ταh2).

Assuming that
∥∥∥ek
∥∥∥ ≤ l−1

k−1C1(τ
2 + ταh2) is true for all the previouslayers. When the

time layer are k + 1 and k + 2,
(
(1− αθj)I + A1G

)
ek+1 ≤

(
(b1 + βθj)I − A2G

)
ek +

k
∑

i=2
biek−i+1 + R̃k+1,(

(1− βθj)I + A2G
)

ek+2 ≤
(
(b1 + αθj)I − A1G

)
ek+1 +

k+1
∑

i=2
biek−i+2 + R̃k+2.

Solve for ek+1 and ek+2 and take the norm, we get
∥∥ek+1

∥∥ ≤ ∥∥∥∥((1− αθj )I + A1G
)−1

[
(
(b1 + βθj )I − A2G

)
ek +

k
∑

i=2
biek−i+1 + R̃k+1]

∥∥∥∥,∥∥ek+2
∥∥ ≤ ∥∥∥∥((1− βθj )I + A2G

)−1
[
(
(b1 + αθj )I − A1G

)
ek+1 +

k+1
∑

i=2
biek−i+2 + R̃k+2]

∥∥∥∥.

Then

∥∥ek+1
∥∥ ≤ ∥∥∥∥((1− αθj )I + A1G

)−1
[
(
(b1 + βθj )I − A2G

)
ek +

k
∑

i=2
biek−i+1 + R̃k+1]

∥∥∥∥
≤ l−1

k

∥∥∥∥((1− αθj )I + A1G
)−1

[
(
(b1 + βθj )I − A2G

)
+ b2 + · · ·+ bk + lk]

∥∥∥∥∥∥∥R̃k+1
∥∥∥

≤ l−1
k max

{∣∣∣∣∣
∣∣∣(b1+βθj

)−γj

∣∣∣+l1
(1−αθj

)+λj

∣∣∣∣∣
}

C1(τ
2 + ταh2) ≤ l−1

k C1(τ
2 + ταh2),

∥∥ek+2
∥∥ ≤ ∥∥∥∥((1− βθj )I + A2G

)−1
[
(
(b1 + αθj )I − A1G

)
ek+1 +

k+1
∑

i=2
biek−i+2 + R̃k+2]

∥∥∥∥
≤ l−1

k+1

∥∥∥∥((1− βθj )I + A2G
)−1

[
(
(b1 + αθj )I − A1G

)
+ b2 + · · ·+ bk+1 + lk+1]

∥∥∥∥∥∥∥R̃k+2
∥∥∥

≤ l−1
k+1 max

{ ∣∣∣(b1+αθj
)−λj

∣∣∣+l1
(1−βθj

)+γj

}
C1(τ

2 + ταh2) ≤ l−1
k+1C1(τ

2 + ταh2).
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In conclusion, we prove that ‖en‖ ≤ l−1
n−1C1(τ

2 + ταh2), n = 1, 2, · · · , N. From lim
n→∞

l−1
n
nα

= lim
n→∞

n−α

n(1−α)−(n−1)(1−α) = lim
n→∞

n−1

1−(1− 1
n )

(1−α) = 1
1−α , there exists C = (nτ)α

1−α C1 such that

‖en‖ ≤ l−1
n−1C1(τ

2 + ταh2) ≤ C(τ2−α + h2), n = 1, 2, · · · , N. Therefore, proof is completed,
and the convergence order is O(τ2−α + h2).

Remark 1. The exact solution u(x, t) of the inhomogeneous TFFE (1) satisfies the strong regu-
larity condition (28). In this case, the convergence order of HASC-N difference scheme (16) is
O(τ2−α + h2). In general, the condition of strong regularity is too harsh. The exact solution of
inhomogeneous TFFE (1) cannot meet this requirement under some conditions, such as solving the
solution of inhomogeneous TFFE with initial singularities, and the corresponding theoretical analy-
sis has obvious limitations. Nevertheless, the conclusion is significant because Theorem 3 at least
rigorously proves the theoretical correctness of HASC-N difference scheme (16) in a certain range.

