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Abstract: Several fractional integral inequalities of the Hermite–Hadamard type are presented for the
class of (h, g; m)-convex functions. Applied fractional integral operators contain extended generalized
Mittag-Leffler functions as their kernel, thus enabling new fractional integral inequalities that extend
and generalize the known results. As an application, the upper bounds of fractional integral operators
for (h, g; m)-convex functions are given.
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1. Introduction

In recent years, in the field of applied sciences, fractional calculus has been used
with different boundary conditions to develop mathematical models relating to real-world
problems. This significant interest in the theory of fractional calculus has been stimulated
by many of its applications, especially in the various fields of physics and engineering.

Inequalities involving integrals of functions and their derivatives are of great im-
portance in mathematical analysis and its applications. Inequalities containing fractional
derivatives have applications in regard to fractional differential equations, especially in
establishing the uniqueness of the solutions of initial value problems and their upper
bounds. This kind of application motivated the researchers towards the theory of integral
inequalities, with the aim of extending and generalizing classical inequalities using different
fractional integral operators.

The motivation for this research on Hermite–Hadamard-type integral inequalities was
provided by recent studies on these inequalities for different types of integral operators
(see [1–8]) and different classes of convexity (see [9–17]). The famous Hermite–Hadamard
inequality provides an estimate of the (integral) mean value of a continuous convex function.

Theorem 1 (The Hermite–Hadamard inequality). Let f : [a, b]→ R be a continuous convex
function. Then

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
.

Its fractional version, involving Riemann–Liouville fractional integrals, is given in [18].

Theorem 2 ([18]). Let f : [a, b]→ R be a convex function with f ∈ L1[a, b]. Then for σ > 0

f
(

a + b
2

)
≤ Γ(σ + 1)

2(b− a)σ

[
Jσ
a+ f (b) + Jσ

b− f (a)
]
≤ f (a) + f (b)

2
.

Recall that the left-sided and the right-sided Riemann-Liouville fractional integrals of
order σ > 0 are defined as in [19] for f ∈ L1[a, b] with
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Jσ
a+ f (x) =

1
Γ(σ)

∫ x

a
(x− t)σ−1 f (t) dt, x ∈ (a, b], (1)

Jσ
b− f (x) =

1
Γ(σ)

∫ b

x
(t− x)σ−1 f (t) dt, x ∈ [a, b). (2)

Our aim is to prove Hermite–Hadamard’s inequality in more general settings, and for
this we need an extended generalized Mittag-Leffler function with its fractional integral
operators and a class of (h, g; m)-convex functions.

The paper is structured as follows. In Section 2, we give present preliminary results
and definitions that will be used in this paper. In Section 3, several Hermite–Hadamard-type
inequalities for (h, g; m)-convex functions using fractional integral operators are presented.
Furthermore, several properties and identities of these operators are given. As an appli-
cation, in Section 4 we derive the upper bounds of fractional integral operators involving
(h, g; m)-convex functions. In the last section, Section 5, we present the conclusions of
this research.

2. Preliminaries
2.1. An Extended Generalized form of the Mittag-Leffler Function

The Mittag-Leffler function

Eρ(z) =
∞

∑
n=0

zn

Γ(ρn + 1)
(z ∈ C, <(ρ) > 0)

with its generalizations appears as a solution of fractional differential or integral equations.
The first generalization for two parameters was carried out by Wiman [8]:

Eρ,σ(z) =
∞

∑
n=0

zn

Γ(ρn + σ)
, (z, ρ, σ ∈ C,<(ρ) > 0), (3)

after which Prabhakar defined the Mittag-Leffler function of three parameters [3]:

Eδ
ρ,σ(z) =

∞

∑
n=0

(δ)n

Γ(ρn + σ)

zn

n!
, (z, ρ, σ, δ ∈ C,<(ρ) > 0). (4)

Recently we presented in [1] (see also [2]) an extended generalized form of the Mittag-
Leffler function Eδ,c,v,r

ρ,σ,τ (z; p):

Definition 1 ([1]). Let ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0 with p ≥ 0,
r > 0 and 0 < q ≤ r +<(ρ). Then the extended generalized Mittag-Leffler function Eδ,c,q,r

ρ,σ,τ (z; p)
is defined by

Eδ,c,q,r
ρ,σ,τ (z; p) =

∞

∑
n=0

Bp(δ + nq, c− δ)

B(δ, c− δ)

(c)nq

Γ(ρn + σ)

zn

(τ)nr
. (5)

Note, we use the generalized Pochhammer symbol (c)nq = Γ(c+nq)
Γ(c) and an extended

beta function Bp(x, y) =
∫ 1

0 tx−1(1− t)y−1e−
p

t(1−t) dt, where <(x),<(y),<(p) > 0.

Remark 1. Several generalizations of the Mittag-Leffler function can be obtained for different
parameter choices. For instance, the function (5) is reduced to

(i) the Salim-Faraj function Eδ,τ,q
ρ,σ,r(z) for p = 0 [5],

(ii) the Rahman function Eδ,q,c
ρ,σ (z; p) for τ = r = 1 [4],

(iii) the Shukla–Prajapati function Eδ,q
ρ,σ(z) for p = 0 and τ = r = 1 [6],

(iv) the Prabhakar function Eδ
ρ,σ(z) for p = 0 and τ = r = q = 1 [3],
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(v) the Wiman function Eρ,σ(z) for p = 0 and τ = r = q = δ = 1 [8],
(vi) the Mittag-Leffler function Eρ(z) for p = 0, τ = r = q = δ = 1 and σ = 1.

