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Abstract: Fracture energy, as an important characteristic parameter of the fracture properties of
materials, has been extensively studied by scholars. However, less research has been carried out
on ubiquitiformal fracture energy and the main method used by scholars is the uniaxial tensile test.
In this paper, based on previous research, the first Brazilian splitting test was used to study the
ubiquitiformal crack extension of slate and granite, and the complexity and ubiquitiformal fracture
energy of rock material were obtained. The heterogeneity of the material was then characterized by
the Weibull statistical distribution, and the cohesive model is applied to the ABAQUS numerical
software to simulate the effect of heterogeneity on the characteristics of ubiquitiformal cracks. The
results demonstrate that the ubiquitiformal complexity of slate ranges from 1.54 to 1.60, and that of
granite ranges from 1.58 to 1.62. The mean squared deviations of the slate and granite ubiquitiformal
fracture energy are the smallest compared with the other fracture energies, which are 0.038 and 0.037,
respectively. When the homogeneity of the heterogeneous model is less than 1.5, its heterogeneity has
a greater influence on the Brazilian splitting strength, and the heterogeneity of the rock is obvious.
However, when the homogeneity is greater than five, the effect on the Brazilian splitting strength
is much less, and the Brazilian splitting strength tends to be the average strength. Therefore, it
is particularly important to study the fracture problem of cracks from the nature of the material
structure by combining the macroscopic and mesoscopic views through the ubiquitiform theory.

Keywords: ubiquitiformal fracture energy; ubiquitiformal complexity; heterogeneity; homogeneity;
Brazilian splitting strength

1. Introduction

Fractal geometry provides an important theoretical basis for the study of complex
nonlinear problems. Manderlbrot et al. [1] first discovered that the fracture surface of
steel had fractal characteristics, and since then the fractal characteristics of other material
sections were confirmed [2–5]. Thus, fractal fracture mechanics provide a good method for
the study of the fracture of rock-like materials that present irregularities and complexity.
The research on fractals began with experimental studies on the fractal characteristics of
sections [6–9] and then went on to study the relationship between fractal dimension and
macroscopic fracture parameters [10–13]. Nowadays, with the help of numerical simulation
software, fractal fracture models for different materials have been established to simulate
the crack extension process in various material sections [14–18].

However, the inability to establish the edge value problem of fractal crack extension
and the essential difficulty that the integer dimensional measure of fractal crack is singular-
ity or divergence are faced in fractal applications. These challenges seriously hinder the
development of fractal fracture mechanics research. To avoid this intrinsic difficulty in frac-
tal applications, Ou et al. [19] proposed the concept of ubiquitiform based on fractal theory.
The theory holds that the geometry of nature is ubiquitiform geometry rather than fractal
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geometry and that geometric or physical objects in nature are more reasonably described
by ubiquitiform. Given that ubiquitiform theory is derived from fractal theory, they are
closely related in mathematical formulation and have many commonalities. The difference
between them is mainly reflected in the definition and processing of measures and dimen-
sions. The introduction of a lower bound on the metric scale in the ubiquitiform makes the
measure finite, thereby allowing the ubiquitiform to be applied to the characterization of
practical problems better. In terms of dimensionality, the ubiquitiform is generated from an
integer-dimensional initial structure by a finite number of self-similar iterations [20]. Thus,
it has an integer number of dimensions, which avoids the trouble caused by the dimension
change in the gauge problem. Currently, due to the advantages of ubiquitiform geometry in
the description of complex fine structures, it has been well used in recent years. Li et al. [20]
used the ubiquitiform geometry to describe the concrete crack development process and
obtained the ubiquitiformal fracture energy of concrete. Ou et al. [21] analyzed the size
effect of fracture energy on the basis of Li’s study. Li et al. [22] found that the strain rate had
an effect on the extension path of ubiquitiformal fracture. Looking at the previous research
work, it is not difficult to find that since the application of the ubiquitiform theory to the
study of fracture problems. The conclusions obtained are more realistic than the results
calculated by conventional fracture theory. The cracks formed under the action of load in
the actual working condition are of self-similar characteristics. Then, this self-similarity
feature cannot be neglected in the calculation of the crack problem. Therefore, based on
the previous research, Zhang [23] investigated the crack extension of different crack speci-
mens under load based on the analytical method of ubiquitiform theory. The results were
obtained in better agreement with the engineering reality.

