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Abstract: In this paper, we construct and analyze a class of high-order and dissipation-preserving
schemes for the nonlinear space fractional generalized wave equations by the newly introduced
scalar auxiliary variable (SAV) technique. The system is discretized by a fourth-order Riesz fractional
difference operator in spatial discretization and the collocation methods in the temporal direction.
Not only can the present method achieve fourth-order accuracy in the spatial direction and arbitrarily
high-order accuracy in the temporal direction, but it also has long-time computing stability. Then, the
unconditional discrete energy dissipation law of the present numerical schemes is proved. Finally,
some numerical experiments are provided to certify the efficiency and the structure-preserving
properties of the proposed schemes.

Keywords: nonlinear fractional generalized wave equation; dissipation-preserving scheme; scalar
auxiliary variable approach; Lubich difference operator.
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1. Introduction

The fractional partial differential equation has become a powerful tool to describe some
complex physical phenomena, such as anomalous diffusion and viscoelastic mechanics,
since it accurately simulates a complex system composed of particles with long-range
interaction. The theoretical analysis and numerical estimation of the fractional partial
differential equations have been widely studied [1–4]. The nonlinear fractional generalized
wave equation (FGWE) is obtained by extending the classical hyperbolic equations to a
fractional model including damping term and fractional Laplace operator. Since many
problems are inevitably dissipated by viscosity, friction, or other resistance, it is significant
to study the nonlinear fractional wave equations under damping.

The fractional wave equations are widely applied in various significant physical mod-
els constructed from the continuous limit of discrete systems of particles with long-range
interactions [5]. These equations can be used to describe physical phenomena such as the
interaction of solitons in a collisionless plasma, the nonlinear interactions of vortexes, and
the nonlinear supratransmission of energy flow, which have very important applications in
solid mechanics, quantum mechanics, nonlinear optics, and nonlinear differential geome-
try [6,7]. Generally speaking, due to the nonlocal characteristics of fractional derivatives
and the complexity of nonlinear terms, the exact solution of the nonlinear fractional partial
differential equation is difficult to find. Moreover, the analytic solutions often contain
some complicated special functions that are difficult to calculate, such as the Mittag–Leffler
function and Wright function, which brings great difficulties to practical application [8].
Therefore, it is important to research a reliable numerical method with high-order accuracy
for the fractional wave equations with fractional Laplacian operator. In constructing the
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numerical methods for the nonlinear fractional wave equations, how to approximate the
fractional Laplacian operator effectively is the most critical step. In the past decades, many
scholars have conducted in-depth studies on this topic, and the most effective way that
has been presented is to use the equivalence relation between fractional Laplacian and
Riesz derivatives under homogeneous Dirichlet boundary conditions. The above equiva-
lent definition makes the truncation of Riesz derivatives possible, which is convenient for
the practical application and calculation of the space FGWEs with fractional Laplacian in
one dimension. From this point of view, the commonly used approximation methods for
Riesz fractional derivatives include the fractional central difference method [9], Grünwald–
Letnikov method [10,11], and Diethelm method [12]. Then, higher-order Riesz derivative
approximations are proposed by using the weighted average idea and Lubich difference
formula [13]. According to the above approximation of Riesz fractional derivative, there
are some numerical methods for solving nonlinear fractional wave equations [14–16].

Many fractional nonlinear partial differential equations are known to possess some
physical quantities that naturally arise from the physical context, such as the energy conser-
vation law [17]. Therefore, designing and analyzing structure-preserving computational
techniques for the fractional nonlinear partial differential equations is a natural direction
of investigation. In a long-time numerical simulation, the structure-preserving numerical
method is better than the traditional numerical method because it can inherit the geometric
characteristics of a given dynamic system. Maintaining these conserved properties in the
construction of numerical methods will greatly improve the accuracy, efficiency, and stabil-
ity of numerical methods. For nonlinear fractional wave equations, recent popular energy
conservation or dissipation-preserving numerical methods include the finite difference
method [9,18–20], finite element method [21], finite volume method [22], and spectral
methods [23]. However, most of the existing structure-preserving schemes for fractional
nonlinear wave equations are implicit and need to compute complex nonlinear systems
in practical computation. Moreover, they cannot preserve the dissipation properties un-
conditionally. In our previous work, we have presented an explicit fourth-order accurate
numerical method for the Riesz space fractional nonlinear wave equations, but instead
of preserving the energy exactly, it can only preserve the energy with some degree of
precision [16]. Thus, the purpose of this paper is to design a higher-order method that has
unconditional energy conservation or dissipation properties for a wider kind of fractional
wave equations.

Very recently, a novel approach called the scalar auxiliary variable (SAV) method was
reported to construct unconditionally energy-stable algorithms for a dissipative system
driven by free energy [24,25]. The SAV approach introduces an auxiliary variable that
depends on one parameter, which leads to revolutionary numerical schemes that exhibit
some remarkable properties. Firstly, the equivalent system from the SAV approach inherits
the variational structure of the original system. Moreover, the SAV approach simplifies the
construction of higher-order structure-preserving integrators, which are easy to implement
and extremely efficient. Although the SAV approach was first proposed for gradient flow
models, more recently, the range of applicability of the SAV approach has been success-
fully extended to various fractional differential equations, including fractional nonlinear
Schrödinger equation [26–28] and fractional hyperbolic equations [7,29,30]. In particular,
Wang et al. [7] proposed a second-order SAV Fourier spectral method for solving the non-
linear space nonlinear fractional wave equations, and the unconditional energy dissipation
properties of the fully discrete scheme were proved. Hendy et al. [30] obtained an equiva-
lent problem transformed by the SAV approach, and then presented a second-order implicit
finite difference method by the fractional centered difference. However, the accurate orders
of these schemes are not more than second-order in the time direction. Therefore, for long-
time simulations, if the given time step is large, these schemes cannot obtain satisfactory
numerical solutions. Thus, we will construct a reliable high-order numerical technique
based on the SAV approach for a wider kind of fractional wave equations.
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The structure of this paper is as follows. The fractional nonlinear dissipative wave
equation is presented in Section 2, together with the definition of the fractional differential
operator and the energy function. In Section 3, the equation is reformulated, and an equiva-
lent system is obtained as a Hamiltonian system according to the SAV approach. Then, we
propose a high-order preserving numerical algorithm for the problem (1). The numerical
properties of the numerical methods are proved in Section 4. Some numerical results are
given to confirm the high-order accuracy and the energy dissipation properties of the novel
method in Section 5. Finally, some conclusions are reported in Section 6.

