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Abstract: Image dehazing is a traditional task, yet it still presents arduous problems, especially in the
removal of haze from the texture and edge information of an image. The state-of-the-art dehazing
methods may result in the loss of some visual informative details and a decrease in visual quality.
To improve dehazing quality, a novel dehazing model is proposed, based on a fractional derivative
and data-driven regularization terms. In this model, the contrast constrained adaptive histogram
equalization method is used as the data fidelity item; the fractional derivative is applied to avoid
over-enhancement and noise amplification; and the proposed data-driven regularization terms are
adopted to extract the local and non-local features of an image. Then, to solve the proposed model,
half-quadratic splitting is used. Moreover, a dual-stream network based on Convolutional Neural
Network (CNN) and Transformer is introduced to structure the data-driven regularization. Further,
to estimate the atmospheric light, an atmospheric light model based on the fractional derivative and
the atmospheric veil is proposed. Extensive experiments display the effectiveness of the proposed
method, which surpasses the state-of-the-art methods for most synthetic and real-world images,
quantitatively and qualitatively.

Keywords: image dehazing; fractional derivative; local and non-local features; data-driven regular-
ization; deep learning

1. Introduction

Single-image dehazing is one of the most classical and fundamental non-linear inverse
problems in image processing, which aims to estimate high-quality images from hazy ones.
Because light is scattered and absorbed as the distance from an image increases, particularly
in bad weather, dehazing equipment or method may be required. To reduce the impact
of haze and to accurately estimate high-quality images, single-image haze removal is a
vital pre-processing step in removing haze and thin clouds from haze-affected images.
To quantitatively measure the effect of haze on an image, many single-image dehazing
algorithms are based on the dichromatic model. This model describes a hazy image as a
mixture of the transmitted portion of the ideal image and the portion of the light source
that reaches the optical imaging equipment. Mathematically, the hazy image formation [1]
model can be written in the form of Equation (1):

I = Jt + A(1− t) (1)

where I is the observed image in bad weather, J is the ideal image, A is the air-light, and t
is the transmission map. From Equation (1), the transmission map t plays a core role in
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determining the clarity of a restored image. As the atmospheric light vector A is unknown,
the accurate estimation of the transmission map t is a challenging problem.

Generally, the estimation of t is divided into two stages: a rough transmission map,
and a refined transmission map. The rough t can be estimated via imaging model-based
methods, including Dark Channel Prior (DCP) [2], Hazy-Line Prior (HLP) [3], or Color
Attenuation Prior (CAP) [4]. However, the refined t is difficult to estimate, and it plays a
key role in image restoration, because t can provide edge and texture information to image
restoration in bad weather.

During the past decade, the guide filter [5] method is the most well-known; it transfers
the structures and textures of the guidance image to the output image. Based on the guide
filter, the weighted guided image filter [6], the gradient-domain guided image filter [7],
and the anisotropic guided filtering method [8] have been widely employed in image
dehazing, due to their low complexity and good edge-preservation properties. In addition,
the total variation (TV) prior process [9] is a prominent regularization tool for estimating t,
because the TV prior helps in preserving the sharp edges and textures of an image and
prevents solutions from having oscillations. Therefore, numerous TV-based methods
have been proposed for use in hazy weather. Bredies et al. [10] proposed the concept
of total generalized variation (TGV) of a function without producing staircasing effects.
Gilboa et al. [11] applied a complex diffusion process by using the Schrodinger equation.
A linear solution was obtained for the complex diffusion process, which could estimate
a high-quality restored image. Recently, Liu et al. [12] estimated the refined t by using
non-local total variation regularization. Jiao et al. [13] proposed a hybrid model, with first-
and second-order variations, and they improved the hybrid model via adaptive parameters.
Parisotto et al. [14] introduced higher-order anisotropic total variation regularization, and
used a primal-dual hybrid gradient approach to approximate numerically the associated
gradient flow. However, the TV-based methods suffer from two defects: a staircasing effect,
and a non-convex and non-smooth term. Fortunately, fractional-order calculus [15] may be
a powerful tool to alleviate these problems.

Fractional-order calculus is a generalization of integer-order calculus, which has pro-
vided for great advances in image processing. Chan et al. [16] applied spatially adaptive
fractional-order diffusion to restore images. Svynchuk et al. [17] studied remote sensing
image compression by using fractal functions. Zhang et al. [18] proposed image enhance-
ment based on particle swarm optimization and an adaptive fractional differential filter.
Xu et al. [19] improved the scale-invariant feature transform via an adaptive fractional dif-
ferential dynamic mask. Luo et al. [20] demonstrated that a fractional differential operator
is capable of enhanced performance, superior to that of integral differential operators in
remote sensing images. Fang et al. proposed a nonlinear gradient domain-guided filtering
method for image dehazing, which was optimized via a fractional-order gradient descent
with momentum for the RBF neural network. In addition, the above estimation methods
have two problems to be solved. One problem is the incorrect estimation of the infinite
depth of field; this problem can be ameliorated via segmentation technology [21–24]. The
other problem is error accumulation or amplification during multiple stages. For example,
the DCP (HLP)-based methods include several steps, such as prior realization (dark chan-
nel or haze line), atmospheric light estimation, initial transmission, refined transmission,
and image restoration. Due to the rapid development of deep learning technology, this
second problem is disregarded, because the single-stage end-to-end model also can obtain
high-quality images.

Since deep learning-based methods [25] have demonstrated prevailing success in
image processing, the deep learning framework has been introduced to image dehazing.
Zhou et al. [26] designed an end-to-end network based on the attention feature fusion
module. Sun et al. [27] applied the cycle-consistent adversarial network, which was embed-
ded in an iterative dehazing model. Zhang et al. [28] proposed a residual convolutional
dehazing network, consisting of two subnetworks. Li et al. [29] proposed a novel dehazing
method based on an unsupervised method, avoiding the strenuous labor of capturing
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hazy-clean image pairs. Golts et al. [30] also introduced an unsupervised dehazing method
via minimization of the proposed DCP energy function. These deep learning-based meth-
ods can estimate high-quality images. Unfortunately, deep learning-based methods lack
interpretability and physical significance, which limits their further development.