The extension path of the cracks under Brazilian splitting action shows a more ob-
vious ubiquitiformal feature. This feature is also a reflection of the random non-uniform
distribution of materials within the rock. The Weibull statistical distribution is widely used
to reflect the heterogeneity of rock materials. You and Zou [24] discussed the effect of
heterogeneity and size of rock materials on the strength of specimens. In recent years, with
the rapid development of computer technology, more scholars have adopted numerical
methods to study heterogeneous materials [25–27]. The heterogeneity of rocks in numerical
simulations can be characterized in two ways. The first one is the heterogeneity of rock
mechanical parameters, such as the mechanical parameters of rock units obeying Weibull
distribution in RFPA software [28,29]. The results showed that the heterogeneity had a
great influence on the strength and crack extension of the specimens under compression
loading. The second one is the heterogeneity of the mesostructure of the rock. For example,
Lan et al. [30] investigated the effect of heterogeneity of the mesostructure on the model
stress distribution and crack extension problems by using UDEC software. On the other
hand, tensile strength is very important in rock damage analysis because it is much lower
than compressive strength and triggers tensile damage more easily. For example, in the
Brazilian splitting test, the stress distribution of a homogeneous specimen is uniform, while
for a heterogeneous specimen, the stress field is intricate. Liao et al. [31] used numerical
simulations to investigate and explain the differences in rock tensile strength between the
direct tensile test, the Brazilian splitting test, and the three-point bending test. Thus, the
tensile crack behavior will vary with heterogeneity.

Usually, the crack surface has a very irregular structure, which macroscopically looks
similar to a chaotic structure and exhibits a complex phenomenon of bending irregular-
ities. However, observations at a certain microscopic scale have statistical self-similar
properties. Numerous experiments have shown that these fracture surfaces, or cracks,
have a ubiquitiformal feature [20,32,33]. For this reason, this paper relates the fracture
parameter, a macroscopic mechanical quantity, to the ubiquitiformal feature of the mate-
rial’s cross-sectional structure. As such, a ubiquitiformal fracture energy that balances the
need for microscopic fracture characteristics and macroscopic fracture mechanics analy-
sis is proposed. Furthermore, the Weibull statistical distribution is used to represent the
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heterogeneity of the material, and the effect of heterogeneity on the ubiquitiformal crack
characteristics is studied by numerical method.

2. Brazilian Splitting Test of Slate and Granite Specimens
2.1. Test Equipment and Specimen Preparation

Slate and granite were selected as the research objects of this paper. The slate has an
obvious plate structure and is mostly dark gray to light gray in appearance. Granite is the
product of magmatic activity and is an igneous rock. During the processing of the specimen,
a cylindrical specimen with a diameter of 50 mm and a height of 100 mm was first drilled
using the dry drilling method. Subsequently, the specimen was machined into a cylinder
with a diameter of 50 mm and a thickness of 25 mm according to ISRM standards. Six of
each type of rock were used as a group, a total of two groups. One group was selected
for the Brazilian splitting test, and the other group was used for the uniaxial compression
test (Table 1). The equipment used in the Brazilian splitting and uniaxial compression
tests in this paper is the WDT-1500 multi-functional material testing machine [34]. The
rock specimens were loaded using displacement control with loading rates of 0.5 mm/min
(Figures 1 and 2).

Table 1. Test data and calculation results of slate specimens.

Specimen ft
(MPa)

E
(GPa)

δmin
(µm) D G

(N/mm)
KIC

(MPa·mm1/2)
Gc

(N/mm)
Guf

(N/mm)

S-1 4.929 9.858

1.4

1.55 0.6661 0.1115 0.1261 0.2086
S-2 7.140 10.710 1.60 1.1893 0.1615 0.2437 0.2206
S-3 6.085 9.128 1.56 0.9549 0.1377 0.2077 0.2693
S-4 4.652 9.304 1.57 0.7861 0.1053 0.1190 0.2277
S-5 5.432 10.864 1.58 0.9993 0.1229 0.1390 0.2524
S-6 5.116 8.185 1.54 0.7049 0.1157 0.1800 0.3080
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2.2. Calculation of the Ubiquitiformal Complexity of Slate and Granite Specimen Sections

Ubiquitiform theory holds that the geometry of nature is ubiquitiform geometry
rather than fractal geometry and that geometric or physical objects in nature are more
reasonably described by ubiquitiform. Considering that ubiquitiform theory is derived
from fractal theory, they are closely related in mathematical formulation and have many
commonalities. The difference between them is mainly reflected in the definition and
processing of measures and dimensions. The introduction of a lower bound on the metric
scale in the ubiquitiform makes the measure finite, which allows the ubiquitiform to be
applied better to the characterization of practical problems [35]. Currently, due to the
advantages of ubiquitiform geometry in describing complex fine structures, it has been
used well in the field of rock mechanics in recent years [22].