Next we have corresponding fractional integral operators, the left-sided ε
ω,δ,c,q,r
a+ ,ρ,σ,τ f and

the right-sided ε
ω,δ,c,q,r
b− ,ρ,σ,τ f , where the kernel is a function Eδ,c,q,r

ρ,σ,τ (z; p):

Definition 2 ([1]). Let ω, ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0 with
p ≥ 0, r > 0 and 0 < q ≤ r +<(ρ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the left-sided and the
right-sided generalized fractional integral operators ε

ω,δ,c,q,r
a+ ,ρ,σ,τ f and ε

ω,δ,c,q,r
b− ,ρ,σ,τ f are defined by

(
ε

ω,δ,c,q,r
a+ ,ρ,σ,τ f

)
(x; p) =

∫ x

a
(x− t)σ−1Eδ,c,q,r

ρ,σ,τ (ω(x− t)ρ; p) f (t)dt, (6)

(
ε

ω,δ,c,q,r
b− ,ρ,σ,τ f

)
(x; p) =

∫ b

x
(t− x)σ−1Eδ,c,q,r

ρ,σ,τ (ω(t− x)ρ; p) f (t)dt. (7)

Remark 2. If we apply different parameter choices, then (6) is a generalization of

(i) the Salim-Faraj fractional integral operator ε
ω,δ,q,r
a+ ,ρ,σ,τ f (x) for p = 0 [5],

(ii) the Rahman fractional integral operator ε
ω,δ,q,c
a+ ,ρ,σ f (x; p) for τ = r = 1 [4],

(iii) the Srivastava–Tomovski fractional integral operator ε
ω,δ,q
a+ ,ρ,σ f (x) for p = 0 and

τ = r = 1 [7],
(iv) the Prabhakar fractional integral operator ε(ρ, σ; δ; ω) f (x) for p = 0 and

τ = r = q = 1 [3],
(v) the left-sided Riemann–Liouville fractional integral Jσ

a+ f (x) for p = ω = 0, that is, (1).

We listed reductions for the left-sided fractional integral operator, whereas the analogs are valid
for the right-sided.

More details on this generalized form of the Mittag-Leffler function and its fractional
integral operators can be found in [1,2]. Here are some results we will use in this study:

Theorem 3 ([1]). If α, ω, ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0 with p ≥ 0,
r > 0 and 0 < q ≤ r +<(ρ), then for power functions (t− a)α−1 and (b− t)α−1 follow(

ε
ω,δ,c,q,r
a+ ,ρ,σ,τ(t− a)α−1

)
(x; p) = Γ(α)(x− a)α+σ−1Eδ,c,q,r

ρ,σ+α,τ(ω(x− a)ρ; p), (8)(
ε

ω,δ,c,q,r
b− ,ρ,σ,τ(b− t)α−1

)
(x; p) = Γ(α)(b− x)α+σ−1Eδ,c,q,r

ρ,σ+α,τ(ω(b− x)ρ; p). (9)

If we set a = 0 and x = 1 in (8), or b = 1 and x = 0 in (9), then we obtain the
following corollary.

Corollary 1 ([1]). If α, ω, ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0 with
p ≥ 0, r > 0 and 0 < q ≤ r +<(ρ), then

1
Γ(α)

∫ 1

0
tα−1(1− t)σ−1Eδ,c,q,r

ρ,σ,τ (ω(1− t)ρ; p)dt = Eδ,c,q,r
ρ,σ+α,τ(ω; p).

Setting α = 1 in Theorem 3, we obtain following identities for the constant function:
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Corollary 2 ([2]). Let the assumptions of Theorem 3 hold with α = 1. Then(
ε

ω,δ,c,q,r
a+ ,ρ,σ,τ1

)
(x; p) = (x− a)σEδ,c,q,r

ρ,σ+1,τ(ω(x− a)ρ; p), (10)(
ε

ω,δ,c,q,r
b− ,ρ,σ,τ1

)
(x; p) = (b− x)σEδ,c,q,r

ρ,σ+1,τ(ω(b− x)ρ; p). (11)

In this paper, we will use simplified notation to avoid a complicated manuscript form:

EEE(z; p) := Eδ,c,q,r
ρ,σ,τ (z; p)

and
(εεεω

a+ f )(x; p) :=
(

ε
ω,δ,c,q,r
a+ ,ρ,σ,τ f

)
(x; p),

(εεεω
b− f )(x; p) :=

(
ε

ω,δ,c,q,r
b− ,ρ,σ,τ f

)
(x; p).

Of course, the conditions on all parameters ρ, σ, τ, ω, δ, c, q, r are essential and will be
added to all theorems.

