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Abstract: The logarithmic functions have been used in a verity of areas of mathematics and other
sciences. As far as we know, no one has used the coefficients of logarithmic functions to determine the
bounds for the third Hankel determinant. In our present investigation, we first study some well-known
classes of starlike functions and then determine the third Hankel determinant bound for the logarithmic
coefficients of certain subclasses of starlike functions that also involve the sine functions. We also obtain
a number of coefficient estimates. Some of our results are shown to be sharp.
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1. Introduction

We denote by A the class of analytic (holomorphic) functions f defined in the open
unit disk

U = {z : z ∈ C and |z| < 1},

which satisfy the following normalization conditions

f (0) = 0 and f ′(0) = 1.

Thus, each f ∈ A has the following series form:

f (z) = z +
∞

∑
n=2

anzn z ∈ U. (1)

Moreover, we denote by S the subclass of A of functions which are univalent in U.
For two functions h1, h2 ∈ A, we say that the function h1 is subordinate to the function h2
(written as h1 ≺ h2) if there exists an analytic function w with the property

|w(z)| ≤ |z| and w(0) = 0

such that
h1(z) = h2(w(z)) (z ∈ U).
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Moreover, if h2 ∈ S , then the above conditions can be written as:

h1 ≺ h2 ⇔ h1(0) = h2(0) and h1(U) ⊂ h2(U).

In 1992, Ma and Minda [1] introduced the class S∗(Φ) as follows:

S∗(Φ) =

{
f ∈ A :

z f ′(z)
f (z)

≺ Φ(z)
}

, (2)

where the function Φ is assumed to be analytic with positive real part on U such that Φ(U)
is axially symmetric and starlike with respect to

Φ(0) = 1 and Φ′(0) > 0.

Moreover, they investigated a number of useful geometric properties such as growth,
distortion and covering results. By putting

Φ(z) = (1 + z)(1− z)−1

specifically, then we can see that the functions class S∗(Φ) is similar to that of the well-
known class of starlike functions. For the various choices of the function Φ, we have the
following function classes:

1. If we let
Φ(z) = 1 + sin z,

then we obtain the class
S∗sin = S∗(1 + sin z),

of starlike functions whose image under an open unit disk is eight-shaped (see [2]).
2. For the choice

Φ(z) = 1 + z− 1
3

z3,

we obtain the class

S∗nep = S∗
(

1 + z− 1
3

z3
)

,

whose image is bounded by a nephroid-shaped region (see [3]).
3. If we put

Φ(z) =
√

1 + z,

then the function class leads to the class

S∗L = S∗
(√

1 + z
)

,

the class of starlike functions associated with the lemniscate of Bernoulli (see [4]).
4. Moreover, if we take

Φ(z) = 1 +
4
3

z +
2
3

z2,

we obtain the class

S∗car = S∗
(

1 +
4
3

z +
2
3

z2
)

,

which is the class of starlike functions whose image under open unit is a cardioid
shape and was introduced by Sharma et al. [5].

5. Furthermore, if we pick Φ(z) = ez we obtain the class S∗exp = S∗(ez), which was
introduced and studied by Mendiratta et al. [6].

6. If we put Φ(z) =
√

1 + z + z, then we have the class of starlike functions associated
with the crescent-shaped region as discussed in [7].
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The generalizations of the class S∗ were studied by many authors. Indeed, they
replaced Φ in (2) with Fibonacci numbers, Bell numbers, shell-like curves, conic domains
and a modified sigmoid function [8–11], and they have defined some other generalized
subclasses of the class of starlike functions.

It was Pommerenke [12,13] who studied the Hankel determinant Hq,n( f ) for a function
f ∈ A written as in (1). The Hankel determinant Hq,n( f ) is given as follows:

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣. (3)

For different values of q and n, the Hankel determinants for various orders are derived. For
example, when n = 1 and q = 2, the above-defined determinant becomes as follows:

|H2,1( f )| =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ = ∣∣∣a3 − a2
2

∣∣∣, where a1 = 1.

We note that the nth coefficient of a function class S is well known to be bounded by
n, and the coefficient limits give information about the function’s geometric characteris-
tics. The famous problem solved by Fekete–Szegö [14] is to determine the greatest value
of the coefficient functional |a3 − σa2

2| over the class S for each σ ∈ [0, 1], which was
demonstrated using the Loewner technique. For a detailed study about this well-known
functional, see [15–17]. Furthermore, if we take q = n = 2, then we have the second
Hankel determinant

H2,2( f ) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a2
3.

In recent years, many authors have studied and investigated the upper bound of |H2,2( f )|
for different subclasses of analytic functions. A few of them are Noonan and Thomas [18],
Hayman [19], Ohran et al. [20] and Shi et al. [21]. Furthermore, the bounds for the third
Hankel determinant were first investigated by Babalola [22]. Some recent and interesting
works on this topic maybe found in [23–26].