In ubiquitiform geometry, ubiquitiformal complexity is used to measure the uneven-
ness of the curve. The ubiquitiformal complexity can be measured in many ways, the most
common of which is the box-counting method. In this paper, the damaged slate and granite
specimens were obtained by Brazilian splitting tests (Figure 3). Then, it relies on digital
image analysis and the calculation of the box dimension algorithm based on MATLAB. The
relationship curve between the measurement and the scale invariance in double logarithmic
coordinates is obtained and fitted, and the slope is the complexity of the ubiquitiform curve.
That is,

D = − lgN(δ)

lgδ
(1)

where N(δ) is the number of boxes, and δ is the changing box size.
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Figure 4 shows the box-counting method double logarithmic diagram for slate and
granite. The slope (complexity) of the slate specimens does not differ greatly. Similarly,
the slope of the granite specimens fluctuates in a small range, but the slope of the granite
is generally larger than that of the slate (Tables 1 and 2). The slate is a metamorphic rock
with an obvious plate structure and often appears as a flat fracture surface after being
stressed. Granite is an igneous rock with complex chemical composition, and the main
mineral components are quartz, orthoclase, and biotite. These minerals are very unevenly
distributed. As a result, the cracks are rougher, and the complexity is greater compared
with that of slate.
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Table 2. Test data and calculation results of granite specimens.

Specimen ft
(MPa)

E
(GPa)

δmin
(µm) D G

(N/mm)
KIC

(MPa·mm1/2)
Gc

(N/mm)
Guf

(N/mm)

G-1 10.519 15.779

4.7

1.61 2.6287 0.2380 0.3590 0.2744
G-2 8.553 13.685 1.58 2.2706 0.1935 0.2736 0.3448
G-3 9.792 14.687 1.62 2.5781 0.2215 0.3342 0.2375
G-4 9.238 14.781 1.61 2.8987 0.2090 0.3956 0.3026
G-5 8.319 13.310 1.60 2.5606 0.1882 0.2662 0.3029
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2.3. Ubiquitiformal Fracture Energy versus Conventional Fracture Energy

To investigate the fracture problem of rocks under ubiquitiform theory, the ubiqui-
tiform characteristics of crack extension paths in brittle materials are considered in this
paper. Based on the Griffith energy principle, the complexity and the lower bound to
scale invariance are introduced into the expression of fracture parameters. The derivation
process is presented as follows.

First, in this paper, the damage behavior of rocks under Brazilian splitting conditions
is studied, and the tensile strength of rocks can be calculated from Brazilian splitting,

σ =
2P

πDt
(2)

where σ is the Brazilian splitting strength; P is the maximum load; and D and t are the
diameter and thickness of the rock disc, respectively.

Second, the cracks of slate and granite during Brazilian splitting damage are type I
cracks, in which the energy required to form a unit area crack is defined as the fracture
energy. In classical fracture mechanics, the fracture energy can be expressed as,

G =
W
A

=
W

R · t (3)

where W is the work performed by the load, A is the cross-sectional area of the smooth
section, R is the diameter of the specimen, and t is the thickness of the specimen.

However, the fracture energy in classical fracture mechanics only considers the cross-
sectional area of a smooth section, whereas type I cracks are actually rough. Therefore,
considering its true crack extension path is necessary. Rock materials were confirmed
to have ubiquitiform features [36]. When the material cross-section is described as a
ubiquitiform, its actual cross-sectional area is different from the smooth cross-sectional area,
thereby resulting in a corresponding change in fracture energy. Under ubiquitiform theory,
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when considering the ubiquitiform features in the thickness direction, the fracture energy
can be expressed as,

Gu f =
W

Au f
=

W
RD · tD · δ2−D

min

(4)

where W is the work performed by the load, Auf is the ubiquitiformal cross-sectional
area, δmin is the lower bound to scale invariance, and D is the ubiquitiformal complexity.
Simultaneous Equations (3) and (4) can be obtained,

Gu f

G
=

(R · t)1−D

δ2−D
min

(5)

However, for rock materials, the fracture energy can also be obtained from the fracture
toughness and elastic modulus under the assumption of linear elasticity, as shown in
Equation (6),

Gc =
K2

IC
E

(6)

Wang et al. [37] proposed to determine the fracture toughness by the minimum local
load σmin after the central initiating load. For the specific loading angle in this paper, the
fracture toughness is expressed as,

KIC = 0.80
σmin√

Rt

(
2α = 20

◦)
(7)

Finally, according to Equation (3), the corresponding fracture energy of the smooth
section of the slate and granite specimens can be found. The fracture energy of the rock
material is also obtained from the relationship between the fracture energy and the fracture
toughness in Equation (6) and its ubiquitiformal fracture energy in Equation (5). By com-
parison, the ubiquitiformal fracture energy is closer to the fracture energy obtained by the
relationship between fracture energy and fracture toughness, as shown in Tables 1 and 2.

According to Tables 1 and 2, the elastic modulus of slate varies in the range of
8.19–10.86 GPa, and the elastic modulus of granite varies in the range of 13.31–15.78 GPa.
The traditional fracture energy of slate and granite tends to increase with the elastic modu-
lus. However, the ubiquitiformal fracture energy and the fracture energy calculated from
the fracture toughness fluctuate in a certain range. This phenomenon is due to the fact that
the same rock material has a good crack consistency when a fracture occurs. Therefore, the
fracture energy does not differ greatly. In addition, although differences are observed in
the elastic modulus of slate and granite, the difference in ubiquitiformal fracture energy is
not significant.

