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Abstract: In this work, the restricted three-body system is studied in the framework of the continua-
tion fractional potential with its application on the Earth–Moon system. With the help of a numerical
technique, we obtained thirteen equilibrium points, such that nine of them are collinear while the
remaining four are non-collinear points. We found that the collinear points near the smaller primary
were shifted outward from the Moon, whereas the points near the bigger primary were shifted
towards the Earth as the value of the continuation fractional parameter increased. We analyzed the
zero-velocity curves and discussed the perturbation of the continuation fractional potential effect
on the possible regions of the motion. We also discussed the linear stability of all the equilibrium
points and found that out of thirteen only two were stable. Due to such a prevalence, the continuation
fractional potential is a source of significant perturbation, which embodies the lack of sphericity of
the body in the restricted three-body problem

Keywords: restricted three-body problem; continuation fractional potential; equilibrium points;
zero-velocity curves; stability

1. Introduction

The restricted three-body problem has a great significance in both celestial mechanics
and space dynamics, because the N-body problem can be reduced to the perturbed three-
body problem in most practical cases, which is more simple than the general N-body
problem while maintaining the fundamental dynamical properties of the original system.
In the solar system, the Sun–Earth–Moon system and the Sun–Jupiter–infinitesimal body
system or Earth–Moon–infinitesimal body system, etc., can be considered spacial cases
of the N-body problem [1–5]. There are many factors which affect the motion of celestial
bodies, which are called perturbations forces. These forces have motivated some researchers
and scientists to review the precision of Newton’s inverse square law and search for new
modified potential models.

There are several dynamical features in the context of the perturbed restricted three-
body problem which are studied using several types of modified potentials [6–10]. These
potentials acquire their importance from the fact that the most celestial bodies in both solar
systems and outer space are non-spherical symmetry objects, but they can be considered
extended bodies. In addition, the effects of radiation pressure and oblateness have been
analyzed in detail [4,11].

The modified or perturbed potentials are not limited to the restricted three-body
problem; they also include its reduced versions, two-, four- and five-body problems, etc.
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The periodic solution of the perturbed two-body problem has been studied using different
perturbations methods in [12–14].

While in the framework of reduced versions of the restricted three-body problem,
the periodic orbits in the perturbed Hill’s model of the three-body problem are calculated
under various perturbations in [15]. Furthermore, the geometry of halo and Lissajous orbits,
approximated periodic orbits, as well as periodic solutions of circular and elliptic restricted
three-, four- and five-body problems with drag forces, are computed by many researchers
in [16–20].

We may use an infinitesimal body in the proposed system to analyze the motion of dust
grains or spacecraft, specifically in the proximity of an exoplanet. Since the shape of most
celestial bodies suffers from a lack of sphericity, this system can be used to obtain rigorous
data about the locations of equilibrium points and their stability for the infinitesimal bodies.
Recent work in this field is addressed in [21]. The authors studied the influence of a
modified gravitational potential ( i.e., that the smaller primary potential is modified by
including a term of general relativity) on the location of libration points and Newton–
Raphson basins of conservation at a specific value of mass parameter µ = 0.3.

In this work, a new formulation for the Earth–Moon system in the framework of
the modified Newtonian potential is derived using a continuation fractional potential,
where this potential is generalized for a Newtonian potential and includes the effect of the
non-sphericity of a primary body (the Earth, for example) which represents a significant
perturbation in the restricted three-body problem. In the proposed system, the poten-
tial function depends on a non-negative small parameter (ε). This system acquires its
importance from two reasons: first, the potential function has no singularity when this
parameter is non-zero; second, the effect of this parameter may play the same role as the
zonal harmonic coefficients [14].