Although the above state-of-the-art methods achieve progress in image dehazing, we
still find some problems: First, the physical prior-based methods are not well combined
with deep learning-based methods, which make the deep learning-based methods learn
image features aimlessly and without interpretability. Second, we regard the fractional
differential as a powerful tool to further extract the mathematic prior, which can enhance
the image quality in image dehazing and prevent image over-enhancement. Third, the
problems of error accumulation and amplification of imaging model-based methods also
need to be alleviated. Therefore, in this paper, we propose an image dehazing method
based on the fractional differential and deep learning.

The main contributions of this paper are the following:
First, we propose a data-driven regularization term that includes local and non-local

information about images. This regularization term can embed the physical model, which
can constrain the aimlessness of the deep learning method. Moreover, the proposed regular-
ization term can be regarded as a multi-scale fusion term (the small scale is for local infor-
mation, and the large scale is for non-local information). Unlike the traditional multi-scale
fusion method, the proposed method obtains the multi-scale information via data-driven
information and big data instead of via image decomposition, as in a wavelet transform.

Second, we propose an image dehazing model based on the hazy imaging model, the
fractional variation, and the above data-driven regularization term. The hazy imaging
model can improve the physical significance for a data-driven regularization term and
prevent the aimless learning of deep learning-based methods. The fractional variation can
provide the mathematical feature for the proposed model and prevent over-enhancement
and noise amplification. The data-driven regularization term can estimate the non-physical
significance feature, which is highly abstract and nonlinear, to improve dehazing quality.
Therefore, the proposed model is a deep learning-based method with physical significance
and a mathematical feature.

Third, we unroll the proposed dehazing model into an unconstrained model. A novel
network model, a Convolutional Neural Network (CNN) and a Swin Transformer, is
proposed and used to solve local and non-local data-driven regularization terms, respec-
tively. The architecture of the proposed network is intuitively interpretable by explicitly
characterizing the local and non-local features and the hazy imaging model.

Finally, an atmospheric light estimation model is proposed, based on the atmospheric
veil and the fractional variation, and this model is embedded in the above proposed
dehazing method. Thus, the proposed model can be regarded as an end-to-end model,
rather than as a multi-stage method, which can reduce the accumulation and amplification
of errors during different stages.

The novel dehazing method is proposed via combining the technical contributions
stated above. The remainder of this paper is structured as follows: Section 2 describes
the proposed method and its basics. In Section 3, a series of experiments, including
synthetic images and real-world images, are carried out to evaluate the presented method,
qualitatively and quantitatively. Finally, Section 4 states conclusions about the proposed
method. In addition, the Appendix A elaborates on each parameter in this paper.

2. Materials and Methods

The proposed dehazing method is an end-to-end (single stage) model combining the
physical imaging model, the fractional derivative calculation, and deep learning. On the one
hand, physical significance and mathematical features are helpful for the proposed network
model in learning image features purposefully. On the other hand, the high-dimensional
and nonlinear features extracted by deep learning models are effective supplements to the
physical model and the mathematical prior.
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In this section, the proposed dehazing method is discussed in detail. First, the frac-
tional derivative is introduced in Section 2.1, which is the basic component of the proposed
method. Then, a novel dehazing model is proposed in Section 2.2, and to solve this model,
it is split into four subproblems. The data-driven regularization term-based subproblem is
solved via the proposed network, which is introduced in Section 2.3. The other subprob-
lems are solved in Section 2.4. The atmospheric light, which is an important component of
image dehazing, is solved in Section 2.5. Finally, the pseudocode of our proposed method
is displayed in Section 2.6.

2.1. Fractional Derivative

Several definitions of the fractional derivative were proposed in previous work, such
as the Riemann-Liouville, the Grunwald-Letnikov, the Weyl, and the Caputo fractional
derivatives. In this paper, the proposed method containing the fractional differential is
formulated in terms of the left Riemann-Liouville derivative of order α, defined as in [31]

Dα
x f (i, j) = 1

Γ(m−α)

(
d

dx

)m i∫
a

f (τ, j)(i− τ)m−α−1dτ

Dα
y f (i, j) = 1

Γ(m−α)

(
d

dy

)m j∫
a

f (τ, j)(j− τ)m−α−1dτ

(2)

where m is a positive integer, Γ is the Gamma function, f is a scalar function that is the image
in this paper, i and j are the pixel coordinates of the image, and x and y are the horizontal
and vertical directions, respectively. When α is a positive number, Equation (2) becomes the
integer-order derivative. To reduce computational complexity, the standard discretization
technique and the first-degree compound quadrature formula [32] were applied to the
Riemann-Liouville operator:

Dα
x f (i, j) ≈

m
∑

k=0
Ψα(k) f (i− k, j), i = m + 1, m + 2, · · · , M; j = m + 1, m + 2, · · · , N

Dα
y f (i, j) ≈

m
∑

k=0
Ψα(k) f (i, j− k), i = m + 1, m + 2, · · · , M; j = m + 1, m + 2, · · · , N

(3)

Ψα(k) = (−1)k Γ(α + 1)
k!Γ(α + 1− k)

, (4)

where k is the grid size of the standard discretization technique, m is a positive integer
less than min (i, j), and m is the number of grids of the standard discretization technique.
Equation (3) provides the vertical and horizontal directions of the discrete fractional-order
derivatives of a hazy image, whose size is M × N at pixel position (i, j). The derivation
process of discrete error in Equation (3) can be found in [33]. Analogously, the vertical and
horizontal directions of the discrete right fractional-order derivatives can be defined as

