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Abstract: Some researchers believe fractional differential operators should not have a non-singular
kernel, while others strongly believe that due to the complexity of nature, fractional differential
operators can have either singular or non-singular kernels. This contradiction in thoughts has led
to the publication of a few papers that are against differential operators with non-singular kernels,
causing some negative impacts. Thus, publishers and some Editors-in-Chief are concerned about
the future of fractional calculus, which has generally brought confusion among the vibrant and
innovative young researchers who desire to apply fractional calculus within their respective fields.
Thus, the present work aims to develop a model based on a stochastic process that could be utilized
to portray the effect of arbitrary-order derivatives. A nonlinear perturbation is used to study the
proposed stochastic model with the help of white noises. The required condition(s) for the existence
of an ergodic stationary distribution is obtained via Lyapunov functional theory. The finding of the
study indicated that the proposed noises have a remarkable impact on the dynamics of the system. To
reduce the spread of a disease, we imposed some control measures on the stochastic model, and the
optimal system was achieved. The models both with and without control were coded in MATLAB,
and at the conclusion of the research, numerical solutions are provided.

Keywords: stochastic model of the survival of fractional calculus; nonlinear perturbation; stationary
distribution; stochastic optimality

1. Introduction to the Problem and Model Formulation

Different types of epidemic models exist, including fractional, deterministic, stochastic,
and age-structure models [1–10]. The stochastic differential equation models are more
suited for mathematical modeling than the deterministic ones [1,3], because they may give
a higher level of realism than their deterministic counterparts. When we run a stochastic
model multiple times, we may build up a distribution of the anticipated outcomes, such as
the size of infectious compartments at time t, which is more helpful than when we run a
deterministic model. A deterministic model, on the other hand, will only provide a single
predicted value.

Because of their extensive use, fractional integration and differentiation are rapidly
growing subjects that have piqued the interest of a variety of researchers. Since then, this
issue has piqued the interest of researchers from many areas [11–21]. The problem arose
from a query posed by L’Hopital to Leibniz, which originally highlighted the issue of
exponential function differentiation. At later stages, Liouville proposed a name for the
derivative with a fractional index, while also cautioning that the characteristics of this new
operator should not be confused with those of the integer-order derivative [11–16,22,23].
Following that, a collaboration between Liouville and Riemann produced the well-known
integral of arbitrary order and, later, an arbitrary-order derivative. A derivative of a
function that is continuous and a power-law function is their differential operator t−α

Γ(1−α)
.

The Laplace transform of this derivative produces peculiar starting circumstances that
would be hard to compute otherwise [11–16].
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As a result, a novel set of differential operators was required, with a few variations
proposed. The Caputo–Fabrizio (CF) derivatives and the Atangana–Baleanu (AB) derivative
with the Mittag–Leffler and exponential kernels are two examples. One of these operator’s
peculiarities is that its kernels are non-singular [9,11–16] and that it does not satisfy several
classical derivative characteristics such as the index law. These fractional derivatives do not
have the same characteristics as fractional or classical derivatives with the power-law kernel
because of their continuous kernels. This shows that in nature, exponential, power-law, and
Mittag–Leffler functions do not all perform the same role [24,25]. There are issues in nature
that follow power-law procedures; a few follow decaying procedures; many others have
degradation and afterwards power-law procedures. Because the fractional derivative with
a singular kernel and the fractional derivative with non-singular kernels are two different
subsets of fractional calculus, both ideas may have been explored individually in a normal
and constructive field. As a result, they should be addressed separately.

Nevertheless, rather than examining the characteristics of non-singular kernel frac-
tional derivatives separately, some writers have chosen to write some ill-structured papers
that combine the two sub-sets; while other research articles are based on incorrect analyses,
which are the result of a lack of understanding of the entire concept. As a result, this paper
will go over all of the criticisms leveled about non-singular kernels’ differential and integral
operators. The following fractional calculus chaotic survival characterized by non-singular
kernels was suggested in [26]:

dFc =

[
Λ− dFc(t)− φ2Fc(t)− βFc(t)I(t)

N

]
dt + η1Fc(t)dB1(t),

dI(t) =
[

βFc(t)I(t)
N

− (d + τ + δ + ψ)I(t)
]

dt + η2 I(t)dB2(t),

dIP(t) =
[

τ I(t)− (d + γ1 + φ1)IP(t)
]

dt + η3 IP(t)dB3(t),

dIN(t) =
[

ψI − IN(t)(d + σ + γ3)

]
dt + η4 IN(t)dB4(t),

dR(t) =
[

φ1 IP(t)− dR(t) + δI(t) + γ3 IN(t)− γ2R(t)
]

dt + η5R(t)dB5(t),

dD(t) =
[

γ2R(t) + γ1 IP(t) + φ2Fc(t) + σIN(t)− dD(t)
]

dt + D(t)η6dB6(t),

(1)

where Fc(t) is the class of researchers that use the arbitrary-order operators of the differ-
ential type with non-singular kernels vulnerable to being misguided by critics (harmful)
and I(t) stands for the class of those researchers that are the affectees of harmful research
articles. The notion IP(t) denotes those researchers that are affected and yet they have a
constructive approach towards the non-singular kernel. IN(t) represents those researchers
that are affected and also have a bad opinion about derivatives that have a non-singular
kernel. R(t) are those researchers that overcame the division of criticism, and finally, the
researchers that are dead, retired, or have left the research of fractional derivatives and
integrals are denoted by D(t). The topic is extremely appealing because the notion is widely
applicable; therefore, each time a new researcher joins the area, we use Λ as the recruiting
rate in this model. Naturally, some researchers working in this area may die, and as a result,
they will no longer be working in the field; as a result, we will choose d as the death rate.
Retirement can be explained by d as well. β is interpreted as a contact coefficient, or the
likelihood that a researcher will read a work concerning non-singular kernel derivatives
with negative content. Similarly, the rate at which a fractional calculus researcher joins
class D owing to division is represented by the parameter φ2. τ is the percentage of people
who are impacted by criticism, yet still believe in non-singular kernel variants. The term
δ is the rate of recovery. Due to division, ψ is the rate at which researchers join class IN ,
and γ1 is the rate at which persons with favorable opinions join class D. The recovery rate
of the IP class is φ1. The rate at which class IN joins class D owing to division is called σ.
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The recovery rate of class I is γ3. The recovery rate in class D is shown by γ2, whereas
Bi(t) such that i = 1, 2, 3, 4, 5, 6 denotes the independent Brownian motion, and η2

i for
i = 1, 2, 3, 4, 5, 6 stands for the white noise intensity.