Remark 2. The time fractional derivative of the exact solution u(x, t) for the inhomogeneous
TFFE (1) is a discontinuous function at initial time, namely ∂γu

∂tγ does not exist in some regions of
[0, L]× [0, T], where γ ∈ {0, 1, 2}. In this case, the strong regularity condition (28) cannot be
satisfied, resulting in the initial singularity of inhomogeneous TFFE (1). Consider the following
two cases:

(1) The partial derivative of the solution u(x, t) in the spatial direction satisfies ∂δu
∂xδ ∈

C([0, L]× [0, T]), δ ∈ {0, 1, 2, 3, 4}. The HASC-N difference scheme (16) converges to O(τα)
in the temporal direction (consistent with the conclusions of references [37–39]), and it converges to
O(h2) in the spatial direction.

(2) The partial derivative of the solution u(x, t) in the spatial direction is a discontinuous
function, that is, ∂δu

∂xδ does not exist in some regions of [0, L]× [0, T], where δ ∈ {0, 1, 2, 3, 4}. In
this case, the local truncation error of HASC-N difference scheme (16) lacks clear overall control.
Even if the loose discrete L2 norm is used as a measure, the order of local truncation error is not
clear [7,40]. Therefore, the analytic path of spatial and temporal convergence order based on strong
regularity condition is no longer effective.

6. Numerical Tests

The numerical tests are based on Intel Core I5-5200 CPU @2.20 GHz, dual-core proces-
sor, and carried out in MatlabR2018b environment. Numerical tests verify the correctness
of the above theoretical analysis.

Example 1 ([41]). Consider the inhomogeneous TFFE with a smooth solution:
∂αu(x,t)

∂tα = ∂2u(x,t)
∂x2 + u(x, t)(1− u(x, t)) + g1(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ [0, 1],
u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(38)

where g1(x, t) = 24t(4−α)sin(2πx)/Γ(5− α)+ 4π2t4sin(2πx)− t4sin(2πx)(1− t4sin(2πx)),
0 < α ≤ 1. Exact solution of the inhomogeneous TFFE (38): u(x, t) = t4sin(2πx).

When α = 0.7, N = 100, M = 71, the exact solution surface, C-N scheme solution surface
and HASC-N scheme solution surface are as follows:

According to Figures 2–4, the surfaces of the two schemes are consistent with those of the exact
solution and the surface of the HASC-N difference scheme is smooth. It is shown below that when α
is of different values, the HASC-N scheme solution is compared with the exact solution at t = 0.5.
The HASC-N scheme solution approximates the exact solution well, and the calculation results are
shown in Table 1:
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Figure 2. Exact solution surface for Example 1.

Figure 3. C-N scheme solution surface for Example 1. (α = 0.7).

Figure 4. HASC-N scheme solution surface for Example 1. (α = 0.7).
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Table 1. Comparison between exact solution and HASC-N scheme solution for Example 1 (t = 0.5).

α
x

0.25 0.5 0.75

0.3 Exact solution 5.752108 × 10−2 2.549964 × 10−3 −5.763390 × 10−2

HASC-N scheme solution 5.517192 × 10−2 2.529212 × 10−3 −5.600727 × 10−2

0.5 Exact solution 5.752108 × 10−2 2.549964 × 10−3 −5.763390 × 10−2

HASC-N scheme solution 5.565180 × 10−2 2.490347 × 10−3 −5.608690 × 10−2

0.7 Exact solution 5.752108 × 10−2 2.549964 × 10−3 −5.763390 × 10−2

HASC-N scheme solution 5.605673 × 10−2 2.486836 × 10−3 −5.629021 × 10−2

Let Uk
j be the exact solution, and Ũk

j be the solution of C-N scheme and HASC-N difference

scheme. Define the Sum of Relative Error for every Time layer, SRET(k) =
M
∑

j=1

∣∣∣Ũk
j −Uk

j

∣∣∣
Uk

j
. The

purpose is to test the stability of HASC-N difference scheme.
The SRET values of the two schemes are shown in Figure 5. When α = 0.7, N = 100, M = 71,

the SRET values of the two schemes tend to 0 with the increase of the time grid numbers. Therefore,
the C-N scheme and HASC-N difference scheme of inhomogeneous TFFE (38) are stable, and the
results in Figure 5 verify the correctness of Theorem 2.

Figure 5. SRET values in two schemes for Example 1. (α = 0.7).