(Dα
x)
∗ f (i, j) ≈

m
∑

k=0
Ψα(k) f (i + k, j), i = 1, 2, · · · , M−m; j = 1, 2, · · · , N −m(

Dα
y

)∗
f (i, j) ≈

m
∑

k=0
Ψα(k) f (i, j + k), i = 1, 2, · · · , M−m; j = 1, 2, · · · , N −m

(5)

To obtain multi-directions information, which can improve the quality of the dehazing
result, the composite operator comprising right and left Riemann-Liouville operators was
applied in the proposed method. It can be described as follows:

(Dα
x)
∗Dα

x f (i, j) ≈
m
∑

k=i
Ψα(k− i)

k
∑

p=0
Ψα(p) f (k− p, j), i = m + 1, m + 2, · · · , M−m; j = m + 1, m + 2, · · · , N −m(

Dα
y

)∗
Dα

y f (i, j) ≈
m
∑

k=j
Ψα(k− j)

k
∑

p=0
Ψα(p) f (i, k− p). i = m + 1, m + 2, · · · , M−m; j = m + 1, m + 2, · · · , N −m

(6)
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2.2. Proposed Dehazing Model

According to Equation (1), the proposed dehazing model based on optical imaging
model is

(
t̂, Ĵ
)
= argmin

t̂, Ĵ
‖ Ĵ t̂−

(
I − A + At̂

)
‖2

2 +
λ1

2
‖ICLAHE − Ĵ‖2

2 +
λ2

2
‖Dα t̂‖1 + λ3C

(
t̂
)
+ λ4T

(
t̂
)

(7)

where ICLAHE is the hazy image that has been enhanced via contrast-restricted histogram
equalization (CLAHE) [34], and C(·) and T(·) are the local and non-local information regu-
larization terms, respectively. λ1, λ2, λ3, and λ4 are the regularization parameters, which

are positive numbers. Dα is the fractional-order operator, Dα =
[
(Dα

x)
∗Dα

x,
(

Dα
y

)∗
Dα

y

]T
. t̂

and Ĵ are the transmission map and the ideal image to be optimized. |·|1 and |·|2 are the
1-norm and 2-norm operators. Both the first term and the second term are original image
data fidelity items. The difference is that the first term can restore the background of the
image and prevent image over-enhancement, while the second term focuses on restoring
the texture and detail. The third, fourth, and fifth terms are the regularization terms.

Generally, the optimization problem, such as that shown in Equation (7), cannot be
resolved directly; the solving strategy of proposed Equation (7) is to decouple Equation (7)
into multiple subproblems. By adding the auxiliary valuables, Equation (7) can be written
as a constrained optimization problem:(

t̂, Ĵ, v, w
)
= argmin

t̂, Ĵ,v,w
‖ Ĵ t̂−

(
I − A + At̂

)
‖2

2 +
λ1
2 ‖ICLAHE − Ĵ‖2

2 +
λ2
2 ‖w‖1 + λ3C(v) + λ4T(v),

s.t. v = t̂, w = Dα t̂
(8)

Then, the half quadratic splitting (HQS) method, which has been widely used in image
dehazing [35], image recovery [36], and super-resolution reconstruction [37], was applied
to convert the above constrained optimization problem, as shown in Equation (8), to a
non-constrained optimization problem:(

t̂, Ĵ, v, w
)
= argmin

t̂, Ĵ,v,w
‖ Ĵ t̂−

(
I − A + At̂

)
‖2

2 +
λ1
2 ‖ICLAHE − Ĵ‖2

2

+λ2‖w‖1 + λ3C(v) + λ4T(v) + η1‖v− t̂‖2
2 + η2‖w− Dα t̂‖2

2,
(9)

where η1 and η2 are the penalty parameters; η1 can be estimated via the proposed net-
work architecture, and η2 is estimated via repeated experiments. The non-constrained
optimization problem can be split into four subproblems

t̂k1+1 = argmin
t̂
‖ Ĵk1 t̂k1 −

(
I − A + Ak1 t̂k1

)
‖

2

2
+ η1‖vk1 − t̂k1‖2

2 + η2‖wk1 − Dα t̂k1‖2
2, (10)

where k1 is the number iterations. Equation (10) is the t̂-subproblem, which is obtained via
fixed Ĵ, v, w to solve variable t̂.

Ĵk1+1 = argmin
Ĵ
‖ Ĵk1 t̂k1+1 −

(
I − A + At̂k1+1

)
‖

2

2
+ λ1‖ICLAHE − Ĵk1‖2

2. (11)

We fixed the variables t̂, v, w to solve variable Ĵ. The Ĵ-subproblem, shown in
Equation (11), could then be obtained.

vk1+1 = argmin
v

λ3C
(

vk1
)
+ λ4T

(
vk1
)
+ η1‖vk1 − t̂k1+1‖2

2. (12)
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For the v-subproblem, as shown in Equation (12), the variables t̂, Ĵ, w were fixed, as
shown in Equation (9), and the variable v was solved.

wk1+1 = argmin
w

λ2‖wk1‖1 + η2‖wk1 − Dα t̂k1+1‖2
2. (13)

For the w-subproblem, the variables t̂, Ĵ, v were fixed as shown in in Equation (9),
and the variable w was solved to obtain the subproblem, as shown in Equation (13). From
Equations (10)–(13), the HQS algorithm separates the data fidelity term, the fractional
derivative regularization term, and the two data-driven regularization terms into four
different subproblems.

2.3. Subproblem v

In this section, we focus on the v-subproblem shown in Equation (12). In previous
literature, it was demonstrated that local and non-local information is advantageous for im-
age dehazing [38–40]. Therefore, we proposed explicitly incorporating local and non-local
information in the proposed model, which have been denoted as C(·) and T(·). However,
the artificial non-local feature regularization term contains local information, inevitably.
The deep learning-based implicit regularization term is a satisfactory solution to ameliorate
this problem. Hence, the regularization terms C(·) and T(·) are modeled via deep learning,
which adds nonlinearity to the proposed model and improves the accuracy of the artificial
non-local and local information.