In this work, the researchers were interested in formulating a stochastic model for
the proposed social phenomenon and studying its possible control policy, besides the
stability of the model. It is also of great concern to study the underlying deterministic
model of the developed model, and thus, we analyzed its corresponding ODE model. The
main goal of the control section of the study is to characterize the infection rate (being
a control measure). This control reduces the amount of the infected population (over a
given time interval), while keeping the expense of the control strategies in mind. We
minimize the expected value when it comes to stochastic models. For the deterministic
approach, the Hamilton–Jacobi–Bellman equation is utilized, but for the control theory
of stochastic problems, the “Hamilton–Jacobi–Bellman equation” is employed. Hence,
this paper reviews all issues raised against non-singular kernels’ differential and integral
operators. A stochastic mathematical model depicting the survival of fractional calculus
based on non-singular kernels is herein proposed and analyzed.

The rest of the article is constructed in the following fashion. In Section 2, we show
the existence and uniqueness of global positive solutions of System (1) having a starting
approximation. In Section 3, we give some necessary axioms for the extinction of the
epidemic. In Section 4, we derive the existence of the solution of a stationary distribution
by using the method of Khasminskii and making a proper Lyapunov operator. Likewise,
we look into a stochastic control problem for optimality in Section 5. Some parallels were
found in both the deterministic and stochastic control models. In Section 6, a few numerical
simulations are presented to validate the required scheme. The main results of this paper
end with the conclusion in Section 7.

2. Qualitative Analysis of the Global Non-Negative Solution

In order to investigate the dynamics of the proposed system, firstly, we are concerned
about the solution being non-local and non-negative. In the following part, we make a
proper “Lyapunov function” to verify the qualitative analysis of globally positive solutions
of the problem (1).

Theorem 1. For some initial approximation (Fc, I, IP, IN , R, D)(0) ∈ R6
+, a one positive root

X = (Fc, I, IP, IN , R, D) of model (1) exists on interval [t, ∞), and solution ∈ R4
+ has one chance

of occurrence, namely the solution X ∈ R4
+ ∀ [t, ∞) a.s.

Proof. For the proof of this theorem, see Theorem 5 in [26].

3. Extinction of the Proposed Model

We develop the conditions for model extinction in this section of the research. We
include some notations and definitions below for convenience. Assume that:〈

X(t)
〉
=

1
t

∫ t

0
X(r)dr.

Lemma 1. Let us assume that X represents a solution of Model (1) with given initial data
(Fc, I, IP, IN , R, D)(0) ∈ R6

+, then:

lim
t→∞

Fc(t) + IP(t) + I(t) + IN(t) + D(t) + R(t)
t

= 0, a.s. (2)
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Further, if d >
(η2

1∨η2
2∨η2

3∨η2
4∨η2

5∨η2
6)

2 , then:

lim
t→∞

1
t

∫ t

0
Fc(r)dB1(r) = 0,

lim
t→∞

1
t

∫ t

0
I(r)dB2(r) = 0,

lim
t→∞

1
t

∫ t

0
IP(r)dB3(r) = 0,

lim
t→∞

1
t

∫ t

0
IN(r)dB4(r) = 0,

lim
t→∞

1
t

∫ t

0
R(r)dB5(r) = 0,

lim
t→∞

1
t

∫ t

0
D(r)dB6(r) = 0.

(3)

In the following, we calculate and define the threshold parameter R0 for the model (1):

R0 =
β

(d + τ + δ + ψ +
η2

2
2 )

(4)

The following is the outcome of the illness extinction.

Theorem 2. Assume that d >
(η2

1∨η2
2∨η2

3∨η2
4∨η2

5∨η2
6)

2 and X represent a solution to the model (1)
with subsidiary conditions (Fc, I, IP, IN , R, D)(0) ∈ R6.
If R0 < 1, then:

lim
t→∞

〈
log I(t)

〉
t

< 0, lim
t→∞

〈
log IP(t)

〉
t

< 0 and lim
t→∞

〈
log IN(t)

〉
t

< 0,

a.s. This means that if we let I(t)→ 0 (exponentially a.s.), the affectees will be removed from the
community with a probability of one. Besides:

lim
t→∞

〈
S(t)

〉
=

Λ
(d + φ2)

,

lim
t→∞

〈
I(t)

〉
= 0,

lim
t→∞

〈
IP(t)

〉
= 0,

lim
t→∞

〈
IN(t)

〉
= 0,

lim
t→∞

〈
R(t)

〉
= 0,

lim
t→∞

〈
D(t)

〉
=

Λφ2

d(Λ + φ2)
.

(5)

Proof. For the proof of this theorem, see Theorem 6 in [26].
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4. The Stationary Distribution of the Disease

Since there are no endemic equilibria in stochastic systems, as a result, the stability
analysis cannot be utilized to investigate the disease’s permanence. As a result, one must
focus on the uniqueness/existence hypothesis of the stationary distribution, which, in some
ways, will aid in the disease’s survival. We use a well-known finding of Khasminskii [27]
to illustrate this point.

Let X(t) be a Markov process and regular time and homogeneous over Rd:

dG(t) = bGdt +
k

∑
r=1

σr(G)dBr(t). (6)

The diffusion matrix is defined as follows:

A(x) = (bik(x)), bik(t) =
K

∑
r=1

σi
r(t)σ

k
r (x).

Lemma 2 ([1]). The Markov processes G(t) has an ergodic stationary distribution Π(·) in an open
domain U ∈ Rd that is unique, bounded, and has a regular boundary, while its closure Ū ∈ Rd

satisfies the following properties:

1. In the set U and its neighbor thereof, the eigenvalue of the diffusion matrix A(t) that has the
smallest magnitude is bounded away from the origin;

2. If x is in Rd\U, the average time τ in which a path starts from x reaching U is < ∞, and
supx∈K Exτ < ∞ ∀ K ⊂ Rn where K is compact. Besides, for an integrable function f (·)
w.r.t measure Π, we have:

P
{

limT→∞
1
T
∫ T

0 f (GX(t))dt =
∫

Rd
f (x)Π(dx)

}
= 1.