2. Preliminaries

We consider the space domain Ω ⊂ Rd, and let ∂Ω represent the boundary of Ω.
Assume that the function F : R→ R and the functions ψ, φ : Ω→ R are smooth functions
that satisfy ψ(x) = φ(x) = 0 for x ∈ ∂Ω. Then, we consider the FGWEs as follows:

∂2u(x, t)
∂t2 + (−∆)

α
2 u(x, t) + γ

∂u(x, t)
∂t

+ F′(u(x, t)) = 0, x ∈ Ω, t ∈ (0, T], (1)

where 1 < α ≤ 2, and the coefficients of damping terms γ ≥ 0, with the initial conditions

u(x, 0) = ψ(x),
∂u(x, 0)

∂t
= φ(x), x ∈ Ω.

The boundary conditions are

u(x, t) = 0, x ∈ Rd\Ω, t ∈ (0, T].

The symbol (−∆)
α
2 denotes the fractional Laplacian, which is the most widely studied

nonlocal operator in recent years [31]. From a probabilistic point of view, the fractional
Laplacian describes the diffusion process with jumps, which is the infinitesimal generator
of the Lévy process. There are many different equivalent ways to define the fractional
Laplacian. Most of all, the integral fractional Laplacian in Rd is given as

(−∆)
α
2 u(x) =

2αΓ((α + d)/2)
πd/2Γ(−α/2)

p.v.
∫
Rd

u(x)− u(y)
|x− y|α+d , (2)

where p.v. denotes for the Cauchy principle value, |x− y| is the Euclidean distance between
x and y, and Γ(·) is the Gamma function. The fractional Laplacian in Rd can also be defined
as the pseudo-differential operator with the symbol |κ|α:

(−∆)α/2u(x) =
1

(2π)d

∫
Rd
|κ|α

〈
u, e−iκ·x

〉
eiκ·xdκ = F−1{|κ|αû(κ)}(x),

where 〈u1, u2〉 =
∫

u1u2dx is an inner product on L2(Rd), and F and F−1 denote the
Fourier transform and its inverse. When α = 2, the definition reduces to the well-known
spectral representation of the classical Laplace operator. Generally, for one dimensional
version, the fractional Laplacian is equivalent to the Riesz fractional derivative. For a finite
interval Ω = [a, b] ⊂ R, the equivalence can be described as [32]:

−(−∆)
α
2 u(x) =

∂αu(x)
∂|x|α = − 1

2 cos( απ
2 )

[
RL
a Dα

xu(x) +RL
x Dα

b u(x)
]
,

where RL
a Dα

x , RL
x Dα

b are the Riemann–Liouville fractional operators given by

RL
a Dα

xu(x) =
1

Γ(2− α)

d2

dx2

∫ x

a
(x− ξ)1−αu(ξ)dξ,

RL
x Dα

b u(x) =
1

Γ(2− α)

d2

dx2

∫ b

x
(ξ − x)1−αu(ξ)dξ.
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Obviously, the fractional system (1) is a class of more extensive fractional hyperbolic
equations, containing many important and famous fractional hyperbolic models according
to the different forms of F′(u). For instance, the system is known as the fractional sine-
Gordon equations [14] when γ = 0 and the potential function F′(u) = sin u. It is known
as the fractional Klein–Gordon equations [33] when it is undamped and F′(u) = u3. In
addition, it can be referred to as the Riesz space-fractional telegraph equation [34] when
γ > 0 and F′(u) = u.

It is important to note that the space fractional partial differential Equation (1) has
specific conserved physical quantities. The total energy of the FGWE system (1) at time t is
defined as [15,21]

E(t) =
∫
R

[
1
2

∣∣∣∣u(x, t)
∂t

∣∣∣∣2 + 1
2

∣∣∣(−∆)
α
4 u(x, t)

∣∣∣2 + F(u(x, t))

]
dx. (3)

This satisfies the following discrete energy dissipation law:

E′(t) = −γ
∫
R

∣∣∣∣∂u(η, t)
∂t

∣∣∣∣2dη ≤ 0, ∀t ∈ (0, T]. (4)

As a consequence, the energy is conservative through time for γ = 0 and dissipative for
γ > 0. In the following section, we will propose a reliable high-order numerical technique
based on the SAV approach for Equation (1) that can preserve the energy dissipation law.

3. Numerical Approximations of Nonlinear Fractional Generalized Wave Equations

In this part, we introduce the process of the construction of high-order dissipation-
preserving schemes for nonlinear FGWE (1).

3.1. Equivalent System via the SAV Approach

The Hamiltonian structure is very important for theoretical analysis and numerical
computing of the conservative systems [35,36]. Therefore, we first reformulate the FGWE
(1) as a Hamiltonian system. Then, we obtain the equivalent system by the SAV approach.
Firstly, for two functions u1 and u2 that satisfy u1(·, t), u2(·, t) ∈ L2([a, b]) for t ∈ [0, T], we
give the definitions of the inner product and L2-norm as

〈u1, u2〉x =
∫ b

a
u1(ξ, t)u2(ξ, t)dξ, ‖u1‖x,2 =

√
〈u1, u1〉x.