The spatial convergence order and the temporal convergence order of HASC-N difference
scheme are compared. The error E∞(m, τ), the error E∞(h, n), the spatial convergence order Order1
and temporal convergence order Order2 are defined as follows [42,43]:
E∞(m, τ) = max

0≤k≤N

∣∣∣Ũk
m −Uk

m

∣∣∣, (0 ≤ m ≤ M), E∞(h, n) = max
0≤j≤M

∣∣∣Ũn
j −Un

j

∣∣∣, (0 ≤ n ≤ N).

Order1 =
ln(E∞(h1,n)/E∞(h2,n))

ln(h1/h2)
, Order2 =

ln(E∞(m,τ1)/E∞(m,τ2))
ln(τ1/τ2)

.
To verify the spatial convergence order of HASC-N difference scheme, take M = 21, 41, 81, 161

and τ = h2/4. Table 2 shows that the spatial convergence order of HASC-N difference scheme is
O(h2), and its error decreases gradually with the increase of space step. The theoretical analysis is
validated by numerical test data.

Calculate the temporal convergence order of HASC-N difference scheme. Fixed space step
h = 1/101, namely, M = 101 and let N = 16, 32, 64, 128. As can be seen from Table 3, the temporal
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convergence order of HASC-N scheme reaches O(τ2−α), and the error of HASC-N difference scheme
decreases gradually with the increase of time step.

The numerical experimental data in Tables 2 and 3 can correspond to the conclusion of spatial
convergence order O(h2) and temporal convergence order O(τ2−α) in Theorem 3.

Table 2. Numerical error and spatial convergence order of HASC-N difference scheme for Example 1.

α M N E∞(h, n) Order1

0.5

21 100 5.805049 × 10−3 −−
41 400 1.535960 × 10−3 1.987252
81 1600 3.930984 × 10−4 2.001614

161 6400 9.953251 × 10−5 1.999513

0.7

21 100 5.272847 × 10−3 −−
41 400 1.326208 × 10−3 2.062997
81 1600 3.261035 × 10−4 2.060378

161 6400 7.997470 × 10−5 2.045991

0.9

21 100 4.857505 × 10−3 −−
41 400 1.220010 × 10−3 2.065118
81 1600 3.029576 × 10−4 2.045922

161 6400 7.518864 × 10−5 2.028652

Table 3. Numerical error and temporal convergence order of HASC-N difference scheme for Example 1.

α M N E∞(m, τ) Order2

0.5 101

16 1.035923 × 10−2 −−
32 3.687553 × 10−3 1.490181
64 1.303842 × 10−3 1.499895

128 4.594546 × 10−4 1.504774

0.7 101

16 9.512878 × 10−3 −−
32 3.879871 × 10−3 1.293873
64 1.578013 × 10−3 1.297899

128 6.392140 × 10−4 1.303738

0.9 101

16 8.555828 × 10−3 −−
32 3.996333 × 10−3 1.098231
64 1.865814 × 10−3 1.098872

128 8.681042 × 10−4 1.103865

Speed-up ratio Sp = T/Tp (T is the CPU time in C-N scheme, Tp is the CPU time in
HASC-N difference scheme) and efficiency Ep = Sp/P (p is the number of processor cores) [17].
Take α = 0.7, N = 100, space grid points M = 201, 401, 601, 801, 1001, 1201. Table 4 shows the
CPU time of C-N scheme solution and HASC-N scheme solution, speed-up ratio (Sp) and efficiency
(Ep) of HASC-N scheme solution.

Table 4. CPU time, speed-up ratio and efficiency of the schemes for Example 1. (α = 0.7, N = 100).

M 201 401 601 801 1001 1201

T(s) 0.123251 0.325116 0.466755 0.879479 1.357376 1.891728
Tp(s) 0.041364 0.106737 0.151507 0.282110 0.421785 0.582479

Sp 2.979668 3.045954 3.080749 3.117504 3.218170 3.247719
Ep 1.489834 1.522977 1.540374 1.558752 1.609085 1.623860

According to the comparative analysis in Table 4, the computational efficiency of the HASC-N
difference scheme of inhomogeneous TFFE (38) is obviously better than that of the C-N scheme.
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With the encryption of the spatial grid, the computational time advantage of the HASC-N difference
scheme is more and more prominent than that of the C-N scheme. The speed-up ratio of the HASC-N
difference scheme and C-N scheme is above 3, and the efficiency is about 1.5. The results show that
the HASC-N difference scheme has obvious parallel computing characteristics.