Define a parameter:

Rs
0 =

µβα(
ξ + µ + σ2

2

2

)(
α + µ + σ3

2

2

)(
δ + µ + σ4

2

2

) . (7)

Theorem 3. The solution X of System (1) is an ergodic one, and there must exist a stationary
distribution π(.) when RS

0 > 1.

Proof. To prove Condition (2) of Lemma 2, we need to formulate a positive C2-function
V : R6

+ → R+. To do so, we consider the following functions:

V1 = Fc + R + IP + I + D + IN − c1 ln Fc − c2 ln I,
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where c1 and c2 are positive constants to be determined later. By the Itô’s formula and
system (1), we can get

Ł(S + V + E + I + R) =Λ− d(Fc + I + IP + IN + R + D),

Ł(− ln Fc) =− Λ
Fc + d + φ2 +

βI
N

+
η2

1
2

,

Ł(− ln I) =− βFc

N
+ (d + τ + δ + ψ) +

η2
2

2
,

Ł(− ln IP) =− τ I(t)
IP + (d + γ1 + φ1) +

η2
3

2
,

Ł(− ln IN) =− ψI(t)
IN + (d + σ + γ3) +

η2
4

2
.

Ł(− ln R) =− φ1 IP

R
+ d− δI

R
− γ3 IN

R
+ γ2 +

η2
5

2
,

Ł(− ln D) =− γ2R
D
− γ1 IP

D
− φ2Fc

D
− σIN

D
+ d +

η2
6

2
,

(8)

Therefore, we have

ŁV1 = Λ− d(Fc + IP + I + R + IN + D)− c1Λ
Fc + c1d + c1φ2 +

c1βI
N

+
c1η2

1
2

− c2βFc

N
+ c2(d + δ + τ + ψ) +

c2η2
2

2
,

= Λ− d(Fc + I + IN + IP + D + R)− c1Λ
Fc +

c1βI
N

+ c1(d + φ2 +
η2

1
2
)

− c2βFc

N
+ c2(d + τ + δ + ψ +

η2
2

2
).

≤ −3
[

d(Fc + IP + I + R + IN + D)
c1Λ
Fc

c2βFc

N

] 1
4

+
c1βI

N
+ Λ + c1(d + φ2 +

η2
1

2
)

+ c2(τ + d + ψ + δ +
η2

2
2
),

Let

c1(d + φ2 +
η2

1
2
) = c2(d + τ + δ + ψ +

η2
2

2
) = Λ

Namely,

c1 =
Λ(

d + φ2 +
η2

1
2

) c2 =
Λ(

d + τ + δ + ψ +
η2

2
2

)
(9)
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Consequently:

LV1 ≤ −3


 dc1c2Λβ(

d + φ2 +
η2

1
2

)(
d + τ + δ + ψ +

η2
2

2

)


1
3

−Λ

+
c1βI

N
,

(10)

LV1 ≤ −4Λ
[
(RS

0 )
1/4 − 1

]
+

c1βI
N

In addition, we obtain:

V2 = c3(Fc + IP + I + R + IN + D− c1 ln Fc − c2 ln I)− ln Fc − ln IP − ln IN − ln D− ln R

+ Fc + IP + I + R + IN + D

= (c3 + 1)(Fc + IP + I + R + IN + D)− (c1c3 + 1) ln Fc − c2c3 ln I

− ln IP − ln IN − ln D− ln R.

where c3 > 0 is constant which will be determined later. It is helpful to show that:

lim inf
(Fc ,I,IP ,IN ,R,D)∈R6

+\Uk

V2(X ) = +∞, as k→ ∞, (11)

where Uk = ( 1
k , k)× ( 1

k , k)× ( 1
k , k). Next, we must demonstrate that V2(Fc, I, IP, IN , R, D)

has a unique minimum value V2(Fc(0), I(0), IP(0), IN(0), R(0), D(0)).

The partial derivative of V2(Fc, I, IP, IN , R, D) with respect to Fc, I, IP, IN , R, and D is
as follows:

∂V2(X )

∂Fc = 1 + c3 −
1 + c1c3

Fc ,

∂V2(X )

∂I
= 1 + c3 −

c2c3

I
,

∂V2(X )

∂IP = 1 + c3 −
1
IP ,

∂V2(X )

∂IN = 1 + c3 −
1

IN ,

∂V2(X )

∂R
= 1 + c3 −

1
R

,

∂V2(X )

∂D
= 1 + c3 −

1
D

.

One can notice that V2 has one and only one point of stagnation:

(Fc, I, IP, IN , R, D)(0) =
(

1 + c3c1

1 + c3
,

1
c3 + 1

,
c2c3

c3 + 1
,

c3c2

c3 + 1
,

1
1 + c3

,
1

c3 + 1

)
. (12)
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Furthermore, the Hessian matrix of V2(X ) at (Fc, I, IP, IN , R, D)(0) is:

B =



1+c1c3
(Fc)2(0) 0 0 0 0 0

0 c2c3
I2(0) 0 0 0 0

0 0 1
(IP)2(0) 0 0 0

0 0 0 1
(IN)2(0) 0 0

0 0 0 0 1
R2(0) 0

0 0 0 0 0 1
D2(0)


. (13)

It is clear that the Hessian matrix is positive definite. Hence, V2(X ) has a minimum
value V2(X (0)). Further, by using Equation (11) and utilizing the fact that V2(X ) is
continuous, we can say that V2(X ) has one and only one minimum value V2(X (0)) inside
R6
+. Furthermore, we have to chose another positive C2-function V : R6

+ → R+ as follows:

V(X ) = V2(X )−V2(X (0)).