For any function v(·, t) ∈ L1([a, b]), we define the L1-norm as ‖v‖x,1 =
∫ b

a |v(ξ, t)|dξ,
∀t ∈ [0, T]. Then, according to SAV approach, we introduce the scalar function

r(t) =
√
〈F(u), 1〉x + C0, ∀t ∈ [0, T], (5)

where 〈F(u), 1〉x is bounded from below, and C0 is a given real constant; this ensures that
the quantity under the radical sign is larger than zero. In this work, since function F is
assumed to be non-negative, 〈F(u), 1〉x + C0 > 0 for any positive number C0. For any
(x, t) ∈ Ω, the derivatives of r(t) can be described as

r′(t) =
1
2

∫ b

a
W(u(ξ, t))ut(ξ, t)dξ,

where

W(u(x, t)) =
F′(u(x, t))√
〈F(u), 1〉x + C0

.
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Introducing v(x, t) = ∂u(x,t)
∂t , scheme (1) can be rewritten as

∂u(x, t)
∂t

= v(x, t),

∂v(x, t)
∂t

= −(−∆)
α
2 u(x, t)− γv(x, t)− r(t)W(u(x, t)), (6)

r′(t) =
1
2
〈W(u(x, t)), v(x, t)〉x,

with the consistent initial condition

u(x, 0) = ψ(x), v(x, 0) = φ(x), r(0) =
√
〈F(ψ(x)), 1〉x + C0

for x ∈ (a, b).
Then, the equivalent system (6) satisfies the following modified energy dissipation law.

Theorem 1 (Energy dissipation property). The equivalent system (6) satisfies the modified
energy dissipation law as follows:

ε′(t) = −γ

∥∥∥∥∂u(x, t)
∂t

∥∥∥∥2

x,2
≤ 0, ∀t ∈ (0, T], (7)

where the energy function is defined as

ε(t) =
1
2

∥∥∥∥∂u(x, t)
∂t

∥∥∥∥2

x,2
+

1
2

∥∥∥(−∆)
α
4 u(x, t)

∥∥∥2

x,2
+ r2(t), ∀t ∈ (0, T). (8)

Proof. Compute the inner product of the second scheme of (6) with v(x, t). By noticing
that v(x, t) = ut(x, t), computing and simplifying yields

1
2

d
dt

∥∥∥∥ ∂u(x, t)
∂t

∥∥∥∥2

x,2
=−1

2
d
dt

∥∥∥(−∆)
α
4 u(x, t)

∥∥∥2

x,2
− γ

2
d
dt

∥∥∥∥ ∂u(x, t)
∂t

∥∥∥∥2

x,2
− r(t)〈W(u(x, t)), v(x, t)〉x.

Then, multiplying both sides of the third equation concerning 2r(t), we immediately
obtain that

d
dt

(r(t))2 = 2r(t)r′(t) = r(t)〈W(u(x, t)), v(x, t)〉x.

Combining these two identities, we get the conclusion.

More precisely, we transform the original Equation (1) into an equivalent form and
reformulate the energy functional into a quadratic form (8), simultaneously. Then, we
prove that the equivalent system satisfies the modified energy dissipation law. The equiva-
lent form provides an easy way for designing efficient dissipation-preserving schemes of
nonlinear fractional partial differential equations.

3.2. Structure-Preserving Spatial Discretization

We present a high-order structure-preserving spatial discretization for Riesz space
FGWEs. The approximation scheme was proposed by combining the weighted and shifted
Lubich difference (WSLD) operators, which were given in [13]. For a very brief review, let
xi = a + ih for −m ≤ i ≤ Nx + m, where Nx > 0 is a integer and h = (b− a)/Nx is the
space stepsize. The parameter m is the maximum of |p|, | p̄|, |q|, |q̄|, |r|, |r̄|, |s|, |s̄|, which are
the parameters of the method that will be given below. By assuming that f (xi) = 0 for
i = −m,−m + 1, · · · , 0 and i = Nx, Nx + 1, · · · , Nx + m, the fourth-order WSLD approxi-
mation of Riesz fractional derivative of f (x) can be described as
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δ
(α)
x f (xi) = −

1
hα

Nx−1

∑
k=1

vα
i−k f (xk), i = 1, 2, · · · , Nx − 1, (9)

where the coefficients vα
l = 1

2 cos( απ
2 )

(ϕα
m+l + ϕα

m−l) and

ϕα
k = ωpqrsωpqωplα

k+p−m + ωpqrsωpqωqlα
k+q−m + ωpqrsωrsωrlα

k+r−m + ωpqrsωrsωslα
k+s−m

+ ω p̄q̄r̄s̄ω p̄q̄ω p̄lα
k+ p̄−m + ω p̄q̄r̄s̄ω p̄q̄ωq̄lα

k+q̄−m + ω p̄q̄r̄s̄ωr̄s̄ωr̄lα
k+r̄−m + ω p̄q̄r̄s̄ωr̄s̄ωs̄lα

k+s̄−m. (10)

For integers p, p̄, q, q̄, r, r̄, s, s̄, the coefficients ωp, ωq, ωr, ωs, ωpq, ωrs, ωpqrs, and ω p̄q̄r̄s̄
are defined as

ωp =
q

q− p
, ωq =

p
p− q

, p 6= q; ωr =
s

s− r
, ωs =

r
r− s

, r 6= s;

ωpq =
3rs + 2α

3(rs− pq)
, ωrs =

3pq + 2α

3(pq− rs)
; ωpqrs =

dz̄
dz̄− d̄z

, ω p̄q̄r̄s̄ =
d̄z

d̄z− dz̄
,

with pq 6= rs, dz̄ 6= d̄z, d = rs− pq, d̄ = r̄s̄− p̄q̄, and

z = 6pqrs(r + s− p− q) + 4α[rs(r + s)− pq(p + q)] + 9α(rs− pq),

z̄ = 6p̄q̄r̄s̄(r̄ + s̄− p̄− q̄) + 4α[r̄s̄(r̄ + s̄)− p̄q̄( p̄ + q̄)] + 9α(r̄s̄− p̄q̄).

Simultaneously, ω p̄, ωq̄, ωr̄, ωs̄, ω p̄q̄, and ωr̄s̄ can be defined similarly. The coefficients
lα
k = 0 for k < 0, and for k ≥ 0, lα

k can be defined as

lα
k =

(
3
2

)α k

∑
i=0

3−igα
i gα

k−i,

where gα
k can be computed by

gα
0 = 1, gα

k =

(
1− α + 1

k

)
gα

k−1, k ≥ 1.

There are some useful properties of the WSLD approximation, which we provide in
the following.