Furthermore, we elaborate the similarities and differences between the current work
and the publication in [22]. In both works, the restricted three-body problem is the proposed
system. However, we assumed that the bigger primary is radiating and the second is a
non-spherical body that creates a gravitational field as in a continuation fractional potential
in the old work; this model can be applied to study the Sun–Earth system in which the
Sun is a radiating body and the Earth is non-spherical. In the current work, by contrast,
we assume that the bigger primary suffers from a lack of sphericity and creates the same
gravitational field of a continuation fractional potential with no radiation pressure effect,
with the potential of the second primary being identified by the point mass potential. Thus,
the current model is appropriate for approximating the Earth–Moon system.

This work includes five sections. The literature on the restricted three-body problem
is addressed in Section 1. The model description and the surface of zero velocity are
constructed in Section 2. The Lagrangian points under the effect of the perturbed parameter
of the continuation fractional potential are analyzed in Section 3. The stability of the
Lagrangian points is studied in Section 4. Finally, in Section 5, the conclusion is stated.

2. Formulation of the Model

Let us consider the Earth–Moon system in which the Earth is a non-spherical body
and its gravitational field is identified by a continuation fractional potential, while the
Moon creates a potential as a point mass or spherical body (for details see [14,22]). Thus,
we propose that m1 and m2 be the masses of the Earth and the Moon, while the mass of
the infinitesimal body is m, which is considered a negligible mass with respect to the Earth
and Moon. Both primary bodies (i.e., Earth and Moon) move in circular orbits around their
common center of mass under their mutual gravitational potential. The Earth affects both
the Moon and infinitesimal bodies through a continuation fractional potential, while the
Moon affects the Earth and infinitesimal bodies through a Newton gravitational potential.
However, the infinitesimal body does not influence the motion of the Earth or the Moon
due to its negligible mass.
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Let us normalize also the units of the proposed system in such a way that the separation
distance between the Earth and the Moon, the sum of their masses and the gravitational
constant G are equal to unity. Therefore, we can denote the mass of the Moon with
µ = m2/(m1 + m2), and so the mass of the Earth is (1− µ). Furthermore, we assume that
OXYZ is a synodic reference frame instead of a sidereal frame Oξηζ, which has the same
origin, and the first frame rotates about the ζ-axis with an angular velocity ω. Furthermore,
we assume that the primaries are moving in the XY plane and lying on the X-axis. Then, the
coordinates of the first, second and infinitesimal bodies in the synodic frame are (−µ, 0, 0),
(1− µ, 0, 0) and (x, y, z), respectively (see Figure 1). Hence, the equations of the motion of
the infinitesimal body in the synodic frame is given as in [22] by

ẍ− 2ωẏ =Wx,

ÿ + 2ωẋ =Wy,

z̈ =Wz,

(1)

where the effective potential W(x, y, z) is given by

W(x, y, z) =
ω2(x2 + y2)

2
+

(1− µ)r1

r2
1 + ε

+
µ

r2
, (2)

where r1 = |r1| and r2 = |r2| are the magnitudes of the distances of the infinitesimal body
from the first and second primaries, respectively, which are defined as

r2
1 = (x + µ)2 + y2 + z2,

r2
2 = (x + µ− 1)2 + y2 + z2.

(3)

Figure 1. Configuration of the Earth–Moon system as the restricted three-body problem.
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Here, ε is considered a perturbed parameter, which is derived from the continuation
fractional potential, and ω denotes the perturbed mean motion, with both of them due to
the non-spherical shape of the Earth. Furthermore, the functions Wx, Wy and Wz denote
the first-order partial derivatives of W(x, y, z) with respect to x, y and z, respectively. Thus,
we can write

Wx = (1− µ)(x + µ)

(
ω2 −

r2
1 − ε

r1(r2
1 + ε)2

)
+ µ(x + µ− 1)

(
ω2 − 1

r3
2

)
,

Wy = y

[
(1− µ)

(
ω2 −

r2
1 − ε

r1(r2
1 + ε)2

)
+ µ

(
ω2 − 1

r3
2

)]
,

Wz = z

[
(1− µ)

(
ω2 −

r2
1 − ε

r1(r2
1 + ε)2

)
+ µ

(
ω2 − 1

r3
2

)
−ω2

]
.