The relationship between the fractal dimension of the material section and its fracture
mechanical property parameters was provided by many scholars for different types of
materials based on experimental results [38]. As shown in Figure 5, complexity is positively
correlated with fracture energy. This conclusion is also consistent with those obtained
from previous experiments [39]. The same rock material has a good crack consistency
when a fracture occurs. Therefore, the fracture energy does not differ much. In this paper,
the mean values and mean squared deviations of the three fracture energies for slate and
granite were obtained, and the mean squared deviations of the ubiquitiformal fracture
energy were the smallest compared with the other fracture energies. The mean squared
deviations of slate and granite are 0.038 and 0.037, respectively, and the reliability of the
ubiquitiformal fracture energy was further verified. In addition, the calculated results for
the ubiquitiformal fracture energy Guf are very close to the critical strain energy release
rate Gc obtained from the fracture toughness relationship while differing significantly from
the traditional fracture energy G. Therefore, the ubiquitiformal fracture energy is more
consistent with the assumption of linear elastic fracture of brittle materials than the fracture
energy measured under the assumption of the smooth fracture surface. A comparison of the
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ubiquitiformal complexity of slate and granite reveals that the ubiquitiformal complexity of
slate specimens ranges from 1.54 to 1.60, and that of granite specimens ranges from 1.58 to
1.62. The ubiquitiformal complexity of the rock specimens clearly shows that the mechanical
properties of rock materials are different because of the influence of heterogeneity. Therefore,
investigating the effect of the heterogeneous properties of rock materials under Brazilian
splitting conditions is necessary.

Fractal Fract. 2022, 6, 317 7 of 19 
 

 

traditional fracture energy of slate and granite tends to increase with the elastic modulus. 
However, the ubiquitiformal fracture energy and the fracture energy calculated from the 
fracture toughness fluctuate in a certain range. This phenomenon is due to the fact that 
the same rock material has a good crack consistency when a fracture occurs. Therefore, 
the fracture energy does not differ greatly. In addition, although differences are observed 
in the elastic modulus of slate and granite, the difference in ubiquitiformal fracture energy 
is not significant. 

The relationship between the fractal dimension of the material section and its fracture 
mechanical property parameters was provided by many scholars for different types of 
materials based on experimental results [38]. As shown in Figure 5, complexity is posi-
tively correlated with fracture energy. This conclusion is also consistent with those ob-
tained from previous experiments [39]. The same rock material has a good crack con-
sistency when a fracture occurs. Therefore, the fracture energy does not differ much. In 
this paper, the mean values and mean squared deviations of the three fracture energies 
for slate and granite were obtained, and the mean squared deviations of the ubiquitifor-
mal fracture energy were the smallest compared with the other fracture energies. The 
mean squared deviations of slate and granite are 0.038 and 0.037, respectively, and the 
reliability of the ubiquitiformal fracture energy was further verified. In addition, the cal-
culated results for the ubiquitiformal fracture energy Guf are very close to the critical strain 
energy release rate Gc obtained from the fracture toughness relationship while differing 
significantly from the traditional fracture energy G. Therefore, the ubiquitiformal fracture 
energy is more consistent with the assumption of linear elastic fracture of brittle materials 
than the fracture energy measured under the assumption of the smooth fracture surface. 
A comparison of the ubiquitiformal complexity of slate and granite reveals that the ubiq-
uitiformal complexity of slate specimens ranges from 1.54 to 1.60, and that of granite spec-
imens ranges from 1.58 to 1.62. The ubiquitiformal complexity of the rock specimens 
clearly shows that the mechanical properties of rock materials are different because of the 
influence of heterogeneity. Therefore, investigating the effect of the heterogeneous prop-
erties of rock materials under Brazilian splitting conditions is necessary. 

1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Average value =0.169
Mean square error = 0.050

Average value =0.264
Mean square error = 0.038

D

fra
ct

ur
e 

en
er

gy
/(N

/m
m

)

Slate  Guf

  Gc

  G

Average value =0.883
Mean square error = 0.200

 
1.57 1.58 1.59 1.60 1.61 1.62 1.63

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Average value =0.287
Mean square error = 0.037

Average value =0.295
Mean square error = 0.044

D

fra
ct

ur
e 

en
er

gy
/(N

/m
m

)

Granite
  Guf

  Gc

  G

Average value =2.574
Mean square error = 0.202

 
Figure 5. Three fracture energies and complexity D of slate and granite. 

3. Numerical Simulation of Brazilian Splitting 
In Section 2, we found that the extension path of cracks in the rock material during 

Brazilian splitting shows a ubiquitiformal feature. This ubiquitiformal feature reflects the 
heterogeneity of the internal mechanical properties of the material. Therefore, the Weibull 
distribution density function is used in this paper to describe the heterogeneity of the ma-
terial and combined with ABAQUS numerical software to simulate the extension process 
of Brazilian splitting cracks. The numerical models in this paper are divided into two types 
of ideal homogeneous and heterogeneous models. 