Theorem 2 (See [16]). If 1 < α < 2, functions f (x), the fractional derivatives RL
a Dα+4

x f (x),
RL
x Dα+4

b f (x), and their Fourier transforms belong to L1([a, b]). Then, it holds that

∂α f (xi)

∂|x|α = δ
(α)
x f (xi) +O(h4), (11)

for any xi, 1 ≤ i ≤ Nx − 1.

Theorem 2 shows that the WSLD approximation for Riesz space fractional deriva-
tive has fourth-order accuracy, and the spatial discretization is structure-preserving be-
cause of the special structure of this kind of approximation [16]. We will show the
special property of the WSLD approximation as follows. Taking Ui(t) = u(xi, t) and
U(t) = (U1(t), U2(t), · · · , UNx−1(t))T, the approximation (9) can be rewritten as δ

(α)
x U(t) =

−MU(t), where the matrix M = 1
hα Âα and

Âα =


vα

0 vα
−1 · · · vα

2−Nx
vα

1 vα
0 · · · vα

3−Nx
...

...
. . .

...
vα

Nx−2 vα
Nx−3 · · · vα

0

. (12)
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In order to guarantee that the approximation (9) works well for space fractional
derivatives, it is necessary to make sure that all eigenvalues of matrix M have positive real
parts. To ensure this purpose, the parameters p, p̄, q, q̄, r, r̄, s, s̄ should be chosen as the result
given in Lemma 2.2 in [16] or Theorem 1.12 in [13].

For any u = (u1, u2, · · · , uNx−1)
T and v = (v1, v2, · · · , vNx−1)

T, the discrete inner
product, associated discrete l2-norm, and l1-norm of u are defined as

〈u, v〉 = h
Nx−1

∑
i=1

uivi, ‖u‖2 =

√√√√h
Nx−1

∑
i=1

u2
i , ‖u‖1 = h

Nx−1

∑
i=1
|ui|.

Since all eigenvalues of matrix M have positive real parts, we can state that the operator
−δ

(α)
x is positive definite and self-adjoint. Therefore, we have the following lemma directly.

Lemma 1 (See [37]). For two vector functions u and v, there is a linear operator Λ(α) such that
〈−δ

(α)
x u, v〉 = 〈Λ(α)u, Λ(α)v〉.

The property of the approximation operator−δ
(α)
x shown in Lemma 1 is very important

for the structure-preserving properties of the spatial discretization in the numerical methods
presented in this paper.

3.3. Collocation Method in Temporal Direction

To get high-order accuracy in the time direction and achieve the dissipation preser-
vation, we chose the collocation methods in [36] for the system (6), both in the solution
variables and the auxiliary variable.

Let the time mesh points tn = nτ; 0 ≤ n ≤ Nt with τ = T/Nt is the time step, and un =
(un

1 , un
2 , · · · , un

Nx−1)
T, vn = (vn

1 , vn
2 , · · · , vn

Nx−1)
T with un

i and vn
i are the approximations of

u(xi, tn) and v(xi, tn), respectively. We also denote rn as the approximation of r(tn). For a
given un, vn, rn, after applying the WSLD approximation (11) to the Riesz space fractional
derivative, by using an s-stage collocation method on Equation (6), we will obtain the
collocation polynomials p(t), q(t), s(t), where p(t) = (p1(t), p2(t), · · · , pNx−1(t))T, q(t) =
(q1(t), q2(t), · · · , qNx−1(t))T are (Nx − 1)-dimensional vector polynomials and s(t) is a
polynomial. The degrees of p(t), q(t), s(t) are s, and they satisfy

p′(tl
n) = q(tl

n),

q′(tl
n) = δ

(α)
x p(tl

n)− γq(tl
n)− s(tl

n)W(p(tl
n)), (13)

s′(tl
n) =

1
2

〈
W
(

p(tl
n)
)

, q(tl
n)
〉

,

where tl
n = tn + clτ with cl ∈ [0, 1] are distinct real numbers for 1 ≤ l ≤ s. Obviously,

the numerical solution un+1 can be obtained by setting un+1 = p(tn + τ).
In [36], it is indicated that the collocation methods are equivalent to an s-stage

Runge–Kutta method for one-step interval [tn, tn+1] by setting the coefficients

al j =
∫ cl

0
Lj(ξ)dξ, bl =

∫ 1

0
Ll(ξ)dξ,

where Ll(ξ) is the Lagrange polynomial

Ll(ξ) = ∏
k 6=l

ξ − ck
cl − ck

.

Moreover, if the collocation points c1, c2, · · · , cs are chosen as the zeros of the s-th
shifted Legendre polynomial ds

dxs

(
xs(x− 1)s) and bl are the Gauss quadrature weights,

then we can derive that the s-stage Gauss method has 2s order. The coefficients have been
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explicitly calculated and given in the case of zeros of shifted Legendre polynomial [36]. In
particular, the two-stage Gauss method referred to as Gauss2 and the three-stage Gauss
method referred to as Gauss3 have 4 and 6 convergence order, respectively. The methods
Gauss2 and Gauss3 are expressed in Butcher tableau form as follows:

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

ine 1
2

1
2

and

1
2 −

√
15

10
5

36
2
9 −

√
15

15
5

36 −
√

15
30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 +

√
15

10
5

36 +
√

15
30

2
9 +

√
15

15
5

36
ine 5

18
4
9

5
18

.

The higher-order Gauss methods have been proposed, and the collocation methods can
theoretically reach an arbitrarily high order [36].

If the coefficients of the Runge–Kutta methods satisfy blal j + bjajl = blbj for all l, j =
1, 2, · · · , s, the methods are symplectic and can conserve all quadratic invariants. Therefore,
this kind of collocation method is structure-preserving because of this special structure.
Certainly, collocation methods are different from Runge–Kutta methods. Collocation
methods yield continuous approximation, so the equivalent of them here means that the
collocation method matches the same discrete values of the particular Runge–Kutta method.

The present algorithms in this paper based on the SAV formulation combining the
fourth-order WSLD approximation and a specific class of s-stage symplectic Gauss collo-
cation schemes are named SAV-WSLD-Gauss methods. The corresponding procedure is
executed as Algorithm 1.