In [2], Cho et al. defined and studied a class of starlike functions associated with the
sine function, defined as follows:

S∗sin =

{
f ∈ S :

z f ′(z)
f (z)

≺ 1 + sin(z)
}

(z ∈ D). (4)

The logarithmic coefficients of f ∈ S , denoted by γn = γn( f ), are defined by the following
series expansion:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γnzn.

Logarithmic coefficients have recently attracted considerable interest. For instance, Milin’s
conjecture highly depends on logarithmic coefficients (see [27]; see also ([28], page 155)).
Ali et al. [29] investigated the logarithmic coefficients of some close-to-convex functions,
while the third logarithmic coefficient in some subclasses of close-to-convex functions
was studied by Cho et al. [30]. Moreover, logarithmic coefficients of univalent functions
can be found in [31]. Very recently, Kowalczyk and Lecko [32] have studied the Hankel
matrices whose entries are logarithmic coefficients of univalent functions and have given
sharp bounds for the second Hankel determinant of logarithmic coefficients of convex and
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starlike functions. For some other related works, see [33–35]. For a function f given by (1),
the logarithmic coefficients are as follows:

γ1 =
1
2

a2, (5)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
, (6)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a2
2

)
, (7)

γ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
, (8)

γ5 =
1
2

(
a6 − a2a5 − a3a4 + a2a2

3 + a2
2a4 − a3

2a3 +
1
5

a5
2

)
. (9)

Based on all of the above ideas, we propose the study of the Hankel determinant,
whose entries are logarithmic coefficients of f ∈ S , that is

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+q−1
γn+1 γn+2 . . . γn+q
...

... . . .
...

γn+q−1 γn+q . . . γn+2q−2

∣∣∣∣∣∣∣∣∣. (10)

The main aim of this paper is to find upper bounds for H3,1( f ) for the class of starlike
functions associated with the sine functions.

2. A Set of Lemmas

We denote by P the class of analytic functions p which are normalized by

p(0) = 1 with <(p(z)) > 0 (z ∈ U)

and have the following form:

p(z) = 1 +
∞

∑
n=1

cnzn (z ∈ U). (11)

To prove our main results, we need the following lemmas.

Lemma 1. ([36]) Let p ∈ P . Then, there exist x, δ with |x| ≤ 1, |δ| ≤ 1 such that

2c2 = c2
1 + x(4− c2

1), (12)

4c3 = c3
1 + 2(4− c2

1)c1x− c1(4− c2
1)x2 + 2(4− c2

1)(1− |x|2)δ. (13)

Lemma 2. If p ∈ P , then the following inequalities hold

|ck| ≤ 2 for k ≥ 1, (14)

|cn+k − µcnck| < 2 for 0 ≤ µ ≤ 1, (15)

|cmck − ckc1| ≤ 4 for m + k = k + l, (16)∣∣∣ck+2k − µckc2
k

∣∣∣ ≤ 2(1 + 2µ), for µ ∈ R, (17)∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ ≤ 2−
∣∣c2

1

∣∣
2

, (18)
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and for complex number η, we have∣∣∣c2 − ηc2
1

∣∣∣ < 2 max{1, |2η − 1|}. (19)

For the inequalities (14)–(18), see [13], and (19) is given in [15].

Lemma 3. ([37], Lemma 2.2) If p ∈ P , then

|Ic3
1 − Xc1c2 + Vc3| ≤ 2|I|+ 2|X− 2I|+ 2|I − X + V|, (20)

where I, X and V are real numbers.

3. Main Results

Theorem 1. If f ∈ S∗sin and it has the form given in (1), then

|γ1| ≤
1
2

, (21)

|γ2| ≤
1
4

, (22)

|γ3| ≤
1
6

, (23)

|γ4| ≤
1
8

, (24)

|γ5| ≤
7

10
. (25)

The following functions are examples for the sharpness of the above first four inequalities

f1(z) = z exp
(∫ z

0

sin(t)
t

dt
)
= z + z2 + · · · , (26)

f2(z) = z exp

(∫ z

0

sin
(
t2)

t
dt

)
= z +

1
2

z3 + · · · , (27)

f3(z) = z exp

(∫ z

0

sin
(
t3)

t
dt

)
= z +

1
3

z4 + · · · . (28)

f4(z) = z exp

(∫ z

0

sin
(
t4)

t
dt

)
= z +

1
4

z5 + · · · . (29)

respectively.

Proof. Let f ∈ S∗sin and then, by the definitions of subordinations, there exists a Schwartz
function w(z) with the properties that

w(0) = 0 and w(z) < 1,

such that
z f ′(z)

f (z)
= 1 + sin(w(z)) (30)

Define the function

p(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + · · · .
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It is clear that p(z) ∈ P . This implies that

w(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · ·

=
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
8

c3
1 −

1
2

c1c2 +
1
2

c3

)
z3 + · · · .

