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Abstract: This paper investigates an environmental protection expenses model, which considers
the relations between the visitors to the protected areas V, the quality of the environmental resource
E, and the capital stock K. In this model, the total tourism income is used partly to increase the capital
stock or as the environmental protection expenses. Two time delays are introduced into the number of
visitors, since the visitors need time to respond the changes of the environment, and the environment
will take time to respond to the input of money. Stability crossing curves in the plane of delays (τ1, τ2)
are used to obtain the stable region of equilibrium. Numerical simulations represent the mutual
transformation of the supercritical bifurcation and the subcritical bifurcation. Our model shows that
under some parameter conditions, the share of tourism income η is related closely to the delay τ1,
while the capital stock and the environmental quality can be maintained persistently if the delay τ1 is
not too large.

Keywords: environmental protection expenses; two delayed model; dynamical behaviors; stability
crossing curves

1. Introduction

Protected areas are now expected to achieve an increasing conservation for social
and economic objectives. The protection of Protected Areas (PAs) is always a project for
researchers [1–3]. Recently, the models of environmental protection expenditures have
attracted new attention because of the deterioration of environment in some PAs [4–8].
Russu [4] studied a three-variable model among visitors V, quality of environmental
resource E and the capital stock K in the PAs:

V̇(t) = m1E(t) + m2K(t)− aV2(t)

Ė(t) = r(P̄− E(t))− (b− cη)V(t− τ)

K̇(t) = (1− η)V(t− τ)− δK(t),

(1)

where a, r, P̄, b, c, δ, m1, and m2 are strictly positive constants. a > 0 represents the crowding
influence; this means that the PA becomes less attractive when the number of tourists
visiting the PA increases. P̄ is the pollution stock of maximum tolerance, while b means
the waste generated by every visitor, 0 < r < 1 is a constant proportion of the pollution, c
determines how much the environmental expenses increase the quality of the environment.
Visitors impact negatively on the environmental resource, but environment and infrastruc-
tures are attractive for visitors; therefore, the manager of PA uses a part η of total tourism
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income to protect the environmental resource and the remaining part 1− η to increase
the capital stock, where 0 ≤ η < 1. The depreciate rate of capital stock is δ. m1, m2 mean
that the number of visitor is proportional to E and K , τ > 0 means the delay from visitors
for increasing capital stock and the quality of the environment. The parameters involved
in this topic can also see [5–7].

In Reference [8], Caraballo et al. suggested a modified version of Russu’s model as:
V̇(t) = m1E(t) + m2K(t)− aV2(t)

Ė(t) = r(P̄− E(t))− (b− cη)V(t− τ)E(t)

K̇(t) = (1− η)V(t− τ)− δK(t).

(2)

The authors gave some remarks for Russu’s model; they pointed out that there was
something wrong in Russu [4].

In many subjects such as biology, epidemiology, ecology, chemistry, and physics,
numerous engineering problems delays always occur. The models that have multiple
delays are of great interest mathematically and scientifically [9–16].

The stability crossing curve is an effective tool to understand the stable region for a
system with multiple delays and to comprehend the bifurcation behaviors. For instance,
Hale and Huang [17] investigated the stable region for the two delay differential equations

ẋ(t) + ax(t) + bx(t− r) + cx(t− σ) = 0. (3)

The authors described the stable region on the (r, σ) plane and pointed out that
the stable region could be unbounded. Gu et al. [18] studied the stability crossing curve
carefully for a special case of characteristic equation. Lin and Wang [19] used a different
approach to extend the results of Gu et al. result to a general case. An et al. [20] studied
the stability switching properties of a model with delay dependent parameters. Matsumto
and Szidarovszky [21] considered a delayed Lotka–Volterra competition model with two
delays and some symmetries; the stability crossing curves on which stability is switched to
instability were investigated.