Algorithm 1 The SAV-WSLD-Gauss method procedure

1: Choose the parameters p, p̄, q, q̄, r, r̄, s, s̄ and the space step size h, and calculate the
matrix Âα from (9) and (12).

2: Assume un, vn, rn are known, choose the nodes cl , and calculate p(tl
n), q(tl

n), s(tl
n) in

one-step interval [tn, tn+1] by a collocation method (13) and the fixed point iteration.
3: Obtain un+1 by setting un+1 = p(tn + τ).

4. The Properties of the Numerical Methods

In this section, the convergence, discrete energy dissipation law, and unconditional
stability of the proposed scheme (13) are studied. Then, the proposed method is extended
to functions with two space variables.

4.1. Convergence, Stability, and Dissipation Property of Energy

Since the present numerical methods use the fourth-order WSLD approximation in
space direction and Gauss collocation methods in time direction, we give the convergence in
the following theorem without proof. Then, we verify the order of convergence numerically
in the next section.

Theorem 3 (Convergence). Let Un = u(x, tn), Vn = v(x, tn), r(tn) be the solutions of (6),
and un, vn, rn be the numerical solutions of scheme (13) with the fourth-order WSLD approximation
and s-stage Gauss collocation schemes. Then, it holds that

‖Un − un‖2 + ‖Vn − vn‖2 + |r(tn)− rn| ≤ C(h4 + τ2s),

where C are positive constant independent of τ and h.

Proof. From Theorem 2, the spatial semi-discretization by the WSLD approximation is
fourth-order accurate. Then, the semi-discrete system is solved by the s-stage Gauss method,
which has 2s order. The conclusion can be easily checked by the Taylor series expansion.

Next, we will show the unconditional energy dissipation property of the present methods.
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Theorem 4 (Energy dissipation). The full discrete scheme (13) with the fourth-order WSLD
approximation and s-stage Gauss collocation method is unconditional energy dissipative in the sense
that En+1 ≤ En, n = 1, 2, · · · , Nt, where

En =
1
2
‖vn‖2

2 +
1
2

∥∥∥Λ(α)un
∥∥∥2

2
+ (rn)2. (14)

Moreover, if γ = 0, the discrete energy is conserved, that is, En = E0, n = 1, 2, · · · , Nt.

Proof. For the Gauss collocation method, we notice that the numerical solutions satisfy
un+1 = p(tn+1), vn+1 = q(tn+1) and rn+1 = s(tn+1), respectively. Then, we have

En+1 − En =
1
2

(∥∥∥vn+1
∥∥∥2

2
− ‖vn‖2

2

)
+

1
2

(∥∥∥Λ(α)un+1
∥∥∥2

2
−
∥∥∥Λ(α)un

∥∥∥2

2

)
+
(
(rn+1)2 − (rn)2

)
=
∫ tn+1

tn

d
dt

(
1
2
‖q(t)‖2

2 +
1
2

∥∥∥Λ(α)p(t)
∥∥∥2

2
+ s2(t)

)
dt.

Simple calculations lead to
d
dt

(s2(t)) = 2s(t)s′(t).

Then, by using Lemma 1, we have

1
2

d
dt
‖q(t)‖2

2 =
h
2

Nx−1

∑
i=1

d
dt

[
(qi(t))

2
]
= h

Nx−1

∑
i=1

q′i(t)qi(t) =
〈
q(t), q′(t)

〉
,

1
2

d
dt

∥∥∥Λ(α)p(t)
∥∥∥2

2
=

h
2

Nx−1

∑
i=1

d
dt

[(
Λ(α)pi(t)

)2
]
= h

Nx−1

∑
i=1

Λ(α)pi(t) ·
d
dt

(
Λ(α)pi(t)

)
=
〈

Λ(α)p(t), Λ(α)q(t)
〉
=
〈
−δ

(α)
x p(t), q(t)

〉
,

which implies that

En+1 − En =
∫ tn+1

tn

[〈
q(t), q′(t)

〉
+
〈
−δ

(α)
x p(t), q(t)

〉
+ 2s(t)s′(t)

]
dt. (15)

Because the integrands 〈q(t), q′(t)〉,
〈
−δ

(α)
x p(t), q(t)

〉
, and 2s(t)s′(t) are both real

polynomials of degree 2s− 1, the integration on the right of (15) can be exactly computed
by Gaussian quadrature, which has the algebraic precision s. Then, we can derive from (13) that

En+1 − En = τ
s

∑
l=1

bl

[〈
q(tl

n), q′(tl
n)
〉
+
〈
−δ

(α)
x p(tl

n), q(tl
n)
〉
+ 2s(tl

n)s
′(tl

n)
]

= τ
s

∑
l=1

bl

[〈
q(tl

n), δ
(α)
x p(tl

n)− γq(tl
n)− s(tl

n)W(p(tl
n))
〉

+
〈
−δ

(α)
x p(tl

n), q(tl
n)
〉
+ s(tl

n)
〈

W
(

p(tl
n)
)

, q(tl
n)
〉]

= −γτ
s

∑
l=1

bl‖q(tl
n)‖2

2 ≤ 0.

Therefore, we easily obtain that En+1−En ≤ 0, and if γ = 0, En = E0, for n = 1, 2, · · · , Nt.

According to Theorem 4, the unconditional stability of the proposed schemes in the
l2-norm sense can be obtained as the following theorem.

Theorem 5 (Stability). For the SAV-WSLD-Gauss methods, it holds that ‖un‖2 ≤ C, ‖vn‖2 ≤ C
for any n = 1, 2, · · · , Nt, where C is a positive constant independent of τ and h.
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4.2. Extend to Two-Dimensional Problems

It is important to extend numerical methods to functions with two space variables.
In recent years, many scholars have done some work on the numerical algorithm of two-
dimensional space FGWEs with Riesz fractional derivatives, for example, see [26,38]. In
this section, the high-order structure-preserving SAV-WSLD-Gauss methods for the one-
dimensional FGWEs will be extended to two-spatial-dimensional Riesz space FGWEs
as follows:

∂2u(x, y, t)
∂t2 − ∂αu(x, y, t)

∂|x|α − ∂βu(x, y, t)
∂|y|β

+ γ
∂u(x, y, t)

∂t
+ F′(u(x, y, t)) = 0, (16)

for (x, y, t) ∈ Ω = B× (0, T] and B = (a1, b1)× (a2, b2) with the boundary and initial values
u(x, y, t) = 0 for (x, y) ∈ ∂B, and u(x, y, 0) = ψ(x, y), ut(x, y, 0) = φ(x, y) for (x, y) ∈ B.