(4)

and
ω2 =

1− ε

(1 + ε)2 . (5)

The well-known energy integral of the proposed problem can be obtained by integrat-
ing Equation (1) as

2W(x, y, z)− (ẋ2 + ẏ2 + ż2) = C, (6)

where C is known as the Jacobi constant. Equation (6) has many features; for example, it
can be used to evaluate the zero-velocity curves and identify the areas of permission and
prohibition motions of the infinitesimal body.

Utilizing Equations (2), (3) and (5) with Equation (6), we can plot zero-velocity curves
at various values of the perturbed parameter ε shown in Figures 2 and 3. It may be seen that
the zero-velocity curve changed due to the continuation fractional potential. The permitted
region increased in the interval 0 ≤ ε ≤ 0.02 and then formed a closed loop at ε = 0.04
around the Moon. Furthermore, in the interval 0.04 < ε ≤ 0.1, the permitted or possible
region of motion expanded (see Figure 2a–f). On the other hand, the permitted region
of the motion expanded initially, then shrank and assumed an oval-shaped orbit in the
interval 0 ≤ ε ≤ 0.1 around the Earth (see Figure 3a–f).
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Figure 2. Variation in zero-velocity curve near the Moon due to the effect of the continuation fractional
potential parameter ε.
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Figure 3. Variation in zero-velocity curve near the Earth due to the effect of the continuation fractional
potential parameter ε.

3. Equilibrium Points

In the framework of dynamical system motion, the locations or positions of equilibrium
points are identified when the velocities and accelerations of the bodies are equal to zero.
Thereby, the equilibrium points related to the system of Equation (1) can be computed by
solving the equations

Wx = Wy = Wz = 0. (7)

There are two possible solutions for Wz = 0: either z 6= 0 or z = 0. If z 6= 0, and the
third sub-equation in Equation (4) is used, we obtain

(1− µ)
(r2

1 − ε)

r1(r2
1 + ε)2

= − µ

r3
2

. (8)

The relation in Equation (8) provides a contradiction, as the quantity on the left-
hand side will always be positive because 0 < µ << 1, (1 − µ) > 0 and ε are very
small quantities; moreover, ε << r1, whereas on right-hand side the quantity is negative.
Therefore, the value of z must be equal to zero; all the equilibrium points will hence always
lie on the XY plane. This means that there are no out-of-plane equilibrium points as in the
classical case of the unperturbed restricted three-body problem.
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The solution of Equation (7) cannot be found analytically due to the complexity of the
system. Therefore, with the help of the MATHEMATICA–12 SOFTWARE, we computed
thirteen equilibrium points when ε > 0. Among these, nine equilibrium points were
collinear and the remaining four were non-collinear points. On the other hand, when
ε = 0, we obtained five equilibrium points, and among these, three were collinear and the
other two were non–collinear equilibrium points, which provides the same results as the
classical case.

3.1. Collinear Equilibrium Points

The collinear equilibrium points can be evaluated when y = 0 and z = 0; hence, these
points lie on the X-axis. Therefore, after utilizing Equations (4) and (7), we have

(x + µ)(1− µ)

[
ω2 − (x + µ)2 − ε

(x + µ)((x + µ)2 + ε)2

]
+ (x + µ− 1)µ

[
ω2 − 1

(x + µ− 1)3

]
= 0. (9)

For a fixed-mass parameter µ = 0.01215058 of the Earth–Moon system in Equation (9),
it is observed that the collinear equilibrium points depend on the parameter ε.