In this paper, we suggest a modified model of Caraballo et al. Considering that
the public praise will affect the amount of visitors, but with a delay, r1V(t− τ1) is introduced
to the model. The crowding effect is considered as aV2(t− τ1). m1E(t) in the first equation
of (2) is changed into bV(t− τ1)E(t) by considering the visitor’s effect on this term, and the
influence of the capital stock m2K(t) to the visitors is not adopted in our model. In the
second equation of (2), we consider that the environment resource has self-purification
ability, so a term r2E(t) is added. We hope that the pollution is not tolerable, so we let
P̄ = 0. The term ηV(t − τ)E(t) is changed into ηV(t − τ)K(t), since we think in here
the capital stock is more important to the change of the environment. So, we obtain the
following model:

V̇(t) = r1V(t− τ1)− aV2(t− τ1) + bV(t− τ1)E(t)

Ė(t) = r2E(t)− cV(t− τ1)E(t) + ηV(t− τ2)K(t)

K̇(t) = (1− η)V(t− τ2)− δK(t),

(4)

where r1 is the rate of effect of the public praise; visitors will increase if r1 increases. r2 is
the self-purification ability of the environment. a > 0 represents the crowding effect, b is
the rate of the visitors affected by environment resource, c means the waste generated by
every visitor which is affected by environment resource, and 0 ≤ η < 1 means a share η of
total revenues is used to protect the environment. Capital stock is depreciated at the rate
δ. The increment of the visitors relies on the visitors at the time t− τ1 for their spread of
public praise and the crowding effect, while the dynamic evolution of the environment and
the capital stock rely on the contribution of visitors at the time t− τ2, where τ1 ≥ 0 and
τ2 ≥ 0. We name τ1 as the spread delay and τ2 as the protecting delay.
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We give the initial conditions of system (4) as:

V(θ) = υ1(θ), E(θ) = υ2(θ), K(θ) = υ3(θ), υi(θ) ≥ 0, i = 1, 2, 3,−τ ≤ θ ≤ 0,

where (υ1(θ), υ2(θ), υ3(θ)) ∈ C([−τ, 0], R3
+), τ = max[τ1, τ2]. Then, according to the the-

orem on functional differential equations [22], system (4) has one and only one solution
(V(t), E(t), K(t)) that satisfies the initial conditions. In this paper, we provide the theory of
the stability crossing curves and apply it to model (4). By means of numerical simulations,
we obtain the stable region of the equilibrium in the τ1 − τ2 plane. Bifurcation directions
of the periodic solutions are determined by using the normal form and the center manifold
theorem. Numerical simulations show how the equilibrium changes from stable to unstable
and how the bifurcation direction changes from supercritical to subcritical and vice versa.
Through the research of model (4), we find that the spread delay τ1 we introduced to the model
(4) is more important than τ2 which is τ in [4,8] for the stability of equilibrium, since τ1 needs
to be on the left of the stability crossing curves. We find that the share η of the tourism user
fees and the spread delay τ1 are very important parameters in our discussion.

2. Equilibria and Stability Crossing Curves

By straightforward computation, system (4) has equilibrium S0 = (0, 0, 0), which
is unstable, since there are always positive eigenvalues λ1 = r1 and λ2 = r2, while
the characteristic equation of (4) at S0 has no relation with delays τ1, τ2.

If

Hypothesis 1 (H1). bη(1− η)− aδc > 0, r2 > r1bη(1−η)
(1−a2)δ

,

system (4) has S∗ = (V∗, E∗, K∗) as a positive equilibrium:

V∗ =
−δ(ar2 + cr1) +

√
δ2(ar2 + cr1)2 + 4δr1r2(bη(1− η)− acδ)

2(bη(1− η)− acδ)
,

E∗ =
aV∗ − r1

b
, K∗ =

1− η

δ
V∗.

If

Hypothesis 2 (H2). bη(1− η)− aδc < 0, δ2(ar2 + cr1)
2 + 4δr1r2(bη(1− η)− acδ) > 0,

system (4) has S∗ = (V∗, E∗, K∗) as a positive equilibrium:

V∗ =
−δ(ar2 + cr1)−

√
δ2(ar2 + cr1)2 + 4δr1r2(bη(1− η)− acδ)

2(bη(1− η)− acδ)
,

E∗ =
aV∗ − r1

b
, K∗ =

1− η

δ
V∗.

If bη(1− η)− aδc = 0, there is no positive equilibrium.
Let u1(t) = V(t)−V∗, u2(t) = E(t)− E∗, u3(t) = K(t)− K∗, then (4) becomes



u̇1(t) = −aV∗u1(t− τ1) + bV∗u2(t)− au2
1(t− τ1) + bu1(t− τ1)u2(t)

u̇2(t) = −cE∗u1(t− τ1) + ηK∗u1(t− τ2) + (r2 − cV∗)u2(t) + ηV∗u3(t)

−cu1(t− τ1)u2(t) + ηu1(t− τ2)u3(t)

u̇3(t) = (1− η)u1(t− τ2)− δu3(t).