Now, from (30), we have

z f
′
(z)

f (z)
= 1 + a2z +

(
2a3 − a2

2

)
z2 +

(
a3

2 − 2a2a3 + 3a4

)
z3

+
(

4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3

)
z4 + · · · (31)

and

1 + sin(w(z)) = 1 +
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
5
48

c3
1 −

1
2

c1c2 +
1
2

c3

)
z3

+

(
1
2

c4 −
1
2

c1c3 +
5

16
c2

1c2 −
1
4

c2
2 −

c4
1

32

)
z4 + · · · . (32)

Comparing (31) and (32), we achieve

a2 =
c1

2
, (33)

a3 =
c2

4
, (34)

a4 =
c3

6
− c1c2

24
−

c3
1

144
, (35)

a5 =
c4

8
− c1c3

24
+

5c4
1

1152
−

c2
1c2

192
−

c2
2

32
, (36)

a6 =
−3
80

c1c4 −
7

120
c2c3 −

11
4800

c5
1 −

43
960

c1c2
2 +

71
5760

c3
1c2 +

c5

10
. (37)

Now, from (5) to (9) and (33) to (37), we obtain

γ1 =
1
4

c1, (38)

γ2 =
1
8

c2 −
1
16

c2
1, (39)

γ3 =
5

288
c3

1 −
1
12

c1c2 +
1
12

c3, (40)

γ4 =
1
16

c4 −
1

16
c1c3 +

9
128

c2
1c2 −

1
32

c2
2 −

17
2304

c4
1, (41)

γ5 =
1

38 400
c5

1 −
1
80

c3
1c2 +

1
32

c3c2
1 +

1
160

c1c2
2 −

1
20

c4c1 −
1

20
c3c2 +

1
20

c5. (42)

Applying (14) to (38), we get

|γ1| ≤
1
2

.

From (39) and using (18), we have

|γ2| =
1
8

∣∣∣∣c2 −
1
2

c2
1

∣∣∣∣ ≤ 1
8

(
2− |c1|2

2

)
= H(c1).
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Clearly, H(c1) is a decreasing function and its maximum is attained at c1 = 0, hence

|γ2| ≤
1
4

.

Applying Lemma 3 on Equation (40), we get

|γ3| ≤
1
6

.

Moreover, using Lemma 3 on (41), we get

|γ4| ≤
1
8

.

Rearranging (42), we obtain

γ5 =
−1
80

c3
1

(
c2 −

1
480

c2
1

)
− 1

20
c1

(
c4 −

5
8

c1c3

)
− 1

20
c2

(
c3 −

1
8

c1c2

)
+

1
20

c5.

By making use of (14) and (15), along with the triangular inequality, we can easily obtain
the desired result.

To prove the sharpness of (21) to (24), observe that

log
f1(z)

z
= 2

∞

∑
n=2

γ( f1)zn = z− 1
18

z3 + · · · ,

log
f2(z)

z
= 2

∞

∑
n=2

γ( f2)zn =
1
2

z2 + · · · ,

log
f3(z)

z
= 2

∞

∑
n=2

γ( f3)zn =
1
3

z3 + · · · ,

log
f4(z)

z
= 2

∞

∑
n=2

γ( f4)zn =
1
4

z4 + · · · .

It follows that these inequalities are sharp.

Theorem 2. If f ∈ S∗sin and it has the form given in (1), then∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
16

. (43)

The function f2 given in (27) is an example of sharpness for this result.

Proof. From (38)–(40), we obtain

γ1γ3 − γ2
2 =

1
2304

c4
1 −

1
192

c2
1c2 +

1
48

c3c1 −
1

64
c2

2.

Using Lemma 1 to write c2 and c3 in terms of c1 = c ∈ [0, 2], we have

γ1γ3 − γ2
2 = − 1

1152
c4 − 1

256
(4− c2)2x2

− 1
192

c2(4− c2)x2 +
1

96
c(4− c2)(1− |x|2)δ.
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Applying triangle inequality and using |δ| ≤ 1 and |x| = y ≤ 1, we get∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
1152

c4 +
1

256
(4− c2)2y2 +

1
192

c2(4− c2)y2

+
1

96
c(4− c2)(1− y2) = G(c, y) say.

Now, differentiating partially with respect to y, we achieve

∂G(c, y)
∂y

=
1

128
(4− c2)2y +

1
96

c2(4− c2)y− 1
48

c(4− c2)y.

Clearly, ∂G(c,y)
∂y > 0 and then G(c, y) is increasing in y for fixed c. For this reason, G(c, y)

attains its maximum at y = 1, so

G(c, y) ≤ G(c, 1) =
1

1152
c4 +

1
256

(4− c2)2 +
1

192
c2(4− c2)

= − 1
2304

c4 − 1
96

c2 +
1

16
.