To solve local and non-local regularization terms accurately, there are two principles
to help in the design of the proposed network architecture. First, the network structure
should be simple, because simplicity facilitates training and prevents network degrada-
tion. Second, in the third term of Equation (12), local and non-local regularization terms
should be processed simultaneously. Therefore, the two-stream network [41] was used as
the basic architecture of the proposed network, and the Convolutional Neural Network
(CNN) and the Transformer were applied to the proposed models C(·) and T(·), respec-
tively. Figure 1 illustrates the network architecture of the proposed non-local and local
regularization terms.
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Figure 1. The architecture of the proposed two-streams network. To solve Equation (12), the first
term of Equation (12) was designed as the upper stream, the second term was designed as the lower
stream, and the third term could be calculated directly.

As shown in Figure 1, the proposed two-stream network consists of two parts: the
CNN stream (local regularization term) and the Swin Transformer [42] stream. The CNN
stream is the simple CNN architecture, which has only three convolutional layers, rectified
linear units (RELUs), and batch normalization layers (BNs). The structure of the CNN
stream is shown in Figure 2.
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Figure 2. An illustration of CNN.

As shown in Figure 2, the convolution kernel of CNN can sweep the input features
regularly, multiply and determine the matrix elements of the input features in the receptive
field, and add up the deviation amounts. This way of working can obtain the relationship
between the center pixel and the surrounding pixels via the convolution kernel, which
makes the CNN is a convincing tool for estimating local information. Considering the
complexity of the model, the shallow CNN is the best choice for extracting local information.

Generally, the vision field of the CNN increases with the increase of network depth.
When the number of network layers is small, local information is more than global informa-
tion. However, with an increase in network depth, problems such as gradient dispersion,
gradient explosion, and/or network degradation may occur [43]. Therefore, deep CNN
cannot be used to extract non-local features. In this paper, the Swin Transformer, which was
proposed via the best paper in the 2021 IEEE International Conference on Computer Vision,
was applied to obtain global information. As shown in Figure 2, the Swin Transformer
blocks, which are shown in Figure 3, are the keys to the Swin Transformer.
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Figure 3. The architecture of the two successive Swin Transformer blocks. W-MSA and SW-MSA are
multi-head self-attention modules with regular and shifted windowing configurations, respectively.

As shown in Figure 3, the LN block is the line norm (LN) layer, which is applied before
each multi-head self-attention (MSA) [44] module and each multi-layer perceptron (MLP).
Compared with standard Vision Transformers, the Window Multi-head Self-Attention (W-
MSA) and the Shifted Window Multi-head Self-Attention (SW-MSA) provide the biggest
characteristics of the Swin Transformer. To reduce the complexity, the input image is
divided into several patches, and each patch is applied to a W-MSA to estimate the non-
local features. To obtain the features of the different patches, the SW-MSA is applied in the
Swin Transformer. The structure of the MSA module is illustrated in Figure 4.

As shown in Figures 3 and 4, the input features (query, key, and value) of the MSA
module are estimated via LN. The scaled dot-product attention can obtain the self-attention
map via the key, the query, and the value. Mathematically, this process can be described
as follows:

outputs = softmax
(

Q× KT
√

dk

)
V (14)

where Q, K, and V are the query, key, and value matrices, and dk is the size of the K matrix.
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Unlike the CNN, the shifted windowing scheme of the Swin Transformer is the
limited self-attention module to the non-overlapping local windows. It also allows for
cross-window connection. Compared with the Vision Transformer (ViT) [45], the SW-
MSA of the Swin Transformer can obtain the feature of cross-window, which makes the
Swin Transformer more non-local than the ViT. Unlike Multiscale Vision Transformers
(MViT) [46], the fusion of different scale tokens is more complex than the shifted windows
of the Swin-Transformer. Hence, the Swin Transformer is a satisfactory tool for capturing
non-local information from hazy images. It is worth noting that, to follow the above two
criteria, the third item of Equation (12) was added to the proposed network, with the CNN
stream and the Swin Transformer stream. This network design helped to improve the
efficiency of the trained network solution shown in Equation (12).

For the design of loss function, the preserve-texture of v and the minimization of the
energy function shown in Equation (12) play crucial roles. Therefore, the loss function can
be defined as follows:

(Θ, η1, λ3, λ4) = argmin
Θ,η1,λ3,λ4

1
L

L

∑
l=1
‖Dα

[
E
(

vk1,l ; Θ, η1, λ3, λ4

)]
− Dαvk,l‖

2

2
+ θE

(
vk1,l ; Θ, η1, λ3, λ4

)
(15)

where Θ represents the parameters of the proposed network, θ represents the balance
parameters, L is the number of the training dataset, E(·) is the proposed network, and η1,
λ3, λ4 are the parameters in Equation (12). As shown in Equation (15), the first term is the
preserve-texture term, which extracts information about textures and edges via the frac-
tional differential. The second term is the output of the proposed network. The proposed
network estimates the vk+1 via minimizing the loss function, as shown in Equation (15).

To implement the proposed network, TensorFlow 2 was applied. The stochastic
gradient descent was utilized to calculate the parameter of the proposed network, and
train it up to 150 epochs. The mini-batch size and the momentum were set at 32 and 0.75,
respectively. The training was performed on a server equipped with a single NVIDIA
TITAN-X GPU (NVIDIA, Santa Clara, CA, USA). To reduce the training time, the CNN
pretraining model of COCO dataset [47] and the Swin Transformer pretraining model were
applied, respectively.