(5)
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The corresponding characteristic equation of system (5) can be written by

λ3 + α1λ2 + α2λ + (α3λ2 + α4λ + α5)e−λτ1 + (α6λ + α7)e−λτ2 = 0, (6)

where
α1 = cV∗ − r2 + δ,

α2 = (cV∗ − r2)δ,

α3 = a V∗,

α4 = a V∗(cV∗ − r2) + aV∗δ + bcV∗E∗,

α5 = aδV∗(cV∗ − r2) + bcδV∗E∗

α6 = −bηV∗K∗,

α7 = −bηδV∗K∗ − bη(1− η)V2
∗ .

(7)

When τ1 = τ2 = 0, by the criterion of Routh–Hurwitz, we have

Theorem 1. Assume τ1 = τ2 = 0 , (H1) (or (H2)) hold. If

Hypothesis 3 (H3). α1 + α3 > 0, α5 + α7 > 0, (α1 + α3)(α2 + α4 + α6) > α5 + α7

is satisfied, then S∗ is asymptotically locally stable.

Next, we investigate the distribution of the roots of (6). From Rouche theorem [23],
as (τ1, τ2) vary continuously in R2

+, the roots of Equation (6) vary continuously, and the
roots (counting multiplicity) can change their symbols of real parts if and only if they cross
the imaginary axis [24].

We consider two situations: (I) τ1 = τ2 = τ > 0, or (II) τ1 > 0, τ2 > 0, τ1 6= τ2.
Case (I) τ1 = τ2 = τ > 0.
Suppose that on the imaginary axis, system (6) has a root iω(ω > 0). Substituting

it into (6), separating the imaginary part and the real parts, we have{
α1ω2 = α4ω sin ωτ + (−α3ω2 + α5) cos ωτ,

α2ω−ω3 = (−α3ω2 + α5) sin ωτ − α4ω cos ωτ.
(8)

Then, we obtain

ω6 + (α2
1 − 2α2 − α2

3)ω
4 + (α2

2 + 2α3α5 − α2
4)ω

2 − α2
5 = 0. (9)

Let z = ω2, p = α2
1 − 2α2 − α2

3, q = α2
2 + 2α3α5 − α2

4, r = −α2
5; then, (9) becomes

h(z) = z3 + pz2 + qz + r = 0. (10)

We see from (10) that since r < 0, there is at least one positive root. We assume that
there are three positive roots for generality, defined by z1, z2 and z3. According to (8),
we have

τ
(j)
k =

1
ωk
{cos−1[

(α1ω2
k(α5 − α3ω2

k) + α4ω2
k(ω

2
k − α2)

(α5 − α3ωk)2 + α2
4ω2

k
] + 2jπ}, (11)

where j = 0, 1, · · · and k = 1, 2, 3. Denote

τ0 = τ
(0)
k0

= min
k∈{1,2,3}

{τ(0)
k }, ω0 = ωk0 . (12)

Then, we know
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Lemma 1. When (H1) (or (H2)), (H3) hold, all roots of (6) have strictly negative real parts when
τ ∈ [0, τ0). (6) has simple purely imaginary roots when τ = τ0.

Near τ = τ
(j)
k , consider λ(τ) = σ(τ) + iω(τ) as the root of (6) where σ(τ

(j)
k ) =

0, ω(τ
(j)
k ) = ωk, j = 0, 1, 2 . . . , k = 1, 2, 3. For the transversality, we know that

Lemma 2. Suppose zk = ω2
k , k = 1, 2, 3 and h′(zk) 6= 0, then [ dRe(λ)

dτ ]
τ=τ

(j)
k
6= 0.

According to Lemma 1 and Lemma 2, we have

Theorem 2. When τ1 = τ2 = τ, let τ0 be denoted by (12), and assume that (H1)(or(H2)), (H3)
are satisfied,

(i) If τ ∈ [0, τ0), then system (4) has a locally asymptotically stable positive equilibrium S∗.
(ii) If τ > τ0 and h′(zk) 6= 0, then for system (4), Hopf bifurcation will occur at S∗ when τ = τ0.