In order to avoid the confusion among the notations of the perturbed and the un-
perturbed Lagrangian points, we would like to direct the attention of the readers to the
following acronyms. We denote the classical (or unperturbed) Lagrangian points with
L̃i, i = 1, 2, . . . , 5, where the perturbed parameter ε = 0, as in Table 1 and Figure 4a.
However, the symbols Li, i = 1, 2, . . . , 9 are taken for the perturbed collinear Lagrangian
points where the perturbed parameter ε 6= 0, as in Table 2 and Figure 4b–f, while the
perturbed non-collinear Lagrangian points are termed L̄i, i = 1, 2, . . . , 4, as in Table 3 and
the aforementioned sub-figures.

In this context, we observe that with increases in the value of ε the points L1 and L2
slid out of the smaller primary, whereas the point L3 shifted towards the bigger primary.
Moreover, the remaining six collinear points were near the common center of the mass
of the primaries. When the perturbed parameter ε increased, the points slid out from the
common center of the primaries’ mass.

Table 1. Values of unperturbed Lagrangian points.

ε L̃1 L̃2 L̃3 L̃4 L̃5

0.00 (0.836915 ,0.000) (1.15568 , 0.000) (−1.00506 , 0.000) (0.487849 , 0.866025) (0.487849 ,−0.866025)

Table 2. Values of perturbed collinear Lagrangian points at different values of the parameter ε.

ε L1 L2 L3 L4 L5 L6 L7 L8 L9

0.02 0.831093 1.16084 −1.00483 0.130074 0.129881 0.12849 −0.152807 −0.152703 −0.154358
0.04 0.824892 1.166615 −1.00459 0.190977 0.190322 0.184949 −0.209338 −.209079 −0.215176
0.06 0.818243 1.171164 −1.00433 0.239697 0.238267 0.226757 −0.25129 −0.250866 −0.263695
0.08 0.811057 1.17731 −1.00406 0.282783 0.28017 0.260753 −0.285508 −0.284907 −0.306405
0.10 0.803214 1.18319 −1.00376 0.322807 0.38457 0.289696 −0.314754 −0.31398 −0.345794

Table 3. Values of perturbed non-collinear Lagrangian points at different values of parameter ε.

ε L̄1 L̄2 L̄3 L̄4

0.02 (0.467511 , 0.877454) (0.467511 ,−0.877454) (−0.022381 , 0.141817) (−0.022381 ,−0.141817)
0.04 (0.446472 , 0.888631) (0.446472 ,−0.888631) (−0.0329346 , 0.201879) (−0.0329346 ,−0.201879)
0.06 (0.424697 , 0.899536) (0.424697 ,−0.899536) (−0.0437072 , 0.249391) (−0.0437072 ,−0.249391)
0.08 (0.402148 , 0.910141) (0.402148 ,−0.910141) (−0.0546412 , 0.290889) (−0.0546412 ,−0.290889)
0.10 (0.378782 , 0.920419) (0.378782 ,−0.920419) (−0.0656985 , 0.328894) (−0.0656985 ,−0.328894)
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3.2. Non-Collinear Equilibrium Points

For the equilibrium points lying in the XY plane, z must be equal to zero. Therefore,
from the first two sub-equations in Equation (4), we obtain

(x + µ)(1− µ)

[
ω2 −

r2
1 − ε

r1(r2
1 + ε)2

]
+ (x + µ− 1)µ

[
ω2 − 1

r3
2

]
= 0,

y(1− µ)

[
ω2 −

r2
1 − ε

(r2
1 + ε)2

]
+ yµ

[
ω2 − 1

r3
2

]
= 0.

(10)

Now, solving Equation (10) numerically using the Mathematica software, we obtain
four non-collinear points at ε 6= 0 defined by L̄1, L̄2, L̄3 and L̄4 (see Table 3), whereas for the
classical case at ε = 0, these are defined by L̃4 and L̃5 (see Table 1).