Example 2. Consider the inhomogeneous TFFE for the discontinuity of the time fractional deriva-
tive at the initial time:

∂αu(x,t)
∂tα = ∂2u(x,t)

∂x2 + u(x, t)(1− u(x, t)) + g2(x, t), (x, t) ∈ (0, 1)× (0, 1],
u(x, 0) = 0, x ∈ [0, 1],
u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(39)

where g2(x, t) = Γ(1 + α)x(x− 1) − 2tα − x(x− 1)tα(1 − x(x− 1)tα), 0 < α ≤ 1. Exact
solution of the inhomogeneous TFFE (39): u(x, t) = x(x− 1)tα.

When α = 0.5, N = 100, M = 71, the exact solution surface and HASC-N scheme solution
surface are as follows:

When α = 0.5, the solution of inhomogeneous TFFE (39) has initial singularity near t = 0,
and the solution is smooth away from t = 0, as shown in Figures 6 and 7.

Figure 6. Exact solution surface for Example 2. (α = 0.5).

Figure 7. HASC-N scheme solution surface for Example 2. (α = 0.5).
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In Table 5, the number of space grids M = 21, 41, 81, 161 and let τ = h2/4. In Table 6, the
number of time grids N = 8, 16, 32, 64, and the fixed spatial step h = 1/101, namely, M = 101.
When α is set to different values, it can be seen from Table 5 that the spatial convergence order of
HASC-N difference scheme is O(h2), and the temporal convergence order given in Table 6 can reach
O(τα). Therefore, the fractional derivative ∂αu(x,t)

∂tα of inhomogeneous TFFE (39) is a discontinuous
function (satisfying the weak regularity conditions), the partial derivative of spatial direction satisfies
∂δu
∂xδ ∈ C([0, L]× [0, T])(δ ∈ 0, 1, 2, 3, 4), and the solution of HASC-N difference scheme converges
to O(τα + h2), which verifies the first statement in Remark 2.

Table 5. Numerical error and spatial convergence of HASC-N difference scheme for Example 2.

α M N E∞(h, n) Order1

0.5

21 100 1.820529 × 10−3 −−
41 400 4.481606 × 10−4 2.095107
81 1600 1.114969 × 10−4 2.043181
161 6400 2.783025 × 10−5 2.020325

0.7

21 100 2.197871 × 10−3 −−
41 400 5.454330 × 10−4 2.083051
81 1600 1.359905 × 10−4 2.040008
161 6400 3.395738 × 10−5 2.019752

0.9

21 100 2.440139 × 10−3 −−
41 400 6.093245 × 10−4 2.073776
81 1600 1.522336 × 10−4 2.036982
161 6400 3.804131 × 10−5 2.018681

Table 6. Numerical error and temporal convergence of HASC-N difference scheme for Example 2.

α M N E∞(m, τ) Order2

0.5 101

16 1.939613 × 10−2 −−
32 1.355892 × 10−2 0.516527
64 9.510714 × 10−3 0.511617

128 6.674831 × 10−3 0.510822

0.7 101

16 1.137173 × 10−2 −−
32 6.929028 × 10−3 0.714727
64 4.230193 × 10−3 0.711930

128 2.590579 × 10−3 0.707449

0.9 101

16 1.424087 × 10−2 −−
32 7.566100 × 10−3 0.912416
64 4.024197 × 10−3 0.910849

128 2.154974 × 10−3 0.901031

Example 3. Consider the inhomogeneous TFFE for the discontinuity of the temporal fractional
derivative at the initial time and the discontinuity of the spatial derivative:

∂αu(x,t)
∂tα = ∂2u(x,t)

∂x2 + u(x, t)(1− u(x, t)) + g3(x, t), (x, t) ∈ (0, 1)× (0, 1],
u(x, 0) = 0, x ∈ [0, 1],
u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(40)

where 0 < α ≤ 1,
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g3(x, t) = Γ(2)
Γ(2−α)

sin(πx) + Γ(3)
Γ(3−α)