2.4. Other Subproblems

In this section, we focus on the solutions of subproblem t̂, Ĵ, and ŵ. Firstly, the
subproblems t̂ and Ĵ are quadratic regularized least-squares problems, which are solved
directly, because they are strictly convex problems [48–50]. They can be approximated
as follows:

t̂k1+1 =
Ĵk1 I − AĴk1 − AI − A2E + η1vk1 + η2Dαwk(

Ĵk1 − A
)2

+ η1E + η2(Dα)TDαE
(16)
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Ĵk1+1 =
It̂k1+1 + A

(
t̂k1+1

)2
+ λ1 ICLAHE − At̂k1+1

t̂2 + λ1E
(17)

where E is the unit matrix, and the division of Equations (16) and (17) is the element division.
Then, the w-subproblem, which is a non-convex optimization problem, is estimated. In
our previous work [13], the non-convex and non-smooth variation was applied to restore
underwater images. Analogously, the solution of w is shown as follows:

wk1+1 = (Dα)TDα t̂k1+1 − λ2

2η2
sgn
(

wk
)

E (18)

where sgn(·) is the symbolic function.

2.5. The Estimation of Atmospheric Light

As shown in Equations (1) and (7), atmospheric light is an unknown parameter that
determines the brightness of the restored images. In this paper, the atmospheric veil [51]
was defined as:

V = A(1− t), (19)

where V is the atmospheric veil and t is the transmission map. Given the fixed t, the A
is proportional to V . Hence, the high-precision t can estimate high-precision atmospheric
light A. In this paper, the problem of estimated A could be converted to the problem of
estimated high-precision t. To estimate A, the model based on fractional-order calculus
was proposed, which estimated A via calculating V . It is shown as:

(V, A) = argmin
V,A

‖V − A(1− t)‖2
2 + λ5‖DαV‖1, (20)

where λ5 is the regularization parameter. To solve Equation (20), an efficient alternating
optimization algorithm based on variable splitting is proposed in this Section. In the
proposed solution, the auxiliary variable X was introduced to replace the fractional-gradient
operators DαV , and the Equation (20) could be rewritten as

(V, A) = argmin
V,A

‖V − A(1− t)‖2
2 + λ5‖X‖1,

s.t. DαV = X
(21)

Then, the constraint function could be changed to an unconstraint problem,

(V, A) = argmin
V,A,X

‖V − A(1− t)‖2
2 + λ5‖X‖1 +

η3

2
‖X− DαV‖2

2, (22)

where η3 is the parameter to control the similarity between auxiliary variable X and
fractional-gradient operators. The optimization problem shown in Equation (22) could
be solved by iterative minimization with respect to V , A, and X, respectively. The three
subproblems are shown as follows

Vk2+1 = argmin
V
‖Vk2 − Ak2(1− t)‖2

2 +
η3

2
‖Xk2 − DαVk2‖2

2, (23)

where k2 is the iteration number of atmospheric light estimation. The V-subproblem is
obtained via fixed the variables A and X. Similarly, we fixed the variables V and X; to solve
variable A, the A-subproblem is

Ak2+1 = argmin
A
‖Vk2+1 − Ak2(1− t)‖2

2, (24)
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Finally, we fixed the variables V and A to solve the variable X; the X-subproblem is:

Xk2+1 = argmin
X

λ5‖Xk2‖1 +
η3

2
‖Xk2 − DαVk2+1‖2

2, (25)

For the subproblems shown in Equations (23) and (24), they were quadratic regularized
least-squares problem; the solution of Equations (23) and (24) are

Vk2+1 =
A(1− t) + 0.5η3DαXk2

1 + η3(Dα)TDαE
(26)

Ak2+1 =
Vk2+1

1− t
(27)

For the subproblem shown in Equation (25), the optimal answer for X could be
obtained by applying the fast shrinkage operator:

Xk2+1 = sgn
(

DαVk2+1
)

max
(∣∣∣DαVk2+1

∣∣∣− λ5

η3
, 0
)

, (28)

2.6. The Steps of the Proposed Method

The proposed method is an end-to-end (single stage) model, with the following steps:

• Input: hazy image.
• Output: clean image.
• Step 1: Estimate the rough transmission map and the initial atmospheric light. Estab-

lish the nitial parameters, and set k1=1 and k2=1;
• Step 2: Solve Equations (16) and (17), the trained network, and Equation (18);
• Step 3: Solve Equation (19) and Equations (26)–(28);
• Step 4: Repeat Step 3, until the iteration exit condition of the atmospheric light estima-

tion is satisfied;
• Step 5: Repeat Steps 2, 3 and 4, until the iteration exit condition of the transmission

map is satisfied;
• Step 6: Output the transmission map and clean the image.

It is worth noting that the iteration exit condition of the transmission map is k1 = 50
or
∣∣∣tk1−1 − tk1

∣∣∣/(MN) ≤ 0.004, where M and N are the image sizes. The iteration exit
condition of the atmospheric light estimation is k2 = 5. The flow chart of the proposed
method is shown in Figure 5:
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3. Results

This Section discusses several experiments that were carried out to evaluate the perfor-
mance of the proposed method. Several state-of-the-art single image dehazing techniques
were selected for the comparison, including DCP [2], HLP [3], CAP [4], OTM [52], FFA [53],
RefineDNet [54], and CLAHE. The DCP, HLP, Cap, OTM, and MoF were the imaging
model-based methods; the FFA and RefineDNet were the deep learning-based methods;
and the CLAHE was the image enhancement-based method. The test datasets included
synthetic hazy images and real-world images, which were applied to evaluate the dehazing
results qualitatively and quantitatively.

To evaluate the performance of the proposed method, two aspects were considered:
objective measurement and subjective evaluation. For the objective measurement, two
evaluation criteria were examined: the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity Index (SSIM). They were the quantitative evaluation methods. The synthetic hazy
images, such as O-hazy [55] and I-hazy [56], were applied. For the subjective evaluation,
the above methods were evaluated via subjective judgments about color, haze residual, and
noise amplification. Due to the ground truth that real-world images were not available, the
no-reference image quality assessment methods were applied, such as information entropy
(IE), variance (σ), Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [57],
and NBIQA, which was introduced in [58].