Now, differentiating with respect to c, we have

G
′
(c, 1) = − 1

576
c3 − 1

48
c.

Clearly, G′(c, 1) ≤ 0, is a decreasing function so, at c = 0, the maximum value is attained,
that is ∣∣∣γ1γ3 − γ2

2

∣∣∣ ≤ 1
16

Theorem 3. If f ∈ S∗sin and it has the form given in (1), then∣∣∣γ2γ4 − γ2
3

∣∣∣ ≤ 53
288

. (44)

Proof. From (38)–(40), we get

γ2γ4 − γ2
3 =

53
331 776

c6
1 −

67
27 648

c4
1c2 +

7
6912

c3
1c3 +

35
9216

c2
1c2

2 −
1

256
c4c2

1

+
7

1152
c1c2c3 −

1
256

c3
2 +

1
128

c4c2 −
1

144
c2

3.

Rearranging the above, we have

∣∣∣γ2γ4 − γ2
3

∣∣∣ = ∣∣∣∣− 67
27648

c4
1

(
c2 −

53
804

c2
1

)
− 1

256
c2

1

(
c4 −

35
36

c2
2

)
+

1
128

c2

(
c4 −

1
2

c2
2

)
+

7
6912

c3
1c3 −

1
144

c3

(
c3 −

7
8

c1c2

)∣∣∣∣.
Applying triangle inequality, we get∣∣∣γ2γ4 − γ2

3

∣∣∣ ≤ 67
27648

|c1|4
∣∣∣∣c2 −

53
804

c2
1

∣∣∣∣+ 1
256
|c1|2

∣∣∣∣c4 −
35
36

c2
2

∣∣∣∣
+

1
128
|c2|
∣∣∣∣c4 −

1
2

c2
2

∣∣∣∣+ 7
6912

|c1|3|c3|+
1

144
|c3|
∣∣∣∣c3 −

7
8

c1c2

∣∣∣∣.
Using (14) and (15), we get the required result.



Fractal Fract. 2022, 6, 261 269 of 271

Theorem 4. If f ∈ S∗sin and it has the form given in (1), then

|γ1γ4 − γ2γ3| ≤
77

288
. (45)

Proof. From (38)–(40), we get

γ1γ4 − γ2γ3 = − 7
9216

c5
1 +

47
4608

c3
1c2 −

1
96

c3c2
1 +

1
64

c4c1

+
1

384
c1c2

2 −
1
96

c3c2.

Rearranging, we get

|γ1γ4 − γ2γ3| =
∣∣∣∣ 47
4608

c3
1

(
c2 −

7
94

c2
1

)
+

1
64

c1

(
c4 −

2
3

c1c3

)
− 1

96
c2

(
c3 −

1
4

c1c2

)∣∣∣∣.
Applying triangle inequality, we get

|γ1γ4 − γ2γ3| ≤
47

4608
|c1|3

∣∣∣∣c2 −
7
94

c2
1

∣∣∣∣+ 1
64
|c1|2

·
∣∣∣∣c4 −

2
3

c1c3

∣∣∣∣+ 1
96
|c2|
∣∣∣∣c3 −

1
4

c1c2

∣∣∣∣.
Using (14) and (15), we get the required result.

Theorem 5. If f ∈ S∗sin and it has the form given in (1), then

|H3,1( f )| ≤ 3727
34 560

' 0.107 84

Proof. Since

|H3,1( f )| =

∣∣∣∣∣∣
γ1 γ2 γ3
γ2 γ3 γ4
γ3 γ4 γ5

∣∣∣∣∣∣
≤ |γ3|

∣∣∣γ2γ4 − γ2
3

∣∣∣+ |γ4||γ1γ4 − γ2γ3|+ |γ5|
∣∣∣γ1γ3 − γ2

2

∣∣∣.
From the values of (23)–(25), (43)–(45), we achieve the required result.

4. Concluding Remarks and Observations

Here, in our present investigation, we have successfully examined and studied some
well-known subclasses of starlike functions associated with various domains. We have
then obtained a number of coefficient estimates and the third-order Hankel determinant
bound for the logarithmic coefficients of starlike functions that are associated with the sine
functions. We have also given some examples to show that some of our results are sharp.

The study of coefficient problems (such as the Fekete–Szegö and the Hankel determi-
nant problems) continues to inspire scholars in the Geometric Function Theory of Complex
Analysis. We have chosen to include many recent works (see, for example, [38–44]), on
various bi-univalent function classes, as well as ongoing uses of the q-calculus in the study
of other analytic or meromorphic univalent and multivalent function classes in order to
provide incentive and motivation to interested readers.
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