2.2. A Class of (h, g; m)-Convex Functions

Another direction for the generalization of the Hermite–Hadamard inequality is the
use of different classes of convexity. For this we need a class of (h, g; m)-convex functions,
the properties of which were recently presented in [14]:

Definition 3 ([14]). Let h be a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0 and let g be a
positive function on I ⊆ R. Furthermore, let m ∈ (0, 1]. A function f : I → R is said to be an
(h, g; m)-convex function if it is nonnegative and if

f (tx + m(1− t)y) ≤ h(t) f (x)g(x) + m h(1− t) f (y)g(y) (12)

holds for all x, y ∈ I and all t ∈ (0, 1).
If (12) holds in the reversed sense, then f is said to be an (h, g; m)-concave function.

This class unifies a certain range of convexity, enabling generalizations of known
results. For different choices of functions h, g and parameter m, a class of (h, g; m)-convex
functions is reduced to a class of P-functions [15], h-convex functions [17], m-convex
functions [16], (h − m)-convex functions [11], (s, m)-Godunova–Levin functions of the
second kind [10], exponentially s-convex functions in the second sense [9], etc. For example,
if we set h(t) = ts, s ∈ (0, 1], g(x) = e−βx, β ∈ R, then we obtain a class defined in [13]:

A function f : I ⊂ R→ R is called exponentially (s, m)-convex in the second sense if
the following inequality holds

f (tx + m(1− t)y) ≤ ts

eβx f (x) +
(1− t)s

eβy m f (y) (13)

for all x, y ∈ I and all t ∈ [0, 1], where β ∈ R, s, m ∈ (0, 1].

Next we need the Hermite–Hadamard inequality for (h, g; m)-convex functions:
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Theorem 4 ([14]). Let f be a nonnegative (h, g; m)-convex function on [0, ∞) where h is a non-
negative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0, g is a positive function on [0, ∞) and m ∈ (0, 1]. If
f , g, h ∈ L1[a, b], where 0 ≤ a < b < ∞, then the following inequalities hold

f
(

a + b
2

)
≤

h
(

1
2

)
b− a

∫ b

a

[
f (x)g(x) + m f

( x
m

)
g
( x

m

)]
dx

≤
h
(

1
2

)
f (a)g(a)

b− a

∫ b

a
h
(

b− x
b− a

)
g(x) dx

+
mh
(

1
2

)
f
(

b
m

)
g
(

b
m

)
b− a

∫ b

a
h
(

x− a
b− a

)
g(x) dx

+
mh
(

1
2

)
f
( a

m
)

g
( a

m
)

b− a

∫ b

a
h
(

b− x
b− a

)
g
( x

m

)
dx

+
m2h

(
1
2

)
f
(

b
m2

)
g
(

b
m2

)
b− a

∫ b

a
h
(

x− a
b− a

)
g
( x

m

)
dx. (14)

3. Fractional Integral Inequalities of the Hermite–Hadamard Type for
(h, g; m)-Convex Functions

The Hermite–Hadamard inequality for (h, g; m)-convex functions is obtained in [14],
where some special results are pointed out and several known inequalities are improved
upon. In [12], the article that followed, a few more inequalities of the Hermite–Hadamard
type are presented. Here we will obtain their fractional generalizations, using (5)–(7), that
is, the extended generalized Mittag-Leffler function EEE with fractional integral operators
εεεω

a+ f and εεεω
b− f in the real domain.

In this section, it is necessary to introduce the following conditions on the parameters
and the interval [a, b]:

Assumption 1. Let ω ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0 and 0 < q ≤ r + ρ. Furthermore,
let 0 ≤ a < b < ∞.

We start with the left side, i.e., the first Hermite–Hadamard fractional integral inequal-
ity for (h, g; m)-convex functions involving the extended generalized Mittag-Leffler function.

Theorem 5. Let Assumption 1 hold. Let f be a nonnegative (h, g; m)-convex function on [0, ∞),
where h is a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0, g is a positive function on [0, ∞)
and m ∈ (0, 1]. If f , g ∈ L1[a, b

m ], then the following inequality holds

f
(

a + b
2

)
(εεεω

a+1)(b; p) ≤ h
(

1
2

)[
(εεεω

a+ f g)(b; p) + mσ+1(εεεω
b−
m

f g)( a
m ; p)

]
, (15)

where
ω =

ω

(b− a)ρ , ω =
mρω

(b− a)ρ . (16)

Proof. Let f be an (h, g; m)-convex function on [0, ∞), m ∈ (0, 1]. Then for t = 1
2 we have

f
(

x + my
2

)
≤ h

(
1
2

)
f (x)g(x) + mh

(
1
2

)
f (y)g(y).
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Choosing y ≡ y
m we obtain

f
(

x + y
2

)
≤ h

(
1
2

)[
f (x)g(x) + m f

( y
m

)
g
( y

m

)]
.

Let x = ta + (1− t)b and y = (1− t)a + tb. Then

f
(

a + b
2

)
≤ h

(
1
2

)[
f (ta + (1− t)b) g(ta + (1− t)b)

+m f
(
(1− t)

a
m

+ t
b
m

)
g
(
(1− t)

a
m

+ t
b
m

)]
.

In the following step we will need to multiply both sides of the above inequality by
tσ−1EEE(ωtρ; p) and integrate on [0, 1] with respect to the variable t, which gives us

f
(

a + b
2

) ∫ 1

0
tσ−1EEE(ωtρ; p)dt

≤ h
(

1
2

) ∫ 1

0
f (ta + (1− t)b) g(ta + (1− t)b)tσ−1EEE(ωtρ; p)dt

+m h
(

1
2

) ∫ 1

0
f
(
(1− t)

a
m

+ t
b
m

)
g
(
(1− t)

a
m

+ t
b
m

)
tσ−1EEE(ωtρ; p)dt.