In the above metrics, the higher the PSNR and SSIM score was, the higher the degree
of image restoration was. The high score of IE meant that the dehazing results contained
more information. The high score of σ may have indicated that the contrast of the restored
image was satisfactory. If the visual effect of the restored image was excellent, it may have
implied that the BRISQUE and NBIQA were low.

The tested methods and the evaluation criteria are introduced above. The remainder
of this Section is structured as follows: In Section 3.1, the different estimation methods
of rough transmission map and initial atmospheric light were tested. In Section 3.2, the
dehazing effect via synthesis images was assessed quantitatively. The tested methods were
evaluated via real-world images in Section 3.3. Section 3.4 shows the running time of the
above dehazing methods.

3.1. Evaluation of Initial Atmospheric Light

In Step 1 of the proposed method, the estimation methods of the rough transmission
map and the initial atmospheric light may be important, because the imaging model-based
methods are multi-stage. In this Section, the estimation method of the rough transmission
map and the initial atmospheric light from DCP, CAP, and HLP techniques were applied to
Step 1. The tested image is the synthetic image. Table 1 shows the result.

Table 1. Comparison of three rough transmission map and initial atmospheric light
estimation methods.

Method
I-Hazy O-Hazy

PSNR SSIM PSNR SSIM

DCP 16.42 0.67 15.94 0.55
CAP 16.37 0.66 15.87 0.58
HLP 16.48 0.64 15.89 0.56

In Table 1, the results of the three methods are approximate. In the I-hazy dataset, the
HLP had the highest score of PSNR, but the DCP had the best SSIM. In the O-hazy dataset,
the best score of PSNR was the DCP’s, but the highest SSIM was the CAP’s. In this paper,
the DCP was applied to estimate the rough transmission map and the initial atmospheric
light because it had two of the highest scores of the quantitative indices.
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3.2. Evaluation on Synthetic Images

In this Section, the performance of the proposed methods was verified via qualitative
image quality evaluation on the synthetic datasets, I-hazy and O-hazy. In I-hazy, there
were 30 indoor hazy images and their ground truth. Figures 6 and 7 exhibit the dehazing
effect for the above test methods on indoor images, where the ground truth of Figure 6
is nonuniform illumination. Figures 8 and 9 display the hazy removal result on outdoor
images, where the background of Figure 8 has a similar color to the haze and contains a
sky region (the infinite depth of field), and the background color in Figure 9 differs from
the haze color.
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Figure 6. The dehazing effect of an indoor image with nonuniform illumination. The first row, from
left to right, shows the ground truth, the synthetic hazy image, and the dehazing of the DCP, the CAP,
and the HLP. The second row, from left to right, shows the dehazing methods of the OTM, the FFA,
RefineDNet, and the CLAHE, as well as ours (the authors’).
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Figure 7. The dehazing effect of an indoor image with uniform illumination. The first row, from left
to right, shows the ground truth, the synthetic hazy image, and the dehazing of the DCP, the CAP,
and the HLP. The second row, from left to right, shows the dehazing methods of the OTM, the FFA,
RefineDNet, and the CLAHE, as well as ours (the authors’).

For indoor images, all image dehazing methods have a better effect in uniform illu-
mination. In Figures 6 and 7, the result of the imaging model-based methods, such as the
DCP, the CAP, and the HLP, lack brightness and contrast, but the proposed method has
satisfactory contrast. These results demonstrated that the local and non-local data-driven
regularization term could obtain a high-contrast feature for image dehazing. The dehazing
results of the FFA had haze residual, but the proposed method alleviated this defect of the
FFA, which proved that the imaging model could help the deep learning-based method
to remove haze thoroughly. In uniform illumination (as shown in Figure 6), the result of
RefineDNet was low-luminance in nonuniform illumination, with defects such as haze
residual. Compared with RefineDNet, the results of the proposed method were more stable
for nonuniform and uniform illumination. These results indicated that the imaging model
combined with deep learning can be applied to different scenarios. It is worth noting that
the dehazing effect of the CLAHE and the proposed method is similar. In the proposed
model Equation (7) and in Figures 6 and 7, the CLAHE was applied in the data fidelity
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term, which meant that the dehazing result of the proposed method may be similar to that
of the CLAHE in the synthetic indoor hazy image or thin haze.
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Figure 8. The dehazing effect of an outdoor image with a sky region. The first row, from left to right,
shows the ground truth, the synthetic hazy image, and the dehazing of the DCP, the CAP, and the
HLP. The second row, from left to right, shows the dehazing of the OTM, the FFA, RefineDNet, and
the CLAHE, as well as ours (the authors’).
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Figure 9. The dehazing effect of an outdoor image without a sky region. The first row, from left to
right, shows the ground truth, the synthetic hazy image, and the dehazing of the DCP, the CAP, and
the HLP. The second row, from left to right, shows the dehazing of the OTM, the FFA, RefineDNet,
and the CLAHE, as well as ours (the authors’).

For outdoor images, the state-of-the-art methods have disappointing dehazing effects.
In Figures 8 and 9, the results of the DCP obviously had a halo. In the CAP, the hazy resid-
ual seemed to be more significant. The HLP had a poor restoration effect in the sky region,
as shown in Figure 8. The OTM displayed such drawbacks as color degradation and haze
increase. Compared with the above imaging model-based methods, the results of proposed
indicated that the combination of specific physical significance (the imaging model) and
abstract nonlinear image features (data-driven regularization term) could improve the
dehazing quality more effectively. The FFA does not overcome the phenomenon of haze
residual. The dehazing results of RefineDNet lack brightness and blur the edges and tex-
tures in the infinite depth of field. Compared with the above deep learning-based method,
the proposed local and non-local data-driven regularization term could estimate the image
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feature purposefully. As shown in Figure 8, the CLAHE can create color distortion, and
the defect of haze residual appears in Figure 9 for the CLAHE. These results illustrated
that fractional variation can prevent the disadvantages of over-enhancement and color
distortion. The proposed method produced results almost as bright as the ground truth
images and further reduced the color distortion and halo artifacts. Figure 10a,b illustrates
the PSNR and the SSIM of the above dehazing methods, respectively.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 21 
 

 

similar to those of the O-Haze. Therefore, the proposed method is a satisfactory tool to esti-

mate clean images from a hazy scene. 