Applying the Ito′s formula of model (1), we can get and keeping in view the model,
we have:

ŁV ≤ c3

{
− 3Λ

[
(R0

s)
1/3 − 1

]
+

c1βI
N

}
− γ2R

D
− γ1 IP

D
− φ2Fc

D
− σIN

D
+ d +

η2
6

2
+ Λ− dN

− Λ
Fc + d + φ2 +

βI
N

+
η2

1
2
− τ I(t)

IP − (d + γ1 + φ1) +
η2

3
2
− ψI(t)

IN − (d + σ + γ3)

+
η2

4
2
− φ1 IP

R
+ d− δI

R
− γ3 IN

R
+ γ2 +

η2
5

2
,

(14)

A direct consequence of the above equation is given as:

ŁV ≤ −c3c4 +
c1βI

N
− γ2R

D
− γ1 IP

D
− φ2Fc

D
− σIN

D

+ Λ− Λ
Fc + 5d + φ2 +

βI
N
− τ I(t)

IP + γ1

+ φ1 −
ψI(t)

IN + σ + γ3 −
φ1 IP

R
− δI

R
− γ3 IN

R

+ γ2 +
η2

1 + η2
3 + η2

4 + η2
5 + η2

6
2

− dN

(15)

where:

c4 =

{
3Λ
[
(Rs

0)
1/3 − 1

]
> 0.

To move further, we define a set in the form:

D =

{
ε1 < Fc < 1

ε2
, ε1 < I < 1

ε2
, ε1 < IP < 1

ε2
, ε1 < IN < 1

ε2
, ε1 < R < 1

ε2
, ε1 < D < 1

ε2

}
,
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for εi > 0 where (i = 1, 2, · · · , 10) are very small positive real numbers to be calculated at
later stages. To make the process simpler, we make a partition of the space R4

+\D in the
form of:

D1 =

{
X ∈ R6

+, 0 < Fc ≤ ε1

}
,

D2 =

{
X ∈ R6

+, 0 < I ≤ ε1, S > ε2

}
,

D3 =

{
X ∈ R6

+, 0 < IP ≤ ε1, V > ε2

}
,

D4 =

{
X ∈ R6

+, 0 < IN ≤ ε1, E > ε2

}
,

D5 =

{
X ∈ R6

+, 0 < R ≤ ε1, I > ε2

}
,

D6 =

{
X ∈ R6

+, 0 < D ≤ ε1, I > ε2

}
,

D7 =

{
X ∈ R6

+, Fc ≥ 1
ε2

}
,

D8 =

{
X ∈ R6

+, I ≥ 1
ε2

}
,

D9 =

{
X ∈ R6

+, IP ≥ 1
ε2

}
,

D10 =

{
X ∈ R6

+, IN ≥ 1
ε2

}
,

D11 =

{
X ∈ R6

+, R ≥ 1
ε2

}
,

D12 =

{
X ∈ R6

+, D ≥ 1
ε2

}
,

Next, it is worth showing that ŁV(Fc, I, IP, IN , R, D) < 0 on R6
+\D is equivalent to

proving the result in the above ten sub-regions.
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Case 1. For any X ∈ D1, then by Equation (15), we obtain:

ŁV ≤ −c3c4 +
c1βI

N
− γ2R

D
− γ1 IP

D
− φ2Fc

D
− σIN

D

+ Λ− Λ
Fc + 5d + φ2 +

βI
N
− τ I(t)

IP + γ1

+ φ1 −
ψI(t)

IN + σ + γ3 −
φ1 IP

R
− δI

R
− γ3 IN

R

+ γ2 +
η2

1 + η2
3 + η2

4 + η2
5 + η2

6
2

− dN,

≤ −c3c4 +
c1βI

N
− γ2R

D
− γ1 IP

D
− φ2Fc

D
− σIN

D

+ Λ− Λ
Fc + 5d + φ2 +

βI
N
− τ I(t)

IP

+ γ1 + φ1 −
ψI(t)

IN + σ + γ3

+ γ2 +
η2

1 + η2
3 + η2

4 + η2
5 + η2

6
2

− dε1.

(16)

Choosing ε1 > 0, we obtain LṼ ≤ −1 for every (Fc, I, IP, IN , R, D) ∈ D1.
Moreover, by using the inequalities in Equation (15), with the same method used for the
proof of Case (1), we conclude that LV ≤ −1 for all X ∈ D2, X ∈ D3, X ∈ D4, X ∈ D5,
and X ∈ D6.

Case 2. For any X ∈ D7, then by Equation (15), we obtain:

ŁV ≤ −c3c4 +
c1βI

N
− γ2R

D
− γ1 IP

D
− φ2Fc

D
− σIN

D

+ Λ− Λ
Fc + 5d + φ2 +

βI
N
− τ I(t)

IP + γ1

+ φ1 −
ψI(t)

IN + σ + γ3 −
φ1 IP

R
− δI

R
− γ3 IN

R

+ γ2 +
η2

1 + η2
3 + η2

4 + η2
5 + η2

6
2

− dN,

ŁV ≤ −c3c4 +
c1βI

N
− γ2R

D
− γ1 IP

D
− φ2Fc

D
− σIN

D

+ Λ− Λ
Fc + 5d + φ2 +

βI
N
− τ I(t)

IP + γ1

+ φ1 + σ + γ3 + γ2 +
η2

1 + η2
3 + η2

4 + η2
5 + η2

6
2

− Λ
ε2

,

(17)

Assuming the smallest possible value of ε2 > 0, LṼ ≤ −1 for every X ∈ D7.
Moreover, with a similar approach used to prove Case (2) and using Equation (15), we
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obtain LV ≤ −1, which can be derived for each X ∈ D8, X ∈ D9, X ∈ D10, X ∈ D11,
X ∈ D11.

In conclusion, we arrive at the final result that there must exist W > 0, such that

ŁV(X ) < −W < 0 ∀ X ∈ R6
+\D.

Hence

dV(X ) < −Wdt + [(1 + c3)Fc − (1 + c3c1)η1]dB1(t) + [(1 + c3)I − c2c3η2]dB2(t)

+ [(c3 + 1)Ip − η3]dB3(t) + [(c4 + 1)IN − η4]dB4(t)

+ [(c3 + 1)R− η5]dB5(t) + [(c3 + 1)D− η6]dB6(t).

(18)

Assume that ((Fc, I, IP, IN , R, D)(0)) = (x1, x2, x3, x4, x5, x6) = x ∈ R6
+\D, and τx is

the time at which a path starting from x approaches set D,

τn = in f {t : n = |X(t)|} and τ(n)(t) = min{τx, t, τn}.