With substitutions u = ta + (1− t)b and v = (1− t) a
m + t b

m we obtain

1
(b− a)σ

f
(

a + b
2

) ∫ b

a
(b− u)σ−1EEE(ω(b− u)ρ; p)du

≤
h
(

1
2

)
(b− a)σ

∫ b

a
f (u) g(u)(b− u)σ−1EEE(ω(b− u)ρ; p)du

+
mσ+1 h

(
1
2

)
(b− a)σ

∫ b
m

a
m

f (v)g(v)
(
v− a

m
)σ−1EEE(ω

(
v− a

m
)ρ; p)dv.

Since m ∈ (0, 1], then a ≤ a/m, b ≤ b/m and [a, b] ⊂ [a, b
m ]. Therefore, the condition

f , g ∈ L1[a, b
m ] is stated in this theorem. The above inequality can be written as

1
(b− a)σ

f
(

a + b
2

)
(εεεω

a+1)(b; p)

≤
h
(

1
2

)
(b− a)σ

[
(εεεω

a+ f g)(b; p) + mσ+1(εεεω
b−
m

f g)( a
m ; p)

]
.

Note that with Corollary 2 we can obtain the constant (εεεω
a+1)(b; p). This completes

the proof.

Next we have the second Hermite–Hadamard fractional integral inequality.

Theorem 6. Let the assumptions of Theorem 5 hold with f , g, h ∈ L1[a, b
m ]. Then
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(εεεω
a+ f g)(b; p) + mσ+1(εεεω

b−
m

f g)( a
m ; p)

≤ f (a) g(a)
∫ b

a
h
(

b− x
b− a

)
g(x)(b− x)σ−1EEE(ω(b− x)ρ; p)dx

+m f
(

b
m

)
g
(

b
m

) ∫ b

a
h
(

x− a
b− a

)
g(x)(b− x)σ−1EEE(ω(b− x)ρ; p)dx

+mσ+1 f
( a

m

)
g
( a

m

) ∫ b
m

a
m

h
(

b−mx
b− a

)
g(x)(x− a

m )σ−1EEE(ω(x− a
m )ρ; p)dx

+mσ+2 f
(

b
m2

)
g
(

b
m2

) ∫ b
m

a
m

h
(

mx− a
b− a

)
g(x)(x− a

m )σ−1EEE(ω(x− a
m )ρ; p)dx, (17)

where ω and ω are defined by (16).

Proof. Due to the (h, g; m)-convexity of f we have

f (ta + (1− t)b) ≤ h(t) f (a)g(a) + mh(1− t) f
(

b
m

)
g
(

b
m

)
.

Multiplying both sides of above inequality by g(ta + (1− t)b)tσ−1EEE(ωtρ; p) and inte-
grating on [0, 1] with respect to the variable t, we obtain∫ 1

0
f (ta + (1− t)b)g(ta + (1− t)b)tσ−1EEE(ωtρ; p)dt

≤ f (a)g(a)
∫ 1

0
h(t) g(ta + (1− t)b)tσ−1EEE(ωtρ; p)dt

+m f
(

b
m

)
g
(

b
m

) ∫ 1

0
h(1− t) g(ta + (1− t)b)tσ−1EEE(ωtρ; p)dt.

With the substitution u = ta + (1− t)b we obtain

1
(b− a)σ

∫ b

a
f (u) g(u) (b− u)σ−1EEE(ω(b− u)ρ; p)du

≤ f (a) g(a)
(b− a)σ

∫ b

a
h
(

b− u
b− a

)
g(u)(b− u)σ−1EEE(ω(b− u)ρ; p)du

+
m f
(

b
m

)
g
(

b
m

)
(b− a)σ

∫ b

a
h
(

u− a
b− a

)
g(u)(b− u)σ−1EEE(ω(b− u)ρ; p)du,

that is

(εεεω
a+ f g)(b; p)

≤ f (a) g(a)
∫ b

a
h
(

b− u
b− a

)
g(u)(b− u)σ−1EEE(ω(b− u)ρ; p)du

+m f
(

b
m

)
g
(

b
m

) ∫ b

a
h
(

u− a
b− a

)
g(u)(b− u)σ−1EEE(ω(b− u)ρ; p)du. (18)

Again, due to the (h, g; m)-convexity of f we have

f
(
(1− t)

a
m

+ t
b
m

)
≤ h(1− t) f

( a
m

)
g
( a

m

)
+ mh(t) f

(
b

m2

)
g
(

b
m2

)
.
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Multiplying both sides of above inequality by g
(
(1− t) a

m + t b
m

)
tσ−1EEE(ωtρ; p) and

integrating on [0, 1] with respect to the variable t, we obtain∫ 1

0
f
(
(1− t)

a
m

+ t
b
m

)
g
(
(1− t)

a
m

+ t
b
m

)
tσ−1EEE(ωtρ; p)dt

≤ f
( a

m

)
g
( a

m

) ∫ 1

0
h(1− t) g

(
(1− t)

a
m

+ t
b
m

)
tσ−1EEE(ωtρ; p)dt

+m f
(

b
m2

)
g
(

b
m2

) ∫ 1

0
h(t) g

(
(1− t)

a
m

+ t
b
m

)
tσ−1EEE(ωtρ; p)dt.