Let hx = (b1 − a1)/Nx, hy = (b2 − a2)/Ny be the spatial step size for positive integers
Nx, Ny. We introduce the mesh point xi = a1 + ihx for 1 ≤ i ≤ Nx − 1 and yj = a2 + jhy
for 1 ≤ j ≤ Ny − 1. Then, the fourth-order WSLD approximation (11) extended to the
two-dimensional case with stepsizes hx and hy for spatial approximation can be described as

∂αu(xi, yj, t)
∂|x|α = δ

(α)
x u(xi, yj, t) +O(h4

x),
∂βu(xi, yj, t)

∂|y|β
= δ

(β)
y u(xi, yj, t) +O(h4

y).

Therefore, the two-dimensional Equation (16) can be written as

∂2u(xi, yj, t)
∂t2 −δ

(α)
x u(xi, yj, t)−δ

(β)
y u(xi, yj, t) + γ

∂u(xi, yj, t)
∂t

+F′(u(xi, yj, t))=O(h4
x+h4

y),

for the mesh point (xi, yj, t) with 1 ≤ i ≤ Nx − 1 and 1 ≤ j ≤ Ny − 1.
Neglecting the truncation error O(h4

x + h4
y) on the right, let ui,j(t) be the numerical

approximation of u(xi, yj, t). Then, we have that

u′′i,j(t)− δ
(α)
x ui,j(t)− δ

(β)
y ui,j(t) + γu′i,j(t) + F′(ui,j(t)) = 0. (17)

Define the grid functions

û(t) =[u1,1(t), u2,1(t), · · · , uNx−1,1(t), u1,2(t), u2,2(t), · · · ,

uNx−1,2(t), · · · , u1,Ny−1(t), u2,Ny−1(t), · · · , uNx−1,Ny−1(t)]T.

Introduce the matrix form Mα = 1
hx

Âα, Mβ = 1
hy

Âβ where the approximation matrices Âα

and Âβ are defined in (12), and Ix and Iy are the (Nx − 1) and (Ny − 1)-dimensional unit
matrices. Then, by using the Kronecker product ⊗, we have

δ
(α)
x û(t) = −(Iy ⊗Mα) û(t), δ

(β)
y û(t) = −(Mβ ⊗ Ix) û(t).

Define matrix M̃ = Iy ⊗Mα + Mβ ⊗ Ix. Then, the fourth-order WSLD approximation (11)
is extended to the two-dimensional Riesz fractional derivative as

δ
(α)
x û(t) + δ

(β)
y û(t) = −(M̃⊗ Ix)û(t).

The generalizations of the Gauss collocation method to the two-dimensional case for
temporal discretization are straightforward. For any u = {ui,j}Nx×Ny and v = {vi,j}Nx×Ny ,
the inner products and norms for two-dimensional case are defined as

〈u, v〉 = hxhy

Nx−1

∑
i=1

Ny−1

∑
j=1

ui,jvi,j, ‖u‖2 =

√√√√hxhy

Nx−1

∑
i=1

Ny−1

∑
j=1

u2
i,j.
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Then, the schemes and the analytical features of the SAV-WSLD-Gauss method for
one-dimensional problems are applicable to the two-dimensional FGWEs.

5. Numerical Experiments and Discussions

In this part, the high-order accuracy and the discrete dissipation conservation law
of the above full discrete schemes are verified through both one-dimensional and two-
dimensional numerical examples. We apply the present method to solve a one-dimensional
Riesz space fractional sine-Gordon equation and compute the numerical errors of the
numerical solutions for the different mesh sizes and the experimentally determined orders
of convergence (EOC) to verify the high-order accuracy. After the validation of the accuracy,
we use the SAV-WSLD-Gauss methods to solve the nonlinear fractional sine-Gordon and
Klein–Gordon equations in both one- and two-dimensional space to display the evolution of
the discrete energy to verify the discrete energy or dissipation conservation law. The effects
on the forms of the circular ring soliton due to the changes of α are also shown graphically
in this part.

For the following examples, the Riesz space fractional differential equations are trans-
formed into an equivalent form by the SAV approach. Then, the fourth-order approxima-
tion (11) is used for the space variables, and the Gauss collocation method is used in the time
direction. If not explicitly specified, (p, q, r, s, p̄, q̄, r̄, s̄) are chosen as (1, 2, 1,−1, 1, 2, 1,−2),
and the constant C0 in the SAV approach is defined as C0 = 0.01. All the numerical experi-
ments are performed on MATLAB 10.0 running on a laptop computer with Intel Core i7
CPU and 16 GB memory.

5.1. One-Dimensional Problem

Example 1 (Convergence Rate). The SAV-WSLD-Gauss method is used on the one-dimensional
Riesz space fractional sine-Gordon equation [38]

∂2u(x, t)
∂t2 − ∂αu(x, t)

∂|x|α + γ
∂u(x, t)

∂t
+ sin(u) = f (x, t), (18)

on Ω = (0, 1)× (0, 1] with the forcing function

f (x, t) = sin
(

exp(−t)x4(1− x)4
)
+ (1− γ) exp(−t)x4(1− x)4

+
exp(−t)

2 cos(απ/2)

[
Γ(5)

x4−α + (1− x)4−α

Γ(5− α)
− 4Γ(6)

x5−α + (1− x)5−α

Γ(6− α)

+ 6Γ(7)
x6−α + (1− x)6−α

Γ(7− α)
− 4Γ(8)

x7−α + (1− x)7−α

Γ(8− α)

+ Γ(9)
x8−α + (1− x)8−α

Γ(9− α)

]
.

The problem is subjected to the initial and boundary conditions

u(x, 0) = x4(1− x)4,
∂u(x, 0)

∂t
= −x4(1− x)4, 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ 1.