Integrating Relation (18) with limits zero and τ(n)(t), assuming the concept expecta-
tion, and finally, applying Dynkin’s formula, the following result my be obtained:

EV(X (τ(n)(t)))−V(x) = E
∫ τ(n)(t)

0
LV(Fc(u), I(u), IP(u), IP(u), R(u), D(u))du,

≤ E
∫ τ(n)(t)

0
−Wdu = −WEτ(n)(t).

As the function V(x) is positive, therefore:

Eτ(n)(t) ≤ 1
W

V(x).

By considering the results of Theorem 3, we have P{τe = ∞} = 1. Besides, from
the regularity of System (1), we have that, by letting n, t → ∞, we have τ(n)(t) →
τxalmost surely.

Utilizing the well-known lemma of Fatou yields:

Eτ(n)(t) ≤ 1
W

V(x) < ∞

Clearly, supx∈K Eτx < ∞, where K is compact, as discussed already. Consequently,
this proves Condition (2) of Lemma 2.

It also worth mentioning that the diffusion matrix of Model (1) is of the form:

B =



η2
1(Fc)2 0 0 0 0 0

0 η2
2 i2 0 0 0 0

0 0 η2
3(IP)2 0 0 0

0 0 0 η2
4(IN)2 0 0

0 0 0 0 η2
5 R2 0

0 0 0 0 0 η2
6 D2


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Choosing M = minX∈D∈R6
+
{η2

1(Fc)2, η2
2 I2, η2

3(IP)2, η2
4(IN)2, η2

5 R2, η2
6 D2}, we obtain:

5

∑
i,j=1

aijX ξiξ j = η2
1(Fc)2ξ2 + η2

2 I2ξ2
2 + η2

3(IP)2ξ2 + η2
4(IN)2ξ2

4 I2η2
5 R2ξ5 + η2

6 D2

≥ M|ξ|2,X ∈ D,

where ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) ∈ R6
+. This means that, the criteria (1) of Lemma 2 hold.

According to the above-mentioned results, one can easily conclude that Lemma 2 shows
the ergodicity of Model (1), as well as its stationary distribution.

5. Stochastic Optimal Control

The use of optimal control theory techniques is becoming increasingly important,
especially in the field of mathematical modeling. These techniques may be utilized to
discover an effective control approach by evaluating appropriate control functions [1,3].
Control theory includes a large body of literature, and these approaches are widely used
in economics, mathematical physics, and dynamical system theory [3]. The readers are
advised to consult the book for the derivation of different optimality conditions and other
well-known characteristics of control theory [1,3].

This section discusses the proposed model’s comparable control system. Taking into
account the model’s specified hypotheses at the start of the study, as well as the control
measures u1(t), u2(t), u3(t)and u4(t), we create the randomized control version process
that operates with it.

The control measures to be included in System (1) have the properties given below:

• The control measure u1(t) shows physically the discussion about non-singular and
singular kernels on social research forums such as Google scholar and Researchgate
for example "https://pubpeer.com/";

• The variable u2(t) describes the size of papers published/accepted, the books, etc.,
about non-singular and singular kernels;

• The variable u3 stands for the qualitative aspects such as the fairness of publishers
and the editorial board;

• The measure u4(t) denotes a conference presenting good talks on the subject of frac-
tional derivatives and integrals.

The study’s main goal is to figure out a proper control approach for limiting the
number of infectious and vulnerable persons while increasing the number of those who
survive. The equivalent stochastic control variant of System (1) assumes the following form
when the control variables are taken into account:

dFc =

[
Λ− dFc(t)− u1(t)Fc(t)− u3(t)Fc(t)− φ2Fc(t)− βFc(t)I(t)

N

]
dt + η1Fc(t)dB1(t),

dI(t) =
[

βFc(t)I(t)
N

− u4(t)I(t)− (d + τ + δ + ψ)I(t)
]

dt + η2 I(t)dB2(t),

dIP(t) =
[

τ I(t)− (d + φ1 + γ1 + u3(t))IP(t)
]

dt + η3 IP(t)dB3(t),

dIN(t) =
[

ψI(t)− u2(t)IN(t)− (d + σ + γ3)IN(t)
]

dt + η4 IN(t)dB4(t),

dR(t) =
[

φ1 IP(t) + u3(t)IP(t)− dR(t) + δI(t) + u4(t)I(t) + u1(t)Fc(t) + u2(t)IN(t),

+ γ3 IN(t)− γ2R(t)
]

dt + η5R(t)dB5(t),

dD(t) =
[

γ2R(t) + γ1 IP(t) + φ2Fc(t) + σIN(t)− dD(t)
]

dt + η6dB6(t).

(19)
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where the conditions at time t = 0 are:

Fc(0) > 0, I(0) ≥ 0, 0 ≤ IP(0), I(0) ≥ 0, 0 < IN(0), R(0) > 0, D(0) > 0. (20)

To keep things simple, we use a vector of the type:

x(t) = [x1, x2, x3, x4, x5, x6]
′, u(t) = [u1, u2, u3, u4]

′.

and:
dx(t) = f (x, u)dt + g(x)dw(t); (21)

here, the functions xi and ui are both time dependent. The conditions at t = 0 in terms of xi
may be written as:

x(0) = [(x1, x2, x3, x4, x5, x6)(0)]′ = x0.

The functions in Relation (21) (i.e., f and g) are vectors having components as:

f1 =

[
Λ− dFc(t)− u1(t)Fc(t)− φ2Fc(t)− βFc(t)I(t)

N

]
dt + η1Fc(t)dB1(t),

f2 =

[
βFc(t)I(t)

N
− u4(t)I(t)− (d + τ + δ + ψ)I(t)

]
dt + η2 I(t)dB2(t),

f3 =

[
τ I(t)− (d + γ1 + φ1 + u3(t))IP(t)

]
dt + η3 IP(t)dB3(t),

f4 =

[
ψI − u2(t)IN(t)− (d + σ + γ3)IN(t)

]
dt + η4 IN(t)dB4(t),

f5 =

[
φIP(t)− dR(t) + δI(t) + u4(t)I(t) + u1(t)Fc(t) + u2(t)IN(t),

+ u3(t)IP(t) + γ3 IN(t)− γ2R(t)
]

dt + η5R(t)dB5(t),

f6 =

[
γ2R(t) + γ1 IP(t) + φ2Fc(t) + σIN(t)− dD(t)

]
dt + η6dB6(t).