Figure 5. Three fracture energies and complexity D of slate and granite.

3. Numerical Simulation of Brazilian Splitting

In Section 2, we found that the extension path of cracks in the rock material during
Brazilian splitting shows a ubiquitiformal feature. This ubiquitiformal feature reflects
the heterogeneity of the internal mechanical properties of the material. Therefore, the
Weibull distribution density function is used in this paper to describe the heterogeneity of
the material and combined with ABAQUS numerical software to simulate the extension
process of Brazilian splitting cracks. The numerical models in this paper are divided into
two types of ideal homogeneous and heterogeneous models.

3.1. Cohesion Model

The cohesive model is a damage mechanics model that uses the traction-separation rule
to simulate the decohesion of atomic lattice [40]. The cohesive model is a triangular model
(Figure 6). di, df, and GIC denote the initial damage displacement, effective displacement of
traction force, and energy release rate, respectively. The model can simulate delamination
failure and also random crack extension by batch inserting cohesive elements between
adjacent solid elements in the model. When the contact traction or separation reaches the
peak point T in Figure 6, the damage begins, and the cohesive element starts to damage [41].
The damage initiation criterion used in this paper can be written as,

p = max
{

σn

σ0
n

,
τs

τ0
s

,
τt

τ0
t

}
(8)

where σn is the normal traction force in the section, τs and τt are the two tangential traction
forces in the section. σ0

n , τ0
s τ0

t are the peak values of the anisotropic nominal stress. When
p = 1.0, the damage starts.

After the peak point T, the cohesive stiffness starts to degrade. The stress of the
damaged cohesive element can be expressed as,

σn =

{
(1− C)σn, σn ≥ 0

σn, otherwise
τs = (1− C)τs
τt = (1− C)τt

(9)
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with an edge length of 0.1 mm. In the C3D8R element, the cohesion element COH3D8 was 
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C is the degree of damage. After the damage begins, C changes from 0 to 1. σn, τs
and τt are the contact stress components when no damage occurs, representing the overall
damage of the contact point.

The model used in this paper is a plane strain model, as shown in Figure 7. The
use of cohesive elements to simulate failure behavior in Brazilian splitting is an effective
method. In the numerical model, the rock particles were represented by C3D8R elements
with an edge length of 0.1 mm. In the C3D8R element, the cohesion element COH3D8 was
embedded (Figure 8). The material parameters of the cohesion element were different from
the rock material parameters. In addition, the thickness of all cohesive elements (COH3D8)
was 1 mm.
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3.2. Weibull Distribution of Elastic Modulus of Rock Materials

The rock is a typically brittle material and its internal material heterogeneity gives it a
more rough and curved shape under Brazilian splitting conditions. As the elastic modulus
is one of the most important parameters for representing the mechanical properties of
materials, it is assumed that the elastic modulus of rock materials obeys the Weibull
distribution as a random variable in this paper. In this paper, the steps to realize the finite
element model of random heterogeneous materials satisfying the Weibull distribution are
as follows. First, random samples are generated that satisfy the Weibull distribution, so
that the random samples generated are different each time. However, they all obey the
same Weibull distribution in a statistical sense, and their scale and shape parameters are the
same. Next, the random sample data are mapped to a finite element model. The mapping
approach taken in this paper is a one-to-one assignment of data and units, i.e., each random
data corresponds to a unit. The Weibull distribution of the elastic modulus of the rock
material is shown in Figure 9.
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3.3. Establishment of Numerical Model

In this paper, the cohesive model is applied to ABAQUS numerical software to simulate
the failure behavior of rocks and to establish a simplified model of two-dimensional
Brazilian splitting. This model is a plane strain model with a diameter of 50 mm and a
thickness of 25 mm (Figure 7). The numerical test is described as follows: (1) The model
mesh uses hexahedral elements and encrypts the area around 5 mm of the compressed
diameter, and the whole model contains 4322 elements in total. The cohesive unit COH3D8
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is embedded in these units with a unit thickness of 1 mm, as shown in Figure 8. (2) The
analysis type is dynamic and explicit, with the upper and lower rigid bodies in surface-to-
surface contact with the rock matrix and the contact friction coefficient set at 0.05. (3) A
displacement load is applied at the top and a fully fixed boundary condition at the bottom
with a loading rate of 0.001 mm per step. When the cohesive unit fails completely, SDEG = 1,
the cohesive unit can no longer bear the force and will be deleted. The granite material
parameters are shown in Table 3.

Table 3. Material properties of the numerical model.