Case (II) τ1 > 0, τ2 > 0, τ1 6= τ2
Characteristic Equation (6) can be rewritten as

P(λ, τ1, τ2) ≡ P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 = 0, (13)

where
P0(λ) = λ3 + α1λ2 + α2λ,

P1(λ) = α3λ2 + α4λ + α5,

P2(λ) = α6λ + α7.

We can easily confirm that Equation (13) satisfies:

(I) deg(P0(λ)) ≥ max{deg(P1(λ)), deg(P2(λ))};
(II) P0(0) + P1(0) + P2(0) = α5 + α7 6= 0, i f (H3)holds;
(III) P0(λ), P1(λ), P2(λ) have no common zeros;
(IV) limλ→∞(|P1(λ)/P0(λ)|+ |P2(λ)/P0(λ)|) < 1.

Lemma 3. For each ω > 0, P0(iω) 6= 0, P(λ, τ1, τ2) = 0 has λ = iω as its root for some
(τ1, τ2) ∈ R2

+ if and only if

Hypothesis 4 (H4).
|P0(iω)| ≤ |P1(iω)|+ |P2(iω)|, (14)

and

− |P0(iω)| ≤ |P1(iω)| − |P2(iω)| ≤ |P0(iω)|.) (15)

The proof of Lemma 3 can be found in [18].
Let

G1(ω) = −|P0(iω)|+ |P1(iω)| − |P2(iω)|,

G2(ω) = −|P0(iω)| − |P1(iω)|+ |P2(iω)|,

G3(ω) = |P0(iω)| − |P1(iω)| − |P2(iω)|,

then we know that P(λ, τ1, τ2) = 0 has λ = iω as its solution if and only if G1(ω) ≤
0, G2(ω) ≤ 0, G3(ω) ≤ 0 simultaneously.

Denote the crossing set Ω of all ω, which satisfy (14) and (15). For given ω ∈
Ω, Pk(iω) 6= 0, k = 0, 1, 2. From (14) and (15), we can find all of (τ1(ω), τ2(ω)):
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τ1 = τm±
1 (ω) = (arg

P1(iω)

P0(iω)
+ (2m− 1)π ± ψ1)/ω, m = m±0 , m±0 + 1, . . . , (16)

τ2 = τn±
2 (ω) = (arg

P2(iω)

P0(iω)
+ (2n− 1)π ∓ ψ2)/ω, n = n±0 , n±0 + 1, . . . , (17)

where ψ1, ψ2 ∈ [0, π] can be calculated as

ψ1 = cos−1 { |P0(iω)|2 + |P1(iω)|2 − |P2(iω)|2
2|P0(iω)||P1(iω)|

}
, (18)

ψ2 = cos−1 { |P0(iω)|2 − |P1(iω)|2 + |P2(iω)|2
2|P0(iω)||P2(iω)|

}
, (19)

m+
0 , m−0 , n+

0 and n−0 are the smallest integers such that the corresponding τ
m+

0 +
1 , τ

m−0 −
1 , τ

n+
0 +

2 ,

and τ
n−0 −
2 are non-negative.

Let ω0 ∈ Ω, we can obtain τ10 = τ10(ω0), τ20 = τ20(ω0) from (16) and (17).
Next, we discuss the transversality. Choose τ2 to be the bifurcating parameter, and

take the derivative of λ(τ2) in (6); then, we obtain

{3λ2 + 2α1λ + α2 + [2α3λ + α4 − (α3λ2 + α4λ + α5)τ1]e−λτ1

+[α6 − (α6λ + α7)τ2]e−λτ2} dλ
dτ2

= λ(α6λ + α7)e−λτ2 ,

Therefore,

[ dλ
dτ2

]−1 = (3λ2+2α1λ+α2)eλτ2

λ(α6λ+α7)
+ [2α3λ+α4−(α3λ2+α4λ+α5)τ1]eλ(τ2−τ1)

λ(α6λ+α7)

+ α6
λ(α6λ+α7)

− τ2
λ .