(22)

g1 = η1Fc, g2 = η2 I, g3 = η3iP, g4 = η4 IN , g5 = η5R, g6 = η5D. Keeping in view the
usefulness of the quadratic terms in the objective functional, we assumed the following
functional:

G(u) =
1
2

E
{ ∫ t f

0

(
S1Fc + S2 I + S3 IN + S4 IP − S5R + X2

u2
1(t)
2

+ X2
u2

2(t)
2

+ X3
u2

3(t)
2

+ X4
u2

4(t)
2

)
dt

+
k1

2
(Fc)2 +

k2

2
I2 +

k3

2
(IP)2 k4

2
(IN)2 +

k5

2
R2 +

k6

2
D2
}

,

where Si, Xj, and ki for i = 1, · · · , 5 and j = 1, · · · , 4 are constants and strictly greater than
zero. The objective of the present work is to find a control vector
u∗(t) = (u∗2(t), u∗1(t), u∗3(t), u∗4(t)) that has the following property:

J(u∗) ≤ J(u), for all u ∈ U;

here, the set U denotes the control set (admissible) and is defined as:

U = {ui(t)| ui(t) ∈ [0, umax
i ], ∀t ∈ (0, t f ], ui ∈ L2[0, t f ] where i = 1, · · · , 4},
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where the terms umax
i are positive real numbers. To use the stochastic maximal criterion,

we must first determine the Hamiltonian Hm(p, q, u, x) for the problem in operation:

H(x, u, p, q) = 〈g(x), q〉 − l(x, u) + 〈 f (x, u), p〉; (23)

here, 〈·, ·〉 stand for the inner product in the Euclidean space, whereas p = [p1, p2, p3, p4, p5, p6]
′

and q = [q1, q2, q3, q4, q5, , q6]
′ describe the two independent sets of adjoint variables. Follow-

ing a similar approach of maximum criteria, we have:

dx∗(t) =
∂H(x∗, u∗, p, q)

∂p
dt + g(x∗(t))dW(t). (24)

dp∗(t) = q(t)dW(t)− ∂

∂x
H(x∗, u∗, p, q)dt. (25)

Hm(x∗, u∗, p, q) = min
u∈U

Hm(x∗, u∗, p.q). (26)

Here, the state x∗(t) represents the optimal path followed by the state variable x(t).
The condition at t = 0 on the state and the final condition of the adjoint variables of
Equations (24) and (25) are:

x∗(0) = x0, (27)

p(t f ) = −
∂

∂x
h(x∗(t f )), (28)

respectively. As Equation (26) shows, the optimal value of the control variable u∗(t) consists
of adjoint variables p(t), q(t) and state x∗(t) of the form:

u∗(t) = φ(x∗, q, p); (29)

here, φ is computed by Equation (26). Thus, Equations (24) and (25) can be written as:

dx∗(t) =
∂H(x∗, u∗, p, q)

∂p
dt + g(x∗(t))dW(t). (30)

dp(t) = −∂H(x∗, u∗, p, q)
∂x

dt + q(t)dW(t). (31)

Therefore, the given “Hamiltonian” is:
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H =

(
S1Fc + S2 I + S3 IN + S4 IP − S5R + X2

u2
1(t)
2

+ X2
u2

2(t)
2

+ X3
u2

3(t)
2

+ X4
u2

4(t)
2

)
dt

+
k1

2
(Fc)2 +

k2

2
I2 +

k3

2
(IP)2 k4

2
(IN)2 +

k5

2
R2 +

k6

2
D2
)

+ p1

(
Λ− dFc(t)− u1(t)Fc(t)− φ2Fc(t)− βFc(t)I(t)

N

)

+ p2

(
βFc(t)I(t)

N
− u4(t)I(t)− (d + τ + δ + ψ)I(t)

)

+ p3

(
τ I(t)− (d + γ1 + φ1 + u3(t))IP(t)

)

+ p4

(
ψI − u2(t)IN(t)− (d + σ + γ3)IN(t)

)

+ p5

(
φ1 IP(t) + u3(t)IP(t)− dR(t) + δI(t) + u4(t)I(t) + u1(t)Fc(t)

+ u2(t)IN(t) + γ3 IN(t)− γ2R(t)
)

+ p6
(

γ2R(t) + γ1 IP(t) + φ2Fc(t) + dIN(t)− dD(t)
)

+ η1Fcq1 + η2 I(t)q2 + η3 IP(t)q3 + η4 INq4 + η5Rq5 + η6Dq5.

(32)

The maximum principle of Pontryagin gives us the following adjoint system:

dp1

dt
= −

{
S1 − p1

(
(d + φ2 + u1) +

βI
N

)
+ p2

βI
N

+ p5u1 + p6φ2

}
+ η1q1,

dp2

dt
= −

{
S2 + (p2 − p1)

βFc

N
− p2(d + τ + δ + ψ + u4) + p3τ + p4ψ + p5(δ + u4)

}
+ η2q2,

dp3

dt
= −

{
S4 − p3(d + γ1 + φ1 + u3) + p5φ1 + p5u3 + p6γ1

}
+ η3q4,

dp4

dt
= −

{
S3 + p4(d + σ + γ3 + u2) + p5(γ3 + u2)

}
+ η4q4,

dp5

dt
= −

{
− S5 − p5d + p5γ2 + p6γ2

}
+ η5q5,

dp6

dt
= −

{
− dp6

}
+ η6q6,

(33)

where p1(t f ) = −k1Fc, p2(t f ) = −k2 I, p3(t f ) = −k3 IN , p4(t f ) = −k4 IP, p5(t f ) =
−k5R, p6(t f ) = −k5D.
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Along with the condition at final time pk

(
t f

)
= 0 for k = 1, 2, 3, 4, 5, 6. Similarly, the

supplementary initial and final conditions are:

(Fc)∗(0) = F̂c, I∗(0) = Î, (IN)
∗(0) = ˆIN , (IP)∗(0) = ÎP, R∗(0) = R̂ D∗(0) = D̂,

p(t f ) = −
∂h(x∗(t f ))

∂x
,

(34)

and:

h(Fc, I, IN , IP, R, D) =
k1

2
(Fc)2 +

k2

2
I2 +

k3

2
(IN)2 k4

2
(IP)2 +

k5

2
R2 +

k6

2
D6, (35)

Considering the derivative of function H with respect to the control variables gives us
the characterization of the control:

u1 =
Fc(t)(p1 − p5)

2X1
,

u2 =
IN(t)(p4 − p5)

2X2
,

u3 =
IP(t)(p3 − p5)

2X3
,

u4 =
I(t)(p2 − p5)

2X4
.