E/GPa µ T/MPa di/mm df /mm GIC/(N/mm)

20 0.3 10.52 0.015 0.3 1.578

3.4. Results
3.4.1. Ideal Homogeneous Model

Figure 10 shows the ideal homogeneous model, and the simulation results are basically
consistent with the experimental results. Under compressive loading, stress concentration
occurs at the crack tip, and the stress is symmetrical about the crack plane. The damage
begins when the stress at the crack tip reaches its maximum, and the crack develops
along the central loading line until the material fails completely. The stress–displacement
curves of the experimental and simulated values under this model are shown in Figure 11.
The results show that the simulation results are in good agreement with the laboratory
measurements, with the stress peaking at 0.3 mm and failing instantaneously. Figure 12
shows the box-counting method double logarithmic diagram for granite and the simulation
results in a ubiquitiformal complexity of 1.65. The average ubiquitiformal complexity of
the granite obtained from the test is 1.60 (Table 2), and the relative error between the two
is 0.03%, which is in good agreement. This model is considered reasonable in simulating
crack extension.
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3.4.2. Heterogeneous Model

In nature, rocks are heterogeneous, and this heterogeneity is reflected in the fact
that the mechanical properties of the material (e.g., elastic modulus, strength) vary with
spatial location, hence violating the assumptions of the Brazilian test [42]. Therefore,
heterogeneous properties may affect the accuracy of the determination of rock tensile
strength using Equation (2). To study the effect of this property on the Brazilian strength,
the elastic modulus of the mesoscopic element of the constituent material is assumed to
satisfy the Weibull distribution. The Weibull distribution parameters m are set to 1.5, 5, 10,
100, and 1000.

As shown in Figures 13 and 14, for the numerical model with m = 1.5, the distribution
of the stress concentration area is neither regular nor clear because of the discrete elastic
modulus of the unit and the significant difference in stresses in adjacent units. The unit
strength near the crack tip is also discrete, and the overall strength of the crack tip region is
low. Thus, the stress concentration is at a low level. As the homogeneity increases (1.5–5),
the discreteness of the unit strength and elastic modulus decreases, and the overall strength
of the crack tip region increases and gradually converges to a constant. As a result, the
stress is concentrated on a more regular and sharper profile. When the homogeneity is 1000,
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the mechanical properties improve rapidly. In addition, the Brazilian splitting strength
decreases as the ubiquitiformal complexity increases. The heterogeneity of the rocks is
evident at m of 1.5, and when 5 < m < 100, the variation of the ubiquitiformal complexity
of the rock is small, which belongs to low homogeneity. When m is 1000, the effect of the
heterogeneous properties of the material is eliminated, which is reflected by the fact that
the ubiquitiformal complexity is similar to that of m 5,10, and 100.
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ference among all the stress–displacement curves is that their yielding phase becomes 
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The stress–displacement curves of the rock specimens with different homogeneities are
shown in Figure 15. The rock specimens with 1.5 ≤ m ≤ 100 under Brazilian splitting load
all underwent the three stages of linear elasticity, yielding, and post-peak. The difference
among all the stress–displacement curves is that their yielding phase becomes shorter with
the increase in homogeneity. When 5 ≤ m ≤100, the stress–displacement curves almost
coincided. When m is greater than 1000, the yield phase is almost unrecognizable, and the
rock sample breaks directly after the linear elastic phase. Regardless of the homogeneity of
the rock, brittle damage is evident under Brazilian splitting loads.
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4. Discussion
4.1. Ubiquitiformal Complexity

In ubiquitiform theory, for a given ubiquitiform, a fractal that corresponds to its
iterative process generally exists. The complexity of the ubiquitiform is defined as the
dimension of the adjoint fractal [43]. The ubiquitiformal complexity can be used to charac-
terize the bending and roughness of the curve. The greater the ubiquitiformal complexity
is, the rougher the curve will be, and vice versa [21]. The box-counting method is now
commonly used to calculate the ubiquitiformal complexity [19,35]. This method relies on
digital analysis and is calculated using a box-dimensional algorithm written in MATLAB,
which is the method used in this paper.

The concept of ubiquitiform was applied to the field of rock mechanics to characterize
fracture surface roughness and pore structure. In recent years, Zhang [23] has simulated
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the extension of heterogeneous model cracks under different Weibull homogeneity distribu-
tions. The more homogeneous the material is, the less complex its crack path is. The basic
idea that the heterogeneous characteristics of the material can lead to ubiquitiform cracks
of the specimen was verified. Li et al. [22] used ABAQUS numerical simulation software to
study the ubiquitiform crack extension in heterogeneous quasi-brittle materials by numeri-
cal simulation. The ubiquitiformal complexity of the section configuration is given using
the box-counting dimension calculation, and the correlation between the fracture energy
and complexity is determined. Based on ubiquitiform theory and fracture mechanics,
Dong [44] proposed a calculation method for material fracture surface complexity and
tested its validity computationally.