(20)

When τ2 = τ20, λ = iω0, then

((3λ2 + 2α1λ + α2)eλτ2)τ2=τ20 = ((α2 − 3ω2
0) cos(ω0τ20)− 2α1ω0 sin(ω0τ20))

+i(2α1ω0 cos(ω0τ20) + (α2 − 3ω2
0) sin(ω0τ20)),

([2α3λ + α4 − (α3λ2 + α4λ + α5)τ1]eλ(τ2−τ1))τ2=τ20

= (α4 + τ10α3ω2
0 − τ10α5) cos(ω(τ20 − τ10))− (2α3 − τ10α4)ω0 sin(ω0(τ20 − τ10))

+i[(2α3 − τ10α4)ω0 cos(ω0(τ20 − τ10)) + (α4 + τ10α3ω2
0 − τ10α5) sin(ω0(τ20 − τ10))].

λ(α6λ + α7)τ2=τ20 = −α6ω2
0 + iα7ω0.

(21)

We have

Re[ dλ
dτ2

]−1
τ2=τ20

= M1 N1+M2 N2
α2

6ω3
0+α2

7ω0
, (22)

where

M1 = −α6ω0, M2 = α7,

N1 = (α2 − 3ω2
0) cos(ω0τ20)− 2α1ω0 sin(ω0τ20) + α6 + (α4 + τ10α3ω2

0 − τ10α5) cos(ω0(τ20 − τ10))

−(2α3 − τ10α4)ω0 sin(ω0(τ20 − τ10)),

N2 = 2α1ω0 cos(ω0τ20) + (α2 − 3ω2
0) sin(ω0τ20) + (2α3 − τ10α4)ω0 cos(ω0(τ20 − τ10))

+(α4 + τ10α3ω2
0 − τ10α5) sin(ω0(τ20 − τ10)).
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Let

Hypothesis 5 (H5). M1N1 + M2N2 6= 0.

Denote Tj = {(τ j
10(ω), τ

j
20(ω)), ω ∈ Ω}, j = 1, 2, . . . , p are p sections of continuous

curves defined on Ω, T◦ is the internal region surrounded by T =
⋃p

j=1 Tj with coordinate
axis τ1 = 0 and τ2 = 0. Then, we can obtain the following:

Theorem 3. Assume that (H1) (or (H2)), (H3), (H4) hold,

(I) If (τ1, τ2) ∈ T◦, then system (4) has a positive equilibrium S∗ which is locally asymptoti-
cally stable.

(II) If (τ1, τ2) crossing T and (H5) holds, then (τ1, τ2) = (τ10, τ20) ∈ T is a critical point, system
(4) has Hopf bifurcation at S∗

We denote continuous curve Tj, j = 1, 2, . . . , p as stability crossing curves.

3. Hopf Bifurcation Direction and the Stability of Periodic Solution

In this section, we suppose 0 < τ1 < τ2. If 0 < τ2 < τ1; we can discuss it using
the same method.

Let τ1 = τ10, τ2 = τ20 + µ, then system (5) has µ = 0 as its bifurcation value. Let
t = τt̄, ui(τ t̄) = ūi(t̄), i = 1, 2, 3 and omit “−′′ above, (5) can be expressed as

u̇(t) = Lµut + f (µ, ut), (23)

where u(t) = (u1(t), u2(t), u3(t))> ∈ R3, ut(θ) = u(t + θ), θ ∈ [−1, 0] .

Lµφ = (τ20 + µ)(Aφ(0) + Bφ(−τ1

τ2
) + Cφ(−1)), φ(θ) = (φ1(θ), φ2(θ), φ3(θ))

>, (24)

f (µ, φ) = (τ20 + µ)( f1, f2, f3)
>

= (τ20 + µ)(−aφ2
1(−

τ1
τ2
) + bφ1(− τ1

τ2
)φ2(0),−cφ1(− τ1

τ2
)φ2(0) + ηφ1(−1)φ3(0), 0)>,

where

A =

 0 bV∗ 0
0 r2 − cV∗ ηV∗
0 0 −δ

, B =

 −aV∗ 0 0
−cE∗ 0 0

0 0 0

, C =

 0 0 0
ηK∗ 0 0

1− η 0 0

.