  

Figure 10. The PSNR and the SSIM of synthetic hazy images. (a) The PSNR of tested methods with 

different datasets. (b) The SSIM of tested methods with different datasets. 

3.3. Evaluation on Real-World Images 

Further, the superiority of the proposed method was verified via real-world images. 

The dehazing effects of several real-world images are illustrated as Figure 11. 

         

         

         

         

         

         

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Figure 11. The dehazing results of real-world hazy images. From top to bottom are “stack”, 

“flower”, “city”, “Tiananmen”, “train”, and “mansion”. (a) The origin hazy images. (b) The dehaz-

ing result of the DCP. (c) The dehazing effect of the CAP. (d) The dehazing effect of the HLP. (e) The 

dehazing effect of the OTM. (f) The dehazing effect of the FFA. (g) The dehazing effect of RefineD-

Net. (h) The dehazing effect of the CLAHE. (i) The dehazing effect of the authors’ proposed method. 

Restored via the tested dehazing methods, the majority of the scenes and textures in 

the above images became obviously clearer. However, the DCP can produce an artificial 

halo. In the infinity depth of field, the DCP and the HLP produced a miscalculation, and 

this led the sky to have unusually bright areas. The results of the CAP seemed too dark 

Figure 10. The PSNR and the SSIM of synthetic hazy images. (a) The PSNR of tested methods with
different datasets. (b) The SSIM of tested methods with different datasets.

In Figure 10, the “DNet” is the RefineDNet, and the “CL” is the CLAHE. Impressively,
the proposed methods achieved the highest scores of the PSNR and the SSIM. Regarding
the PSNR, the proposed method was superior to other methods in terms of restoration of
pixel intensity. Meanwhile, the SSIM of the FFA and the proposed method was similar to
that of the I-Haze, and the scores of the OTM, the CLAHE, and the proposed method were
similar to those of the O-Haze. Therefore, the proposed method is a satisfactory tool to
estimate clean images from a hazy scene.

3.3. Evaluation on Real-World Images

Further, the superiority of the proposed method was verified via real-world images.
The dehazing effects of several real-world images are illustrated as Figure 11.

Restored via the tested dehazing methods, the majority of the scenes and textures in
the above images became obviously clearer. However, the DCP can produce an artificial
halo. In the infinity depth of field, the DCP and the HLP produced a miscalculation, and
this led the sky to have unusually bright areas. The results of the CAP seemed too dark and
some of them had more disappearing edges and textures. The hazy residual was observed
from the dehazing image of the OTM. Compared with the above imaging-based methods,
the contrast of the proposed method was impressive. Due to the non-local data-driven
regularization term, the proposed method could exact the global feature of the image
effectively. Fractional variation also seemed to work in regions of the infinite depth of field,
which removed the “aureole” in the sky.

The FFA produced some thick haze in the tested image while removing the haze. The
phenomenon of brightness degradation was present in the dehazing images of RefineDNet.
Unlike the deep learning-based methods, the proposed method was able to estimate high-
quality dehazing images. Because the proposed method is based on the haze imaging
model, the problem of haze increase (the FFA) was impossible for the proposed method.
The local and non-local data-driven regularization item could learn the local and non-local
features of the image more purposefully. Hence, the restored results of the proposed method
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were more robust than those of RefineDNet; the dehazing results “stack”, “train”, and
“mansion” of RefineDNet were low-contrast and the dehazing results “flower” and “city”
had a vestigial haze, but the proposed method was able to estimate high-quality image.
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Figure 11. The dehazing results of real-world hazy images. From top to bottom are “stack”, “flower”,
“city”, “Tiananmen”, “train”, and “mansion”. (a) The origin hazy images. (b) The dehazing result of
the DCP. (c) The dehazing effect of the CAP. (d) The dehazing effect of the HLP. (e) The dehazing
effect of the OTM. (f) The dehazing effect of the FFA. (g) The dehazing effect of RefineDNet. (h) The
dehazing effect of the CLAHE. (i) The dehazing effect of the authors’ proposed method.

Because the CLAHE is based on image enhancement, the contrast of the CLAHE is
satisfactory visually. However, the results of the CLAHE seemed to suffer from the defects
of over-enhancement and hazy residual. However, these defects could be alleviated via
fractional variation. In addition, the local data-driven regularization term may further
prevent over-enhancement. Therefore, the proposed method had more realistic color effects
and fewer artifacts, while enhancing the clearness and removing the haze. In addition, for
quantitative analysis, Figure 12 illustrates the IE, σ, BRISQUE, and NBIQA of the above
dehazing methods, respectively.

As shown in Figure 12a, the results of the DCP and the FFA had low IE, which could
also be proved by the real-world image dehazing experiment, because the artificial halo of
the DCP and the produced thick haze via the FFA reduced the edges and textures, drastically.
The proposed method obtained the highest IE, which indicated that the proposed method
can restore clean edges and textures effectively. The score of σ is shown in Figure 12b, and
the proposed method also achieved the best score. These results showed that the contrast
of the proposed method is remarkable, which indicates that the objects and textures of the
proposed method are sharper than they are for other methods. According to Figure 12c, the
proposed method score of BRISQUE is the lowest, which indicates that the restored image
has a nice visual effect. However, the best NBIQA was obtained via the CLAHE, and the
proposed method was relatively low compared to other methods.
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3.4. Running Time Analyze

Running time is another important measure to analyze the performance of the pro-
posed method. In addition to algorithm complexity, the device also played a key role in
affecting the running time. With respect to universality, the tested methods were run on
different computers with different resolutions. The machines included i5-10300H CPU 8G
RAM with GPU NVIDIA GeForce GTX 1650 (Lenovo, Beijing, China). The tested images
were from O-hazy, and they were reshaped as 256 × 256, 512 × 512, and 1024 × 1024.
Figure 13 shows the running time of the above methods.