In this paper, by comparing the ubiquitiformal complexity of slate and granite, we
found that the ubiquitiformal complexity of slate ranges from 1.54 to 1.60, and that of
granite ranges from 1.58 to 1.62. The complexity is related to the properties of the material.
For the same type of rock, the complexity size does not basically vary much under the same
loading conditions. However, due to the difference in rock properties, the ubiquitiformal
complexity of granite is generally larger than that of slate. In Section 3.4, two numerical
models are established in this paper. Analysis suggests that the granite ubiquitiformal
complexity under the ideal homogeneous model is 1.65, and the relative error between
the average ubiquitiformal complexity of granite obtained from the experiment is 0.03%.
The ubiquitiformal complexity of the heterogeneous model at different homogeneity levels
ranges from 1.65 to 1.79. In the comparison of the ubiquitiformal complexity of the two
models, we obtain that the ubiquitiformal complexity of the rock is higher for a homogeneity
m of 1.5. The ubiquitiformal complexity with m greater than five is closer to that of the ideal
homogeneous model. Thus, this finding shows that the extension path of the ubiquitiformal
crack gradually tends to be smooth when m is larger than five.

4.2. Fracture Energy

In classical fracture mechanics, fracture energy is an important parameter in character-
izing the fracture properties of a material. It is defined as the amount of energy required
to produce a new cracked surface per unit area and is of great importance in engineering
safety design [45,46]. Currently, fracture energy can be calculated using three methods,
namely, the traditional fracture energy which only considers the cross-sectional area of the
smooth section, the fracture energy obtained from the fracture toughness, and the ubiquiti-
formal fracture energy that considers the ubiquitiform characteristics of the material section.
The inconsistency between the fracture energy obtained from fracture toughness and the
traditional fracture energy has long concerned scholars. The usual assumption of presumed
linear elasticity does not provide a good approximation of the physical properties of real
materials, and therefore, ubiquitiformal fracture energy is proposed. The establishment
of ubiquitiform theory can solve the difficulties of requiring infinite energy for material
damage and the fact that reformation fracture energy is no longer suitable as a material
property parameter [23].

The calculation of the ubiquitiformal fracture energy is very simple, as long as the
traditional fracture energy and the lower bound to scale invariance are determined. The
ubiquitiformal fracture energy can be obtained according to Equation (5). An important
issue that needs to be considered in solving the ubiquitiformal fracture energy is the
influence of the lower bound to scale invariance on the calculation results. The lower
bound to scale invariance affects the integer dimensional measurement of the ubiquitiform
directly. Therefore, discussing the lower bound to scale invariance further is necessary
to avoid the error caused by the practical application. This value is currently believed to
be a material constant, which is determined by the microstructure of the studied object.
However, providing a specific method for determining this value, which is usually taken
as the fundamental particle size of the studied object, is not yet possible, and this method
is usually imprecise. Li et al. [47] proposed the use of the equation between the tensile
strength and the lower bound to scale invariance to determine the value, and this method
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is only suitable for concrete materials. Cao et al. [48] relied on digital image analysis and
the calculation of the box dimension algorithm based on MATLAB. The relationship curve
between the measurement and the scale invariance in double logarithmic coordinates is
obtained and fitted to it. The linear segment with a better fitting effect is taken as the
self-similar region of the ubiquitiform to determine the lower bound to scale invariance.
This approach is relatively rough because of the image resolution. Therefore, this paper
summarizes the previous experience and assumes that the ubiquitiformal fracture energy
tends to be constant, and the ubiquitiformal fracture energy is calculated according to
different lower bound to scale invariances. When the mean square deviation coefficient
of the ubiquitiformal fracture energy is minimum, the lower bound to scale invariance is
chosen as the desired result. This method is implemented with the help of MATLAB. By
calculation, the lower bound to scale invariance for slate and granite is 1.4 µm and 4.7µm,
respectively. From the analysis of the mineral composition, the particle size of granite is
generally 1–5 mm, and the particle size of the slate is 0.0039–0.0625 mm, which causes the
bound to scale invariance of granite to be lower than that of slate.

The fracture energy calculated in this paper considers the ubiquitiformal complexity in
the thickness direction and is the fracture energy on a two-dimensional measure. The three
fracture energies are analyzed in Section 2.3. The calculation result of the ubiquitiformal
fracture energy Guf is concluded to be very close to the critical strain energy release rate
Gc obtained from the fracture toughness relationship while differing significantly from
the traditional fracture energy G. This conclusion is also consistent with those obtained
from previous experiments [39]. In addition, the ubiquitiformal fracture energy of the
same type of rock is relatively close, indicating that the cracks in the fracture of rock
materials have a good consistency. The ubiquitiformal fracture energy is more consistent
with the assumption of the linear elastic fracture of brittle materials than the fracture energy
measured under the assumption of a smooth fracture surface. In a fundamental sense,
traditional fracture energy only considers the cross-sectional area of a smooth section and
represents only the average energy release rate of the section. Meanwhile, the critical strain
energy release rate considers the critical crack tip energy release rate and describes the
local fracture properties of the material. The real crack surface is actually rough. Thus,
considering its real crack extension path is necessary. While real crack extension leads
to increasingly complex stress singularities at the crack tip, the ubiquitiformal fracture
energy is calculated for the ubiquitiformal cross-sectional area alone, thereby providing
similar results to the critical strain energy release rate. This finding verifies that the cross-
sectional area is more important than the crack tip stress singularity. In addition, in this
paper, the mean values and mean squared deviations of the three fracture energies for
slate and granite were obtained, and the mean squared deviations of the ubiquitiformal
fracture energy were the smallest among the other fracture energies. The reliability of the
ubiquitiformal fracture energy was further verified.