With the substitution v = (1− t) a
m + t b

m we obtain

mσ

(b− a)σ

∫ b
m

a
m

f (v)g(v)
(
v− a

m
)σ−1EEE(ω

(
v− a

m
)ρ; p)dv

≤
mσ f

( a
m
)

g
( a

m
)

(b− a)σ

∫ b
m

a
m

h
(

b−mv
b− a

)
g(v)(v− a

m )σ−1EEE(ω(v− a
m )ρ; p)dv

+
mσ+1 f

(
b

m2

)
g
(

b
m2

)
(b− a)σ

∫ b
m

a
m

h
(

vm− a
b− a

)
g(v)(v− a

m )σ−1EEE(ω(v− a
m )ρ; p)dv,

that is

(εεεω
b−
m

f g)( a
m ; p)

≤ f
( a

m

)
g
( a

m

) ∫ b
m

a
m

h
(

b−mv
b− a

)
g(v)(v− a

m )σ−1EEE(ω(v− a
m )ρ; p)dv

+m f
(

b
m2

)
g
(

b
m2

) ∫ b
m

a
m

h
(

vm− a
b− a

)
g(v)(v− a

m )σ−1EEE(ω(v− a
m )ρ; p)dv. (19)

Inequality (17) now follows from (18) and (19).

In the following we derive fractional integral inequalities of Hermite–Hadamard type
for different types of convexity, and state several corollaries, using special functions for h
and/or g, and the parameter m. The first consequence of Theorems 5 and 6 obtained via
the setting g ≡ 1 (i.e., g(x) = 1) is the Hermite–Hadamard fractional integral inequality for
(h−m)-convex functions given in ([20], Theorem 2.1):

Corollary 3. Let Assumption 1 hold. Let f be a nonnegative (h−m)-convex function on [0, ∞)
where h is a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0 and m ∈ (0, 1]. If f ∈ L1[a, b

m ] and
h ∈ L1[0, 1], then following inequalities hold

f
(

a + b
2

)
(εεεω

a+1)(b; p) ≤ h
(

1
2

)[
(εεεω

a+ f )(b; p) + mσ+1(εεεω
b−
m

f )( a
m ; p)

]

≤ h
(

1
2

)
(b− a)σ

{[
f (a) + m2 f

(
b

m2

)]
(εεεω

1−h)(0; p)

+

[
m f
( a

m

)
+ m f

(
b
m

)]
(εεεω

0+h)(1; p)
}

, (20)

where ω and ω are defined by (16).
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Proof. First we use substitutions t = b−x
b−a and z = mx−a

b−a in Theorem 6, after which we
apply identities ∫ 1

0
h(t) tσ−1EEE(ωtρ; p)dt = (εεεω

1−h)(0; p) (21)

and ∫ 1

0
h(1− t)tσ−1EEE(ωtρ; p)dt

=
∫ 1

0
h(z)(1− z)σ−1EEE(ω(1− z)ρ; p)dz = (εεεω

0+h)(1; p). (22)

The result now follows from the above and Theorem 5.

By setting the function g ≡ 1 and the parameter m = 1, the previous result is reduced
to the Hermite–Hadamard fractional integral inequality for h-convex functions:

Corollary 4. Let Assumption 1 hold. Let f be a nonnegative h-convex function on [0, ∞) where h
is a nonnegative function on J ⊆ R, (0, 1) ⊆ J, h 6≡ 0. If f ∈ L1[a, b

m ] and h ∈ L1[0, 1], then the
following inequalities hold

f
(

a + b
2

)
(εεεω

a+1)(b; p)

≤ h
(

1
2

)[
(εεεω

a+ f )(b; p) + (εεεω
b− f )(a; p)

]
≤ h

(
1
2

)
(b− a)σ[ f (a) + f (b)]

[
(εεεω

1−h)(0; p) + (εεεω
0+h)(1; p)

]
, (23)

where ω is defined by (16).

In the following, we set the function h ≡ id, the identity function. With g ≡ 1 we
obtain the Hermite–Hadamard fractional integral inequality for m-convex functions from
([21], Theorem 3.1):

Corollary 5. Let Assumption 1 hold. Let f be a nonnegative m-convex function on [0, ∞) with
m ∈ (0, 1]. If f ∈ L1[a, b

m ], then the following inequalities hold

f
(

a + b
2

)
(εεεω

a+1)(b; p) ≤ 1
2

[
(εεεω

a+ f )(b; p) + mσ+1(εεεω
b−
m

f )( a
m ; p)

]

≤ (b− a)σ

2

{[
f (a) + m2 f

(
b

m2

)]
(εεεω

1− id)(0; p)

+

[
m f
( a

m

)
+ m f

(
b
m

)]
(εεεω

0+ id)(1; p)
}

, (24)

where ω and ω are defined by (16).