The values of the non-collinear points in the case of the unperturbed restricted three-
body problem (ε = 0) are presented in Table 1, while the non-collinear points under the
effect of the continuation fractional potential are presented in Table 3. A clear visualization
of the collinear and non-collinear libration points are presented in Figure 4. The positions
of L̄1 and L̄2 shifted towards the center of the primaries’ mass, while those of L̄3 and L̄4
shifted towards the larger primary body.

4. Stability of Locations Point

This section is devoted to analyzing the stability of motion for the infinitesimal body
around the locations of equilibrium points by assuming small changes in these locations.
Hence, we assumed that the infinitesimal body was displaced very slightly from the exact
position of the equilibrium point and acquired a small velocity, such that it would either
oscillate around the respective position, at least for a considerable interval of time (before it
becomes stable), or rapidly depart from its position (with the body motion being unstable).

Now, we propose that (x0, y0) be the exact position of the infinitesimal body at the
equilibrium points, and that there is a small displacement in these positions; the new
coordinates can be written as x = x0 + ξ, y = y0 + η. Thus, we obtain ẋ = ξ̇, ẏ = η̇,
and thus the coordinates of the infinitesimal body and the components of its velocity are
x = x0 + ξ, y = y0 + η, ẋ = ξ̇ and ẏ = η̇, where ξ, η, ξ̇ and η̇ are initially very small
quantities. Now, substituting these values in Equation (1) and simplifying with the help of
Taylor series expansion about (x0, y0) while neglecting higher-order derivative terms and
keeping only the first order of ξ, η and ζ, we obtain

ξ̈ − 2η̇ = ξ W0
xx + η W0

xy,

η̈ + 2ξ̇ = ξ W0
yx + η W0

yy,
(11)

where W0
xx, W0

xy, W0
yx and W0

yy represent a second-order partial derivative of the potential
function W(x, y, z) with respect to x and y, respectively, at (x0, y0). In order to solve
Equation (11), let us consider

ξ = Ceλt,

η = Deλt,
(12)

where C and D are constants and λ is the characteristic parameter of the solution. Substi-
tuting the values of Equation (12) into Equation (11) and canceling out the common factor,
a system of linear equations is obtained, which is given as(

λ2 −W0
xx

)
C +

(
−2ωλ−W0

yx

)
D = 0,(

2λω−W0
yx

)
C +

(
λ2 −W0

yy

)
D = 0.

(13)
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Since Equation (13) represents a homogeneous dynamical system, the determinant of
the coefficient matrix must be zero for non-trivial solutions; therefore,∣∣∣∣∣ λ2 −W0

xx −2ωλ−W0
yx

2λω−W0
yx λ2 −W0

yy

∣∣∣∣∣ = 0. (14)

Simplifying the above Equation (14), we obtain a characteristic equation in terms of λ as

λ4 + K1λ2 + K2 = 0, (15)

where K1 = 4 −W0
xx −W0

yy and K2 = W0
xxW0

yy − (W0
xy)

2. The value of λ is called the
characteristic roots or eigenvalues of the Equation (15). The solving of Equation (15) gives
four roots (λi, i = 1, 2, 3, 4) as

λ1,2,3,4 = ±

√√√√−K1 ±
√

K2
1 − 4K2

2
. (16)

Using the obtained roots in Equation (16), the general solution of the linear differential
system with the constant coefficients of Equation (11) can be written as

ξ(t) =C1eλ1t + C2eλ2t + C3eλ3t + C4eλ4t,

η(t) = D1eλ1t + D2eλ2t + D3eλ3t + D4eλ4t,
(17)

where Ci and Di, i = 1, 2, 3, 4 are integral constants.
The value of Di can be obtained in the form of Ci with the help of linear Equation (13).

From Equation (17), we remark that if all characteristic roots λi, i = 1, 2, 3, 4 of Equation (15)
are complex conjugates and there exists at least one root with a positive real part, then
the solution ξ and η will be unstable. On the other side, if all real parts of the complex
roots are negative, then the solutions ξ and η will be asymptotically stable. However, if
all the characteristic roots are purely imaginary, then the obtained solutions ξ and η will
be periodic in their structures and hence stable, while if all the characteristic roots are real,
then solutions ξ and η will be unstable.