4.3. Heterogeneity Effect

In general, the study of mechanical properties and damage processes of rocks is
based on the assumption that rocks are homogeneous materials. However, rocks are
heterogeneous materials at the microscopic scale, and the spatial distribution of their
physical and mechanical properties is discontinuous. Heterogeneity has a significant
influence on the mechanics of rock. To analyze the relationship between the Brazilian
splitting strength and homogeneity m, the elastic modulus of the mesoscopic element of the
constituent material is assumed to satisfy the Weibull distribution. The Weibull distribution
parameters m are set to 1.5, 5, 10, 100, and 1000. In Section 3.4.2, the curve between the
Brazilian splitting strength and the homogeneity, where the homogeneity m describes the
degree of homogeneity of the micromechanical properties of the rock material, is plotted.

When homogeneity is less than 1.5, heterogeneity has a greater influence on the Brazil-
ian splitting strength, and the heterogeneity of the rock becomes evident. At this time,
the yielding phase of the stress–displacement curve is the longest. However, when the
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homogeneity is 5 ≤ m ≤ 100, the effect on the Brazilian splitting strength is much less,
the Brazilian splitting strength tends to the average strength, and the stress–displacement
curves almost coincide. This phenomenon can be explained by the fact that as the homo-
geneity decreases, the discreteness of the material parameters increases and some units
fail at low stresses, thereby reducing the strength of the rock specimens. As homogeneity
increases, the mechanical parameters of the units become more concentrated, the number
of units with lower mechanical parameters decreases, the overall strength of the crack tip
region increases, and the rock exhibits brittle failure. When m is greater than 1000, the yield
phase is almost unrecognizable, and the rock sample breaks directly after the linear elastic
phase. Heterogeneity and size effects influence the difference in the Brazilian splitting
strength of rocks by different test homogeneity m [49–51]. In this paper, only the effect of
heterogeneous properties is considered. Therefore, investigating the size effect in the future
is necessary.

5. Conclusions

In this paper, the type I crack extension problem is investigated on the basis of ubiq-
uitiform theory. First, the complexity of the fractured section of slate and granite after
Brazilian splitting was calculated. Second, the expression of the ubiquitiformal fracture
energy during crack extension is studied theoretically, and the fracture energy is compared
under three calculation methods. Finally, the Brazilian splitting test was simulated using
finite element software. The homogeneous and heterogeneous models of granite were
established and compared with the experimental results to verify the rationality of the
models. In addition, the relationship between the ubiquitiformal complexity and homo-
geneity and Brazilian splitting strength under the heterogeneous model is discussed. The
conclusions are summarized as follows:

The ubiquitiformal complexity of slate ranges from 1.54 to 1.60, and that of granite
ranges from 1.58 to 1.62. However, the ubiquitiformal complexity of granite is generally
larger than that of slate because of the difference in rock properties.

The calculation result of the ubiquitiformal fracture energy Guf is very close to the
critical strain energy release rate Gc obtained from the fracture toughness relationship while
differing significantly from the traditional fracture energy G. Therefore, the ubiquitiformal
fracture energy is more consistent with the assumption of the linear elastic fracture of
brittle materials than the fracture energy measured under the assumption of the smooth
fracture surface.

The numerical simulation results of the ideal homogeneous model are basically consis-
tent with the experimental results. Under compressive loading, stress concentration occurs
at the crack tip, and stress is symmetrical about the crack plane. The damage begins when
the stress at the crack tip reaches its maximum and the crack develops along the central
loading line until the material fails completely.

When the homogeneity of the heterogeneous model is m = 1.5, the distribution of the
stress concentration area is neither regular nor clear because of the discrete elastic modulus
of the unit and the significant difference in stresses in adjacent units. As the homogeneity
increases (1.5–5), the discreteness of unit strength and elastic modulus decreases, and the
overall strength of the crack tip region increases and gradually converges to a constant.
When homogeneity is 1000, the mechanical properties improve rapidly. In addition, the
Brazilian splitting strength decreases as the ubiquitiformal complexity increases. The
heterogeneity of the rocks is evident at an m of 1.5, and when 5 < m < 100, the variation
of the ubiquitiformal complexity of the rock is small, which belongs to low homogeneity.
When m is 1000, the effect of the heterogeneous properties of the material is eliminated.
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