The Hermite–Hadamard fractional integral inequality for convex functions is given in
([21], Theorem 2.1). Here it is a merely a consequence for h ≡ id, g ≡ 1 and m = 1:

Corollary 6. Let Assumption 1 hold. Let f be a nonnegative convex function on [0, ∞). If
f ∈ L1[a, b], then the following inequalities hold

f
(

a + b
2

)
(εεεω

a+1)(b; p) ≤ 1
2

[
(εεεω

a+ f )(b; p) + (εεεω
b− f )(a; p)

]
≤ f (a) + f (b)

2
(εεεω

a+1)(b; p), (25)

where ω is defined by (16).
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Proof. Here we use

(εεεω
0+ id)(1; p) + (εεεω

1− id)(0; p)

=
∫ 1

0
tσEEE(ωtρ; p)dt +

∫ 1

0
t(1− t)σ−1EEE(ω(1− t)ρ; p)dt

=
∫ 1

0
(1− t)σEEE(ω(1− t)ρ; p)dt +

∫ 1

0
t(1− t)σ−1EEE(ω(1− t)ρ; p)dt

=
∫ 1

0
(1− t)σ−1EEE(ω(1− t)ρ; p)dt

= (εεεω
0+1)(1; p) =

1
(b− a)σ

(εεεω
a+1)(b; p).

We have presented several Hermite–Hadamard-type inequalities for the (h, g; m)-
convex function using fractional integral operators, where the kernel is an extended gen-
eralized Mittag-Leffler function. If we apply different parameter choices, as in Remark 2,
then we obtain corresponding inequalities for different fractional operators.

Several Properties of Fractional Integral Operators εεεω
a+ f and εεεω

b− f

At the end of this section we give several results for fractional integral operators.

Proposition 1. Let ω, ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0 with p ≥ 0,
r > 0 and 0 < q ≤ r +<(ρ).
(i) If the function f ∈ L1[a, b] is symmetric about a+b

2 , then

(εεεω
a+ f )(b; p) = (εεεω

b− f )(a; p). (26)

In particular,
(εεεω

a+1)(b; p) = (εεεω
b−1)(a; p). (27)

(ii) Furthermore, (
εεεω

a+(t− a)α−1
)
(b; p) = (εεεω

b−(b− t)α−1)(a; p), (28)(
εεεω

a+(b− t)α−1
)
(b; p) = (εεεω

b−(t− a)α−1)(a; p). (29)

In particular, (
εεεω

0+ tα−1
)
(1; p) = (εεεω

1−(1− t)α−1)(0; p), (30)(
εεεω

0+(1− t)α−1
)
(1; p) = (εεεω

1− tα−1)(0; p). (31)

Proof. (i) If the function f is symmetric about a+b
2 , i.e., f (t) = f (a+ b− t) for all t ∈ [a, b],

then, substituting z = a + b− t, Equation (26) easily follows:

(εεεω
a+ f )(b; p) =

∫ b

a
(b− t)σ−1EEE(ω(b− t)ρ; p) f (t)dt

=
∫ b

a
(z− a)σ−1EEE(ω(z− a)ρ; p) f (a + b− z)dz

=
∫ b

a
(z− a)σ−1EEE(ω(z− a)ρ; p) f (z)dz = (εεεω

b− f )(a; p).

Note that (27) also follows directly from Corollary 2 if we set x = b in (10) and x = a
in (11).
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(ii) Equations (28) and (29) follow with the substitution z = a + b− t. Furthermore, (28)
follows directly from Theorem 3 if we set x = b in (8) and x = a in (9). The final two
equations are obtained for a = 0 and b = 1.

Remark 3. To obtain the Hermite–Hadamard inequality for convex functions involving Riemann–
Liouville fractional integrals, given in Theorem 2, first we need to set p = ω = 0 in (5)

EEE(z; 0) =
∞

∑
n=0

(δ)nq

Γ(ρn + σ)

zn

(τ)nr
.

Since EEE(0; 0) = Eδ,c,q,r
ρ,σ,τ (0; 0) = 1

Γ(σ) , setting p = ω = 0 in (6) we obtain Riemann–Liouville
fractional integrals

(εεε0
a+ f )(x; 0) =

1
Γ(σ)

∫ x

a
(x− t)σ−1 f (t) dt = Jσ

a+ f (x),

(εεε0
b− f )(x; 0) =

1
Γ(σ)

∫ b

x
(t− x)σ−1 f (t) dt = Jσ

b− f (x).

Note that a direct consequence of Theorem 3 is(
εεεω

0+ id
)
(1; p) = Eδ,c,q,r

ρ,σ+2,τ(ω; p). (32)

For the reader’s convenience, we will directly prove this:

(εεεω
0+ id)(1; p) =

∫ 1

0
t(1− t)σ−1EEE(ω(1− t)ρ; p)dt

=
∫ 1

0
t(1− t)σ−1

∞

∑
n=0

Bp(δ + nq, c− δ)

B(δ, c− δ)

(c)nq

Γ(ρn + σ)

ωn(1− t)nρ

(τ)nr
dt

=
∞

∑
n=0

Bp(δ + nq, c− δ)

B(δ, c− δ)

(c)nq

Γ(ρn + σ)

ωn

(τ)nr

∫ 1

0
t(1− t)nρ+σ−1dt

=
∞

∑
n=0

Bp(δ + nq, c− δ)

B(δ, c− δ)

(c)nq

Γ(ρn + σ)

ωn

(τ)nr
B(2, nρ + σ)

=
∞

∑
n=0

Bp(δ + nq, c− δ)

B(δ, c− δ)

(c)nq

Γ(ρn + σ)

ωn

(τ)nr

Γ(2)Γ(nρ + σ)

Γ(2 + nρ + σ)

=
∞

∑
n=0

Bp(δ + nq, c− δ)

B(δ, c− δ)

(c)nq

Γ(ρn + (σ + 2))
ωn

(τ)nr

= Eδ,c,q,r
ρ,σ+2,τ(ω; p).