[x(1− x)]0.5t2−α + π2tα sin(πx)

− t2

2 [−
1
2 [x(1− x)]−1.5(1− 2x)2 − 2[x(1− x)]−0.5]

− (tα sin(πx) + t2[x(1− x)]0.5)(1− (tα sin(πx) + t2[x(1− x)]0.5)).
Exact solution of the inhomogeneous TFFE (40):

u(x, t) = tα sin(πx) + t2[x(1− x)]0.5. (41)

When α is set to different values, N = 100, M = 71, the HASC-N scheme solution is compared
with the exact solution at t = 0.5, and the calculation results are shown in Table 7:

Table 7. Comparison between exact solution and HASC-N scheme solution for Example 3 (t = 0.5).

α
x

0.25 0.5 0.75

0.3 Exact solution 6.540829 × 10−1 9.271849 × 10−1 6.816085 × 10−1

HASC-N scheme solution 6.538316 × 10−1 9.323716 × 10−1 6.823412 × 10−1

0.5 Exact solution 5.807393 × 10−1 8.198668 × 10−1 6.048696 × 10−1

HASC-N scheme solution 5.844902 × 10−1 8.303472 × 10−1 6.094448 × 10−1

0.7 Exact solution 5.171474 × 10−1 7.268177 × 10−1 5.383339 × 10−1

HASC-N scheme solution 5.199174 × 10−1 7.356311 × 10−1 5.417396 × 10−1

According to the inhomogeneous TFFE (40) and its exact solution u(x, t) (41), the equation has
the initial singularity. In addition, it has singularity near the boundary of u(0, t) and u(1, t). The
Equation (40) meets the weak regularity condition and produces a certain disturbance to the HASC-
N difference scheme. According to the analysis of Table 7, although there is some error between
the HASC-N scheme solution and the exact solution, the approximation effect is still satisfactory.

The solution (41) of the inhomogeneous TFFE (40) has an initial singularity (satisfying the
weak regularity condition), and the partial derivative of the spatial direction ∂δu

∂xδ (δ ∈ 0, 1, 2, 3, 4)
is a discontinuous function on [0, L]× [0, T]. In order to explore whether the truncation error of
HASC-N scheme solution for inhomogeneous TFFE (40) has a clear global control, The loose L2
norm is used as a measure, and the L2 norm is defined as follows [44]:

E2(m, τ) =

{
N
∑

k=1

(
Ũk

m −Uk
m

)2
τ

} 1
2

, (0 ≤ m ≤ M),

E2(h, n) =

{
M
∑

j=1

(
Ũn

j −Un
j

)2
h

} 1
2

, (0 ≤ n ≤ N).

So the spatial convergence order Order3 and temporal convergence order Order4 are defined as:
Order3 =

ln(E2(h1,n)/E2(h2,n))
ln(h1/h2)

, Order4 =
ln(E2(m,τ1)/E2(m,τ2))

ln(τ1/τ2)
.

As shown in Tables 8 and 9, the local truncation error of the HASC-N difference scheme
lacks a clear overall control. Even if the loose discrete L2 norm is used as the measure, the local
truncation error has no definite order. Therefore, the analysis path of convergence order based
on strong regularity condition (28) is no longer effective. This verifies the second statement in
Remark 2.



Fractal Fract. 2022, 6, 259 18 of 21

Table 8. Numerical error and spatial convergence order of HASC-N difference scheme for Example 3.

α M N E2(h, n) Order3

0.1

21 100 4.456840 × 10−2 −−
41 400 3.011746 × 10−2 0.565421
81 1600 2.088088 × 10−2 0.528418
161 6400 1.448888 × 10−2 0.527236

0.2

21 100 2.061921 × 10−2 −−
41 400 8.043848 × 10−2 1.358031
81 1600 3.662202 × 10−2 1.135174
161 6400 1.709010 × 10−3 1.099551

0.3

21 100 1.064295 × 10−2 −−
41 400 5.183752 × 10−3 1.037830
81 1600 2.538664 × 10−3 1.029927
161 6400 1.330512 × 10−3 0.932088