Assuming the lower and upper bounds of the control variables, we have:

u∗1 = min
{

ũ1, max
{

0,
Fc(t)(p1 − p5)

2X1

}}
,

u∗2 = min
{

ũ2, max
{

0,
IN(t)(p4 − p5)

2X2

}}
,

u∗3 = min
{

ũ3, max
{

0,
IP(t)(p3 − p5)

2X3

}}
,

u∗4 = min
{

ũ4, max
{

0,
I(t)(p2 − p5)

2X4

}}
.

6. Numerical Simulations

We give some numerical simulations in order to illustrate the theoretical results
obtained in this paper. We devised a technique for System (1) using the stochastic Runge–
Kutta method of fourth order. The discretization transformation takes the form:
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Fc
i+1 = Fc

i+1 +

[
Λ− dFc

i − φ2Fc
i −

βFc
i Ii

N

]
4 t + η1Fc

i

√
4tζ1,i +

η2
1

2
Fc

i (ζ
2
1,i − 1)4 t,

Ii+1 = Ii+1 +

[
βFc

i Ii

N
− (d + τ + δ + ψ)Ii

]
4 t + η2 Ii

√
4tζ2,i +

η2
2

2
Ii(ζ

2
2,i − 1)4 t,

IP
i+1 = IP

i+1 +

[
tauIi − (d + γ1 + φ1)IP

i

]
4 t + η3 IP

i

√
4tζ3,i +

η2
3

2
IP
i (ζ

2
3,i − 1)4 t,

IN
i+1 = IN

i+1 +

[
ψIi − (d + σ + γ3)IN

i

]
4 t + η4 IN

i

√
4tζ4,i +

η2
4

2
IN
i (ζ2

4,i − 1)4 t,

Ri+1 = Ri+1 +

[
φ1 IP

i − dRi + δIi + γ3 IN
i − γ2Ri

]
4 t + η5Ri

√
4tζ5,i +

η2
5

2
Ri(ζ

2
5,i − 1)4 t,

Di+1 = Di+1 +

[
γ2Ri + γ1 IP

i + φ2Fc
i + σIN(t)− dDi

]
4 t + η6Di

√
4tη5,i +

α2
5

2
Di(ζ

2
5,i − 1)4 t.

(36)

In the numerical scheme, the terms ζi,j for i, j = 1, · · · , 5 are reserved for the Gaussian
disturbances, and it has the property N(0, 1) where ∆t is a uniform time step size. Let us
choose the initial value and the parameter values from Table 1. The desired time period for
simulation is considered to be [0, 140].

6.1. Numerical Simulations for the Stationary Distribution and Extinction

To show the numerical illustration of Theorem 2, we chose the values in Table 1 (V1).
Thus, the theorem suggests that if one keeps R0 < 1, then the disease will be eventually
eliminated from the population with probability one. These facts are supported by Figure 1
as the parameter values in this case fulfill the hypothesis of the theorem. That is to say,
large noises can lead the disease to extinction, which is a different phenomenon from its
corresponding deterministic model (1).

To numerically show the results suggested by Theorem 3, we take into consideration
another set of parameter values in Table 1 (V2). This set of parameters guarantees that
Rs

0 > 1. When the model’s prediction is plotted (see Figure 2), it clearly shows the
persistence of the infection with respect to the subject matter. By simulating the model
nearly one thousand times, we calculated the average infection extinction time. It was
observed that varying the noises’ intensity yielded different times of extinction. Further, it
is noted that there exists an inverse relationship between the noise intensity and extinction
time. We present the histograms depicting the probability of each class in Figure 3, which
shows the stationary distribution as density functions, which are close to each other.
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Figure 1. Simulations of (Fc(t), I(t), IP(t), IN(t), R(t), D(t)) for the stochastic model (1) with its
corresponding deterministic version. (a) FC(t): researchers using fractional differential operators
with non-singular kernels. (b) I(t): researchers that have been affected by the harmful papers.
(c) IP(t): researchers that have been affected, but still have positive opinions about non-singular
kernel derivatives. (d) IN(t): researchers that have been affected and have negative opinions about
non-singular kernel derivatives. (e) R(t): researchers that have overcome divisive criticism. (f) D(t):
researchers that die, or retire.
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Example 1. From the assumed values of Table 1 (V1), we calculated R0, which is less than one, and
thus, by the statement of Theorem 2, the solution of the system has the following properties:

lim
t→∞

sup
logI(t)

t
≤ 0, a.s.

and:

lim
t→∞

sup
logIP(t)

t
≤ 0, a.s.

lim
t→∞

sup
logIN(t)

t
≤ 0, a.s.

These relations indicate that the dislike of fractional calculus will be eventually eliminated out of the
population, and the same is validated via Figure 1.

Example 2. By following the same procedure, we assumed the values of the parameters from
Table 1 (V2), which satisfy the hypothesis of Theorem 3, that is Rs

0 greater than unity. The theorem
conclusions, as well as Figures 2 and 3 show that under such circumstances, the dislike of the subject
matter will persist in the community.

Table 1. Values of the parameters for simulating Model (1).