As shown in Figure 13, the deep learning-based methods, such as the FFA, RefineDNet,
and the proposed method, take longer than other methods. The CLAHE is the fastest
method shown in Figure 13. The estimations of the rough transmission map and the
initial atmospheric light via the proposed method were slower than those of the imaging
model-based methods. However, the running time of the proposed method was the lowest
among the deep learning-based methods.
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4. Conclusions

In this paper, an image dehazing method based on fractional derivatives and deep
learning was proposed. Unlike the traditional deep learning methods, we proposed a novel
dehazing model based on a haze imaging formula. The CLAHE was applied as the data
field term, which improved the contrast of the proposed method. The fractional derivative
was used to smooth the proposed model, avoiding the phenomenon of noise amplification
by atmospheric light or the CLAHE. For efficient dehazing, the deep learning method was
applied to estimate the local and non-local image features, where the simple CNN was used
to obtain the local feature, and the Swin Transformer was applied to estimate non-local
features. In addition, the atmospheric light was estimated via an atmospheric veil, and this
process was integrated into the iterative solution of the fog model. In the experiment, the
proposed method was extensively tested on both synthetic and real-world image datasets,
and compared with a variety of different types of single-image dehazing methods, such as
the methods based on the imaging model, deep learning, and image enhancement. The
qualitative results demonstrated that the proposed method reduces color distortion and
brightness degeneration and produces clean edges and textures. Similarly, according to
image quality assessments, such as the PSNR, the SSIM, the IE, σ, BRISQUE, and NBIQA,
the proposed method was able to improve the dehazing effect significantly.

There are still three main problems restricting the application of the proposed method.
First, the running time limits the application of the proposed method in video dehazing
with a high frame rate or low-level equipment. Then, studying the adaptive selection
method of the parameters, such as the penalty parameter or the number of iterations, is
vital. In our previous work [13], we designed a parameter selection method based on convex
optimization. However, this method can increase the running time significantly. Hence, on
the premise of ensuring the running time, adaptive parameter selection is necessary. Finally,
the proposed network architecture can be trained via a semi-supervised or self-supervised
framework, which can reduce the dependence of the proposed method on training data
and prevent the impact of the synthetic hazy image.

In conclusion, the proposed method can estimate high-quality images from hazy
images, and it can be improved in several different ways, including reducing running time,
parameter selection, and a training framework.

Author Contributions: Conceptualization, Q.J. and M.L.; formal analysis, Q.J. and B.N.; funding
acquisition, Q.J. and M.L.; investigation, B.N. and L.K.; methodology, L.D.; project administration,
M.L. and M.H.; resources, F.Z. and L.K.; Software, F.Z.; Supervision, B.N., L.D. and Y.Z.; validation,
Y.Z.; visualization, F.Z., L.D., M.H. and Y.Z.; writing—original draft, Q.J.; writing—review & editing,
Q.J. and L.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Pevelopment project of
China (No. 2018YFF0300804); by the Graduate Innovation Research Project of the Yangtze Delta
Region Academy of the Beijing Institute of Technology, Jiaxing (No. GIIP2021-007, No. GIIP2021-006,



Fractal Fract. 2022, 6, 262 18 of 20

No. GIIP2021-011, No. GIIP2021-012); and by the National Natural Science Foundation of China
(No. 11774031).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The tested image is available at [45,46], and the code can be obtained
from the first-named author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Due to the number of parameters and equations in this paper, this Appendix elaborates
on each parameter.

Table A1. Detailed annotation of parameters and symbols.

No. Symbol Annotation Type

1 A Atmospheric light Vector
2 C(·) Local regularization term Function
3 Dα

x Horizontal direction right fractional operator Operator
4 (Dα

x)
∗ Horizontal direction left fractional operator Operator

5 (Dα
x)
∗Dα

x Horizontal direction composite fractional operator Operator
6 Dα

y Vertical direction right fractional operator Operator
7

(
Dα

y

)∗
Vertical direction right fractional operator Operator

8
(

Dα
y

)∗
Dα

y Vertical direction composite fractional operator Operator

9 dk Size of key in MSA Number
10 E(·) The proposed network Function
11 E Unit matrix Matrix
12 I Hazy image Matrix
13 ICLAHE Optimized hazy image via CLAHE Matrix
14 I Pixel coordinates Number
15 J Ideal image Matrix
16 Ĵ Ideal image, variable Matrix
17 J Pixel coordinates Number
18 K Key of MSA Matrix
19 K Gird size of standard discretization technique Number
20 k1 Iterations number of transmission map estimation Number
21 k2 Iterations number of atmospheric light estimation Number
22 L Number of train data Number
23 M Size of image Number
24 M Number of grids of standard discretization technique Number
25 N Size of image Number
26 Q Query of MSA Matrix
27 sgn(·) Symbolic function Function
28 T Transmission map Matrix
29 t̂ Transmission map, variable Matrix
30 T(·) Non-local regularization term Function
31 V Value of MSA only in Equation (14) Matrix
32 V Atmospheric veil Matrix
33 V Auxiliary variable Matrix
34 W Auxiliary variable Matrix
35 X Auxiliary variable Matrix
36 α order Number
37 λ1, λ2, λ3, λ4, λ5 Regularization parameter Number
38 η1, η2, η3 Penalty parameter Number
39 Θ The proposed network parameters Matrix
40 θ Balance parameter in Equation (15) Number
41 |·|1, |·|2 1-norm, 2-norm Function
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