0.4

21 100 1.206877 × 10−2 −−
41 400 5.867005 × 10−3 1.040582
81 1600 2.594804 × 10−3 1.176999
161 6400 1.241889 × 10−3 1.063090

0.5

21 100 1.505094 × 10−2 −−
41 400 6.260401 × 10−3 1.265527
81 1600 2.542224 × 10−3 1.300164
161 6400 1.017199 × 10−3 1.321489

0.6

21 100 1.108872 × 10−2 −−
41 400 6.254087 × 10−3 0.826221
81 1600 3.460837 × 10−3 0.853678
161 6400 2.050544 × 10−3 0.755114

0.7

21 100 1.210763 × 10−2 −−
41 400 5.822212 × 10−3 1.056277
81 1600 2.310618 × 10−3 1.333288
161 6400 1.009494 × 10−3 1.194646

0.8

21 100 1.428816 × 10−2 −−
41 400 5.795162 × 10−3 1.301900
81 1600 2.306303 × 10−3 1.329267
161 6400 1.063531 × 10−3 1.116719

0.9

21 100 1.789562 × 10−2 −−
41 400 7.830313 × 10−3 1.192465
81 1600 2.261498 × 10−3 1.791791
161 6400 9.787323 × 10−4 1.208293
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Table 9. Numerical error and temporal convergence order of HASC-N difference scheme for Example 3.

α M N E2(m, τ) Order4

0.1 101

16 3.235754 × 10−1 −−
32 1.322441 × 10−1 1.290898
64 3.805932 × 10−2 1.796882

128 1.137961 × 10−2 1.741799

0.2 101

16 3.400465 × 10−1 −−
32 1.126743 × 10−2 1.593573
64 3.902410 × 10−2 1.529722

128 1.266599 × 10−2 1.623405

0.3 101

16 1.441621 × 10−1 −−
32 4.722499 × 10−2 1.610070
64 1.306512 × 10−2 1.853830

128 4.114175 × 10−3 1.667045

0.4 101

16 4.485998 × 10−2 −−
32 2.509118 × 10−2 0.838249
64 1.128387 × 10−2 1.152918

128 3.700395 × 10−3 1.608511

0.5 101

16 8.566342 × 10−2 −−
32 4.305125 × 10−2 0.992624
64 1.101626 × 10−2 1.966421

128 3.663051 × 10−3 1.588516

0.6 101

16 1.175347 × 10−1 −−
32 4.492863 × 10−2 1.387380
64 1.211080 × 10−2 1.891341

128 3.668064 × 10−3 1.723204

0.7 101

16 1.384476 × 10−1 −−
32 4.957889 × 10−2 1.481543
64 1.458671 × 10−2 1.765071

128 4.035364 × 10−3 1.853884

0.8 101

16 1.572810 × 10−1 −−
32 5.660295 × 10−2 1.474396
64 1.851979 × 10−2 1.611810

128 5.576710 × 10−3 1.731581

0.9 101

16 1.769765 × 10−1 −−
32 6.605010 × 10−2 1.421925
64 2.405686 × 10−2 1.457112

128 8.758845 × 10−3 1.457636

7. Conclusions

Most schemes with parallelism are not unconditionally stable for a long time, or the
stability meets the requirements but the space has only precision O(h) [45,46]. The HASC-N
difference scheme for inhomogeneous TFFE is constructed in this paper, which is uncondi-
tionally stable. The convergence order of HASC-N difference scheme is O(τ2−α + h2) under
the strong regularity condition, and O(τα + h2) under the weak regularity condition that
the time-fractional derivative is discontinuous at the initial time and the space derivative
is continuous. Under the weak regularity condition that the time-fractional derivative
is discontinuous at the initial time and the spatial derivative is discontinuous, the error
of the HASC-N difference scheme lacks a clear global control and does not specify the
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convergence order. Therefore, the analysis path of convergence order based on strong
regularity conditions is no longer effective.

The HASC-N difference scheme has obvious parallel computing properties. The local-
ization characteristics of the HASC-N difference scheme in computing and communication
will become more and more remarkable with the continuous encryption of space grid
points, which is suitable for parallelized computing systems with distributed storage. The
numerical tests verify the theoretical analysis and show that the HASC-N difference scheme
in this paper is high-efficient in solving inhomogeneous TFFE.
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