Hence, (
εεε0

0+ id
)
(1; 0) =

1
Γ(σ + 2)

and

(εεε0
1− id)(0; 0) =

∫ 1

0
tσEEE(0; p)dt =

1
(σ + 1)Γ(σ)

, (33)

from which follows (
εεε0

0+ id
)
(1; 0) + (εεε0

1− id)(0; 0) =
1

Γ(σ + 1)
.

Finally, if we set h(x) = x, g ≡ 1, m = 1 and p = ω = 0, then Theorems 5 and 6 are reduced
to Theorem 2.
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4. Applications: Bounds of Fractional Integral Operators for
(h, g; m)-Convex Functions

As an application, in this section we obtain the upper bounds of fractional integral
operators for (h, g; m)-convex functions.

Assumption 2. Let ω ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0 and 0 < q ≤ r + ρ. Let
f be a nonnegative (h, g; m)-convex function on [0, ∞) where h is a nonnegative function on
J ⊆ R, (0, 1) ⊆ J, h 6≡ 0, g is a positive function on [0, ∞), and m ∈ (0, 1]. Furthermore, let
0 ≤ a < b < ∞.

Theorem 7. Let Assumption 2 hold. If f , g ∈ L1[a, b] and h ∈ L1[0, 1], then for x ∈ [a, b] the
following inequality holds

1
(x− a)σ

(εεεωa
a+ f )(x; p) ≤ f (a) g(a)(εεεω

1−h)(0; p) + m f
( x

m

)
g
( x

m

)
(εεεω

0+h)(1; p). (34)

where
ωa =

ω

(x− a)ρ . (35)

Proof. Let f be an (h, g; m)-convex function on [0, ∞), x ∈ [a, b], m ∈ (0, 1] and t ∈ (0, 1).
Then, similarly to Theorem 6, we use

f (ta + (1− t)x) ≤ h(t) f (a)g(a) + mh(1− t) f
( x

m

)
g
( x

m

)
.

Multiplying both sides of the above inequality by tσ−1EEE(ωtρ; p) and integrating on
[0, 1] with respect to the variable t, we obtain∫ 1

0
f (ta + (1− t)x)tσ−1EEE(ωtρ; p)dt

≤ f (a)g(a)
∫ 1

0
h(t) tσ−1EEE(ωtρ; p)dt + m f

( x
m

)
g
( x

m

) ∫ 1

0
h(1− t)tσ−1EEE(ωtρ; p)dt.

With the substitution u = ta + (1− t)x and identities (21), (22), we obtain the inequality (34).

Theorem 8. Let Assumption 2 hold. If f , g ∈ L1[a, b] and h ∈ L1[0, 1], then for x ∈ [a, b] the
following inequality holds

1
(b− x)σ

(εεε
ωb
b− f )(x; p) ≤ f (b)g(b)(εεεω

1−h)(0; p) + m f
( x

m

)
g
( x

m

)
(εεεω

0+h)(1; p), (36)

where
ωb =

ω

(b− x)ρ . (37)

Proof. Using

f (tb + (1− t)x) ≤ h(t) f (b)g(b) + mh(1− t) f
( x

m

)
g
( x

m

)
,

the proof follows analogously to that of Theorem 7.

From the two previous theorems we can directly obtain the following result.
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Corollary 7. Let Assumption 2 hold. If f , g ∈ L1[a, b] and h ∈ L1[0, 1], then for x ∈ [a, b] the
following inequality holds

1
(x− a)σ

(εεεωa
a+ f )(x; p) +

1
(b− x)σ

(εεε
ωb
b− f )(x; p)

≤ [ f (a) g(a) + f (b)g(b)](εεεω
1−h)(0; p) + 2m f

( x
m

)
g
( x

m

)
(εεεω

0+h)(1; p). (38)

where ωa and ωb are defined by (35) and (37).

If we set x = b in Theorem 7 and x = a in Theorem 8, then we obtain the next fractional
integral inequality of the Hermite–Hadamard type.

Theorem 9. Let Assumption 2 hold. If f , g, h ∈ L1[a, b], then the following inequalities hold

1
(b− a)σ

[
(εεεω

a+ f )(b; p) + (εεεω
b− f )(a; p)

]
≤ [ f (a) g(a) + f (b)g(b)](εεεω

1−h)(0; p)

+m
[

f
( a

m

)
g
( a

m

)
+ f

(
b
m

)
g
(

b
m

)]
(εεεω

0+h)(1; p), (39)

where ω is defined by (16).

In the following we will extend our interval to [ma, b]. Since m ∈ (0, 1], then ma ≤ a,
mb ≤ b, and [a, b] ⊂ [ma, b].