Under these conditions, the solution of (18) can be given as u(x, t) = exp(−t)x4(1− x)4.
The error of the numerical solutions at point t = T is computed by

e(h, τ) =

√√√√h
Nx−1

∑
i=1

∣∣∣u(xi, T)− uNt
i

∣∣∣2,

which is in the sense of l2-norm. The notation e(h, τ) means that the numerical error is defined
relative to the step size h and τ. The EOC is measured by
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EOC = log2
e(h, τ)

e(h/2, τ/2)
.

The numerical results presented in Table 1 show that the SAV-WSLD-Gauss2 scheme is
fourth-order accurate in space and time directions with different α and γ.

Table 1. The errors and EOCs of SAV-WSLD-Gauss2 method for Equation (18) at time T = 1 by
keeping h = τ.

γ h = τ
α = 1.2 α = 1.5 α = 1.8

e(h, τ) EOC e(h, τ) EOC e(h, τ) EOC

0

1/32 1.0360× 10−6 – 1.5695× 10−6 – 2.4488× 10−6 –
1/64 1.0202× 10−7 3.3440 1.6704× 10−7 3.2321 2.2301× 10−7 3.4569

1/128 1.0820× 10−8 3.2372 1.2822× 10−8 3.7035 1.8629× 10−8 3.5815
1/256 9.0514× 10−10 3.5794 8.4072× 10−10 3.9308 1.3073× 10−9 3.8328
1/512 6.5798× 10−11 3.7820 4.9729× 10−11 4.0795 8.7192× 10−11 3.9063

0.5

1/32 9.3381× 10−7 – 1.0533× 10−6 – 2.2008× 10−6 –
1/64 8.8469× 10−8 3.3999 1.1863× 10−7 3.1503 1.8711× 10−7 3.5561

1/128 9.3011× 10−9 3.2497 9.2250× 10−9 3.6848 1.5164× 10−8 3.6252
1/256 7.7177× 10−10 3.5911 6.0515× 10−10 3.9302 1.0645× 10−9 3.8324
1/512 5.5373× 10−11 3.8009 3.8726× 10−11 3.9659 7.0728× 10−11 3.9118

Example 2 (Energy conservation or dissipation). In this test, the discrete energy conservation
or dissipation properties of the proposed schemes will be shown through numerical experiments
of system (1) by setting F(u) = 1− cos(u) on Ω = (−40, 40)× (0, T]. Here, we consider the
fractional sine-Gordon equation with the initial value defined by the exact solution of the standard
sine-Gordon equation (i.e., α = 2 and γ = 0 for system (1)) as follows:

ψ(x) = 4 arctan

( √
1−ω2

ω cosh
√

1−ω2x

)
, φ(x) = 0, x ∈ [−40, 40],

with 0 < ω < 1. Since the exact solution of this example is unavailable, the error of the numerical
solutions is measured by

Eh,τ = ‖Uh,τ −U2h,2τ‖2,

in the sense of l2-norm, where Uh,τ denotes the numerical solutions relative to the step size h and τ.
Then, the EOC is measured by

EOC = log2
Eh,τ

Eh/2,τ/2
.

The numerical results in Table 2 display the errors Eh,τ at T = 1 and EOCs of the SAV-WSLD-
Gauss2 scheme with different α and γ = 0 for Example 2 on Ω = (−40, 40)× (0, 1]. The lower
regularity of the solutions for this example leads to a corresponding lower order of convergence.

Table 2. The errors and EOCs of SAV-WSLD-Gauss2 method for Example 2 with different α and
γ = 0 at time T = 1 by keeping h = τ.

h = τ
α = 1.2 α = 1.5 α = 1.8

Eh,τ EOC Eh,τ EOC Eh,τ EOC

1/4 2.7999× 10−3 – 1.0835× 10−3 – 3.2993× 10−3 –
1/8 8.0118× 10−5 5.1271 2.5184× 10−4 2.1051 4.1437× 10−4 2.9932
1/16 2.6900× 10−5 1.5745 2.1058× 10−5 3.5800 3.0156× 10−5 3.7804
1/32 5.7247× 10−6 2.2323 1.4625× 10−6 3.8479 1.9832× 10−6 3.9265
1/64 1.7007× 10−6 1.7511 7.0435× 10−7 1.0540 1.5403× 10−7 3.6865
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Now, we use the SAV-WSLD-Gauss3 method to solve the fractional sine-Gordon equation
with the space step h = 1/4 and time step τ = 1/16 for different values of α and γ. When γ = 0,
the energy of system (1) is conservative. Figure 1 depicts the surfaces of the numerical solution un

i of
Example 2 computed by SAV-WSLD-Gauss3 in the left sub-figure. The discrete energy En defined
by (14) is shown in the upper right corner. The corresponding relative errors of the discrete energy
REn are defined by

REn = log10
|En − E0|
|E0|

.

For this example, the REn is shown in the bottom right corner for γ = 0 and different values of α in
Figure 1.

(a) α = 1.1, γ = 0. (b) α = 1.3, γ = 0.

(c) α = 1.5, γ = 0. (d) α = 1.8, γ = 0.

Figure 1. Surfaces of numerical solution, the discrete energy En, and the relative errors of the discrete
energy REn for γ = 0 and different α with h = 1/4 and τ = 1/16.

It is obvious that the SAV-WSLD-Gauss scheme (13) is energy conserving for γ = 0. Moreover,
the impact of the different values of α on the surfaces of the numerical solutions can be seen in Figure 1
distinctly. It can be seen that the SAV-WSLD-Gauss methods are suitable for long-time simulations.

When γ > 0, the energy of system (1) is dissipative. In this case, we plot the surfaces of
the numerical solutions obtained by using SAV-WSLD-Gauss3 for different values of γ and α in
Figure 2. To test the energy dissipation law of SAV-WSLD-Gauss methods, we define the error in
the discrete dissipation-preserving law EDLn as

EDLn =
∣∣∣δtEn + γ‖vn‖2

2

∣∣∣, p ≤ n ≤ Nt − p, (19)

where δtEn denotes the derivative of the energy, which is calculated by using a five-point scheme and
Richardson extrapolation from En, and p is determined by the time extrapolation. The values of vn

can be obtained in the process of the numerical calculation. The discrete energy En and the error in
discrete dissipation-preserving law EDLn are shown graphically in the right sub-figure of Figure 2.