We know that the collinear libration points lie on the X-axis, i.e., y = 0, so that
W0

xy = W0
yx = 0 and Equation (15) takes the form

λ4 + K∗1 λ2 + K∗2 = 0, (18)

where K∗1 = K1 and K∗2 = W0
xxW0

yy, and the solution of Equation (18) gives the characteristic
roots in the case of collinear points as

λ1,2,3,4 = ±

√√√√−K∗1 ±
√

K∗21 − 4K∗2
2

. (19)

Now the discriminant D′ = K∗21 − 4K∗2 of Equation (19) can be used to find out the
nature of the characteristic roots as

Case (i) K∗21 − 4K∗2 ≤ 0, then unstable;
Case (ii) K∗21 − 4K∗2 > 0, then stable.

For the collinear points Li, i = 1, 2, . . . , 9 at each value of the parameter ε, the charac-
teristic roots are complex, having a real part with the opposite sign. Therefore, for each
value of ε, all collinear points are unstable. Since each two exponential terms have opposite
signs, all collinear libration points are saddle points.

We found that all characteristic roots of Equation (15) are purely imaginary, and they
provide the periodic solutions corresponding to the triangular libration points L̄1 and L̄2.
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Thus, L̄1 and L̄2 are stable and both are the center for all values of ε, while the libration
points L̄3 and L̄4 are unstable due to presence of a positive real part in the characteristic
roots for each value of ε.

5. Conclusions and Discussion

We considered a modified restricted three-body problem in the framework of the
continuation fractional potential with its application on the Earth–Moon system to analyze
the equilibrium points and their linear stability. In fact, we introduced a new type of force
potential in the circular restricted three-body problem (CR3BP). The methods of analysis
employed in the conventional CR3BP were applied to the new type of force potential. In
the proposed study, the motion of infinitesimal mass was studied on the assumption that
the first primary is a non–symmetric body and its gravitational field is identified by a
continuation fractional potential effect, while the potential of a second primary is identified
by the point mass potential.

With the help of a numerical technique, we obtained thirteen equilibrium points;
among these, nine were collinear libration points (Li, i = 1, 2, 3, . . . , 9) and four were
non-collinear libration points (L̄i, i = 1, 2, 3, 4). We discussed the linear stability of all
the equilibrium points and found that the nine collinear points were unstable, while the
non-collinear points L̄1 and L̄2 were center points and hence were stable, whereas the other
two points, L̄3 and L̄4, were unstable. In brief, out of thirteen points, there were only two
stable equilibrium points.

Furthermore, we also discussed the effect of perturbation due to the continuation
fractional effect on the possible regions of the motion. The zero-velocity curves were drawn
around the Moon and Earth separately to show the variation in the regions of permitted
and prohibited motions. We found that the permitted region in the vicinity of the Moon
increased in the interval 0 ≤ ε ≤ 0.02 and then formed a closed loop when ε = 0.04.
Again, in the interval 0.04 < ε ≤ 0.1, the permitted region was expanded. By contrast, the
zero–velocity curves around the Earth (i.e., the permitted regions of motion in the vicinity
of the Earth) first expanded, then shrank and formed an oval–shaped orbit in the interval
0 ≤ ε ≤ 0.1.

In this work, a new formulation for the Earth–Moon system in the framework of the
modified Newtonian potential was constructed using a continuation fractional potential,
where this potential is generalized for a Newtonian potential and includes the effect of the
non-sphericity of the primary body (the Earth, for example). Furthermore, we discovered
that the effect of the continuation fractional parameter which identifies the non-sphericity
of larger primaries provides a greater number of equilibrium points apart from the classical
five Lagrangian points. Then, we discussed the stability of these points.
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