Theorem 10. Let Assumption 2 hold. If f , g ∈ L1[ma, b] and h ∈ L1[0, 1], then the following
inequality holds

1
(mb− a)σ

[(
εεεω1

a+ f
)
(mb; p) +

(
εεεω1

mb−
f
)
(a; p)

]
+

1
(b−ma)σ

[(
εεεω2

b− f
)
(ma; p) +

(
εεεω2

ma+ f
)
(b; p)

]
≤ (m + 1)[ f (a)g(a) + f (b)g(b)]

[
(εεεω

1−h)(0; p) + (εεεω
0+h)(1; p)

]
, (40)

where
ω1 =

ω

(mb− a)ρ , ω2 =
ω

(b−ma)ρ . (41)

Proof. Let f be an (h, g; m)-convex function on [0, ∞), m ∈ (0, 1] and t ∈ (0, 1). Then

f (ta + m(1− t)b) ≤ h(t) f (a)g(a) + mh(1− t) f (b)g(b),

f ((1− t)a + mtb) ≤ h(1− t) f (a)g(a) + mh(t) f (b)g(b)

and
f (tb + m(1− t)a) ≤ h(t) f (b)g(b) + mh(1− t) f (a)g(a),

f ((1− t)b + mta) ≤ h(1− t) f (b)g(b) + mh(t) f (a)g(a).

First we add the above inequalities, i.e.,

f (ta + m(1− t)b) + f ((1− t)a + mtb)

+ f (tb + m(1− t)a) + f ((1− t)b + mta)

≤ (m + 1)[ f (a)g(a) + f (b)g(b)]h(t)

+(m + 1)[ f (a)g(a) + f (b)g(b)]h(1− t).
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Then we use multiplication by tσ−1EEE(ωtρ; p) and integration on [0, 1] with respect to
the variable t to obtain∫ 1

0
f (ta + m(1− t)b)tσ−1EEE(ωtρ; p)dt

+
∫ 1

0
f ((1− t)a + mtb)tσ−1EEE(ωtρ; p)dt

+
∫ 1

0
f (tb + m(1− t)a)tσ−1EEE(ωtρ; p)dt

+
∫ 1

0
f ((1− t)b + mta)tσ−1EEE(ωtρ; p)dt

≤ (m + 1)[ f (a)g(a) + f (b)g(b)]
∫ 1

0
h(t) tσ−1EEE(ωtρ; p)dt

+(m + 1)[ f (a)g(a) + f (b)g(b)]
∫ 1

0
h(1− t)tσ−1EEE(ωtρ; p)dt.

For the left side of the inequality we need several substitutions. For instance, if we set
u = ta + m(1− t)b, then we get∫ 1

0
f (ta + m(1− t)b)tσ−1EEE(ωtρ; p)dt

=
1

(mb− a)σ

∫ mb

a
f (u)(mb− u)σ−1EEE( ω

(mb−a)ρ (mb− u)ρ; p)du.

Hence,

1
(mb− a)σ

∫ mb

a
f (u)(mb− u)σ−1EEE( ω

(mb−a)ρ (mb− u)ρ; p)du

+
1

(mb− a)σ

∫ mb

a
f (u)(u− a)σ−1EEE( ω

(mb−a)ρ (u− a)ρ; p)du

+
1

(b−ma)σ

∫ b

ma
f (u)(u−ma)σ−1EEE( ω

(b−ma)ρ (u−ma)ρ; p)du

+
1

(b−ma)σ

∫ b

ma
f (u)(b− u)σ−1EEE( ω

(b−ma)ρ (b− u)ρ; p)du

≤ (m + 1)[ f (a)g(a) + f (b)g(b)](εεεω
1−h)(0; p)

+(m + 1)[ f (a)g(a) + f (b)g(b)](εεεω
0+h)(1; p),

that is

1
(mb− a)σ

(
εεε

ω
(mb−a)ρ

a+ f

)
(mb; p) +

1
(mb− a)σ

(
εεε

ω
(mb−a)ρ

mb−
f

)
(a; p)

+
1

(b−ma)σ

(
εεε

ω
(b−ma)ρ

b− f

)
(ma; p) +

1
(b−ma)σ

(
εεε

ω
(b−ma)ρ

ma+ f

)
(b; p)

≤ (m + 1)[ f (a)g(a) + f (b)g(b)]
[
(εεεω

1−h)(0; p) + (εεεω
0+h)(1; p)

]
.

This provides the require inequality.

Remark 4. With an extended generalized Mittag-Leffler function from Definition 1 and a class of
(h, g; m)-convex functions as in Definition 3, for different parameters p, τ, r, q, ω and for different
choices of functions h, g and parameter m, we obtain corresponding upper bounds of different
fractional operators for different classes of convexity.
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5. Conclusions

This research was on Hermite–Hadamard-type inequalities existing in a more gen-
eral setting. We used a fractional integral operator containing an extended generalized
Mittag-Leffler function in the kernel, and obtained Hermite–Hadamard fractional inte-
gral inequalities for a class of (h, g; m)-convex functions. Furthermore, we presented the
upper bounds of the fractional integral operators for (h, g; m)-convex functions. The ob-
tained results generalize and extend the corresponding inequalities for different classes of
convex functions.
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12. Andrić, M. Fejér type inequalities for (h, g; m)-convex functions. TWMS J. Pure Appl. Math. 2021, accepted.
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