Parameters Unite V1 V2 V3

Λ Per week 0.05 2.5 2.8
d Per week 1/170.365 1/70.365 1/70.365
β Per week 0.08 0.9 0.8
γ1 Per week 0.01 0.08 0.8
γ2 Per week 0.04 0.07 0.5
γ3 Per week 0.004 0.07 0.004
φ2 Per week 0.02 0.04 0.04
τ Per week 0.004 0.004 0.005
δ Per week 0.01 0.03 0.03
σ Per week 0.03 0.1 0.1
ψ v Per week 0.01 0.01 0.01
φ1 Per week 0.02 0.001 0.01
η1 Noise intensity 0.4 0.4 2
η2 Noise intensity 0.3 0.2 0.3
η3 Noise intensity 0.4 0.5 0.4
η4 Noise intensity 0.5 0.5 0.5
η5 Noise intensity 0.6 0.6 0.1
η6 Noise intensity 0.2 0.1 0.2
Fc(0) Initial value 100 60 430
I(0) Initial value 10 50 10
IP(0) Initial value 06 40 30
IN(0) Initial value 03 35 20
R(0) Initial value 00 15 10
D(0) Initial value 02 15 10
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Figure 2. Simulations of (Fc(t), I(t), IP(t), IN(t), R(t), D(t)) for the stochastic model (1) with its
corresponding deterministic version. (a) FC(t): researchers using fractional differential operators
with non-singular kernels. (b) I(t): researchers that have been affected by the harmful papers.
(c) IP(t): researchers that have been affected, but still have positive opinions about non-singular
kernel derivatives. (d) IN(t): researchers that have been affected and have negative opinions about
non-singular kernel derivatives. (e) R(t): researchers that have overcome divisive criticism. (f) D(t):
researchers that die, or retire.
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(c) (d)

(e) (f)

Figure 3. The probability distribution histogram of (Fc(t), I(t), IP(t), IN(t), R(t), D(t)) for the
stochastic model (1). (a) FC(t): researchers using fractional differential operators with non-singular
kernels. (b) I(t): researchers that have been affected by the harmful papers. (c) IP(t): researchers that
have been affected, but still have positive opinions about non-singular kernel derivatives. (d) IN(t):
researchers that have been affected and have negative opinions about non-singular kernel derivatives.
(e) R(t): researchers that have overcome divisive criticism. (f) D(t): researchers that die, or retire.
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6.2. Numerical Simulations for Stochastic Optimality

In this section, we give some numerical simulations in order to illustrate the theoretical
result of the optimal control theory of the stochastic model. The method used is again
the well-known RK4 method. For this simulation, the authors assumed the values of the
parameters and noise intensity from Table 1 (S3). The figures that are of great concern are
Figures 4 and 5. In Figure 4a,c,e, we plot the solution curves Fc(t), I(t), and IP(t) both in
the presence and absence of control measures in the case of the associated deterministic
system. The objective of the work is well explained by the figures. Figure 5 represents the
graph of (IN(t), R(t), D(t)) both with and without controls. Figure 5a,c,e, represents the
graphs of r(IN(t), R(t), D(t)) with and without the (optimal) control of the corresponding
deterministic version of Model (1). Furthermore, Figure 4c shows the corresponding
deterministic part of System (1). The effect of the control variables is clearly shown in
the figures.

Besides, we used the stochastic RK4 method and simulated the proposed system (1).
The numerical solution of the optimal system was obtained using the scheme that discretizes
the state SDEs, the system of adjoint equations, while imposing the terminal conditions.
The state system (1) was approximated with the help of RK4 techniques. After that, the
same procedure was used to find a solution to the adjoint system (33) utilizing the final
conditions (34). By using convex combinations of the already-obtained control measures
and the formulas for the characterization of the control measures, the variables were
updated. The process was repeated recursively until the desired accuracy was achieved.
The figures suggest that if we impose all of the control, a drastic decrease in the I class may
be observed; for instance, one can see the effect in Figures 4–6.

The computed results for optimal control under the strategies are reflected in
Figure 4b,d,f, and one can observe that the control strategy resulted in a decrease in
the number of (I(t), IP(t)) and the control strategy result of FC(t)) increasing for Model (1),
while in Figure 5b,d,f, we can clearly observe the differences between the two cases with
and without controls for the (IN(t), R(t), D(t)) of Model (1). Furthermore, Figure 6 reflects
the dynamics of the model’s best control variables (1). Obviously, there is a difference
between these two instances.
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Figure 4. Simulations of (Fc(t), I(t), IP(t)) for the stochastic model (1) with its corresponding deter-
ministic version, both with and without control. (a) Fc(t) in the case of the deterministic model both
with and without control. (b) Fc(t) in the case of the stochastic model both with and without control.
(c) I(t) in the case of the deterministic model both with and without control. (d) I(t) in the case of the
stochastic model both with and without control. (e) IP(t) in the case of the deterministic model both
with and without control. (f) IP(t) in the case of the stochastic model both with and without control.
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Figure 5. Simulations of (IN(t), R(t), D(t)) for the stochastic model (1) with its corresponding
deterministic version, both with and without controls. (a) IN(t) in the case of the deterministic model
both with and without control. (b) IN(t) in the case of the stochastic model both with and without
control. (c) R(t) in the case of the deterministic model both with and without control. (d) R(t) in
the case of the stochastic model both with and without control. (e) D(t) in the case of the stochastic
model both with and without control. (f) D(t) in the case of the stochastic model both with and
without control.
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Figure 6. Simulations of (u1(t), u2(t), u3(t), u4(t)) for the stochastic model (1) with its corresponding
deterministic version. (a) Trajectories of the optimal control of the deterministic system with and with-
out control. (b) Trajectories of the optimal control of the stochastic system with and without control.

7. Conclusions and Prediction

A divide arose as a result of the development of the fractional differential operator
with non-singular kernels, which marked a significant milestone in this discipline. With
the introduction of these novel integral and differential operators, potential ways for both
the application and theory of fractional calculus to real-world phenomenon have opened
up. Some scholars, however, anticipated differential operators with non-singular kernels to
follow the characteristics of classical derivatives in the same way as fractional derivatives
with singular kernels do, which is impossible because the two operators are not employed
for the very same reasons. This article looked at the asymptotic behavior of a probabilistic
model with nonlinear white noise disturbances. Initially, we calculated the threshold R0

s
and then observed that model (1) has a stationary distribution, which is naturally ergodic.
This indicates that the illness will continue to exist. This shows that stochastic disturbance
can prevent negativity from spreading.

We came up with some interesting findings on the stochastic version of the optimal
system control (1). The study also included suggestions for several types of control tech-
niques. These approaches can support us in eradicating hostility in the community. To
confirm the obtained analytical results, many numerical simulations were performed using
the stochastic Runge–Kutta technique of fourth order. This idea might serve as a solid
foundation for research into comparable illnesses, with significant implications in biologi-
calsciences. In addition, our suggested theory may be used to study other communicable
infections including HIV, COIVD-19, and tuberculosis (TB), to name a few.
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