Since the derivative of energy is approximated by numerical methods with an eighth-order
accuracy, the error of the discrete dissipation-preserving law EDLn is caused by the truncation error
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of the numerical derivative of energy in a certain degree. However, the EDLn indicated in Figure 2
can still reach 10−12 for the time step τ = 1/32. The results show that the energy of the numerical
schemes approximately follows the energy dissipative law of the continuous equations for the case
γ > 0. The numerical results are consistent with the conclusion of Theorem 4.

(a) α = 1.1, γ = 10−3. (b) α = 1.1, γ = 10−2.

(c) α = 1.3, γ = 10−3. (d) α = 1.3, γ = 10−2.

(e) α = 1.5, γ = 10−3. (f) α = 1.5, γ = 10−2.

(g) α = 1.8, γ = 10−3. (h) α = 1.8, γ = 10−2.

Figure 2. Surfaces of the numerical solutions, discrete energy En, and the discrete dissipation-
preserving law EDLn for different α and γ with h = 1/4 and τ = 1/32.
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Besides, the surfaces of the numerical solutions with various γ are described in Figure 2.
The numerical results show that the amplitude of solutions tends to decrease with reduced γ.
Moreover, the dispersive effects of the parameter γ can also be observed in Figure 2. The smaller the
values of γ, the smaller the rate of change of the discrete energy.

5.2. Two-Dimensional Problem

Example 3. We use the SAV-WSLD-Gauss methods on system (16) with function F(u) = 1−
cos(u) in two space dimensions on (−30, 10)× (−30, 10)× (0, T]. The initial values are given as

ψ(x, y) = 4
1

∑
i=0

1

∑
j=0

arctan

[
exp

(
4−

√
(x + 3 + 14i)2 + (y + 3 + 14j)2

0.436

)]
,

and the boundary values are given as

φ(x, y) = 4.13
1

∑
i=0

1

∑
j=0

1

cosh
[(

4−
√
(x + 3 + 14i)2 + (y + 3 + 14j)2

)
/0.436

] .

We use the SAV-WSLD-Gauss3 method to solve this problem by setting hx = hy = 1/2 and
τ = 1/4.

To consider the case of the collision of four ring solitons within the framework of the fractional
sine-Gordon equation, we show the numerical solutions in terms of sin(u/2) at different time T
and the related contour of Example 3 in Figure 3 for α = 1.3, 1.5, 1.8, respectively. In Figure 3, we
investigate the impact of the Riesz fractional order α on the surface evolution. These figures correctly
characterize the collision of four expanding circular ring solitons. Moreover, they reflect the complex
interaction with distinctly altering values of u in the center of the collision. These results coincide
with the conclusions proposed in [39,40].

In Figure 4, we present the energy errors REn for different α and γ = 0 of Example 3 on domain
(−5, 5)× (−5, 5) within a relatively long time t ∈ (0, 100] with hx = hy = 1/2 and τ = 0.01.
Obviously, our scheme can conserve the energy very well in long-time integration. The efficiency
of the SAV-WSLD-Gauss scheme is also verified. To verify the dissipation-preserving law of the
present methods, the EDLn are also shown for different α and γ. The dissipation-preserving law of
Example 3 is also conserved by the present numerical method.

Example 4. We use the SAV-WSLD-Gauss methods on system (16) with function F(u) = u4/4
in two space dimensions on (−10, 10)× (−10, 10)× (0, T]. The boundary and initial conditions
are given as

ψ(x, y) =
2

cosh[cosh(x2 + y2)]
, φ(x, y) = 0.

We use the SAV-WSLD-Gauss3 method to solve this two-dimensional problem by setting hx =
hy = 1/4 and τ = 1/16. The surface of the numerical solutions and the corresponding contour
of Example 4 for α = 1.3, 1.5 and 1.8 at different times T are shown in Figure 5. The solutions of
the two-dimensional space fractional Klein–Gordon equations appear to follow a periodic behavior.
Moreover, from these figures, we can see the radiation, shrink, and oscillation of the circular ring
solitons, together with the expansion and propagation of the initial soliton to the whole domain before
they get the boundary. It also can be seen that the order of the Riesz fractional derivative α affects
the forms of the circular ring soliton. The speed at which solitons reach the boundary is faster for
bigger α. The numerical results coincide with the corresponding surface given in the literature [38].

In Figure 6, we present the relative energy errors REn over a long time for different α and
γ = 0 of Example 4 on domain (−5, 5)× (−5, 5)× (0, 100] with hx = hy = 1/4 and τ = 0.01,
and the EDLn for several γ and α. It can be seen that REn and EDLn roughly reach the machine
accuracy, which implies that the energy or dissipation-preserving law of Example 4 is conserved
well by the present numerical method.
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(a) α = 1.3, γ = 0

(b) α = 1.5, γ = 0

(c) α = 1.8, γ = 0
Figure 3. The numerical solutions in terms of sin(u/2) and contour at different time T for different α

with h = 1/2, τ = 1/4.
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Figure 4. The relative energy errors REn for γ = 0 and the errors in discrete dissipation-preserving
law EDLn for different γ and α with hx = hy = 1/2 and τ = 0.01.

Figure 5. Surfaces of the numerical solutions and contour of Example 4 at time T with hx = hy = 1/4,
τ = 1/16 for γ = 0 and different α.

Figure 6. The relative energy errors REn for γ = 0 and the errors in discrete dissipation-preserving
law EDLn for different γ and α with hx = hy = 1/4 and τ = 0.01.

6. Conclusions

This paper developed and analyzed a class of high-order dissipation-preserving
methods for nonlinear fractional generalized wave equations based on the SAV approach,
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in which the time and space are discretized by a fourth-order preserving approximation
and the collocation methods, respectively. The proposed scheme can achieve fourth-order
accuracy in space and arbitrarily high-order accuracy in time. The unconditional energy or
dissipation conservation of the schemes was proved strictly. Finally, the theoretical results
are verified by some numerical experiments.
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