By the Riesz representation theorem, for θ ∈ [−1, 0], we write

Lµφ =
∫ 0

−1
dρ(θ, µ)φ(θ), (25)

where
ρ(θ, µ) = (τ20 + µ)(Aδ(θ) + Bδ(θ +

τ1

τ2
) + Cδ(θ + 1)). (26)

δ(θ) satisfies δ(θ) = 0 if θ 6= 0, and δ(0) = 1.
Define

A(µ)φ =


dφ(θ)

dθ , θ ∈ [−1, 0),∫ 0
−1 dρ(s, µ)φ(s), θ = 0,

and

R(µ)φ =

{
0, θ ∈ [−1, 0),

f (µ, φ), θ = 0.
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Then, (23) can be expressed as

u̇t = A(µ)ut + R(µ)ut, (27)

it is a differential equation in functional space C1([−1, 0], R3).

Denote A = A(0),

A∗ψ(s) =

 − dψ(s)
ds , s ∈ (0, 1],∫ 0

−1 dρ>(t, 0)ψ(−t), s = 0,

and

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dρ(θ, 0)φ(ξ)dξ, (28)

where ψ ∈ C1∗([0, 1], (R3)∗). Then, A∗ is an adjoint operator of A.

Suppose q(θ) = (1, β, γ)>eiω0τ20θ satisfies Aq(θ) = iω0τ20q(θ), which means q(θ) is
an eigenvector of A. We obtain that

β =
(iω0 + δ)(ηK∗e−iω0τ20 − cE∗e−iω0τ10) + η(1− η)V∗e−iω0τ20

(iω0 + δ)(iω0 + cV∗ − r2)
, γ =

(1− η)e−iω0τ20

iω0 + δ
.

Let −iω0τ20 be an eigenvalue of A∗, and q∗(s) = D(1, β∗, γ∗)eiω0τ20s is an eigenvector;
then, we have

β∗ =
bV∗

−iω0 + cV∗ − r2
, γ∗ =

bηV2
∗

(−iω0 + δ)(−iω0 + cV∗ − r2)
.

By (28),

〈q∗(s), q(θ)〉 = D̄(1 + ββ∗ + γγ∗ −
∫ 0
−1 (1, β∗, γ∗)θeiθω0τ20 dη(θ, 0)(1, β, γ)>)

= D̄(1 + ββ∗ + γγ∗ + τ20e−iω0τ20(ηβ∗K∗ + (1− η)γ∗) + τ10e−iω0τ10(−aV∗ − cβ∗E∗)).

For 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0, we choose

D̄ =
1

1 + ββ∗ + γγ∗ + τ20e−iω0τ20(ηβ∗K∗ + (1− η)γ∗) + τ10e−iω0τ10(−aV∗ − cβ∗E∗)
(29)

Define
z(t) = 〈q∗, ut〉, ut(θ) = W(t, θ) + 2Re{z(t)q(θ)} (30)

when µ = 0. Then, (27) becomes{
ż = iω0z + g20

2 z2 + g11zz̄ + g02
2 z̄2 + g21z2z̄ + · · · ,

Ẇ = AW + H(z, z̄, 0).
(31)

Here,

g20 = 2τ20D̄((−ae−iω0τ10 + (b− cβ∗)βe−iω0τ10 + ηγβ∗e−iω0τ20),

g11 = τ20D̄(−2a + (b− cβ∗)β̄e−iω0τ10 + (b− cβ∗)βeiω0τ10 + ηγ̄β∗e−iω0τ20 + ηγβ∗eiω0τ20),

g02 = 2τ20D̄((−aeiω0τ10 + (b− cβ∗)β̄)eiω0τ10 + ηγ̄β∗eiω0τ20),

g21 = τ20D̄{ 1
2 (−2aeiω0τ10 + (b− cβ∗)β̄)W1

20(−
τ10
τ20

) + 1
2 (b− cβ∗)eiω0τ10W2

20(0)

+ 1
2 ηβ∗eiω0τ20W3

20(0) +
1
2 ηβ∗γ̄W1

20(−1) + (−2ae−iω0τ10 + (b− cβ∗)β)W1
11(−

τ10
τ20

)

+(b− cβ∗)e−iω0τ10W2
11(0) + ηβ∗e−iω0τ20W3

11(0) + ηγβ∗W1
11(−1)}.
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W20(θ) =
ig20

ω0τ20
q(0)eiθω0τ20 +

iḡ02

3ω0τ20
q̄(0)e−iθω0τ20 + C1e2iθω0τ20 ,

W11(θ) = −
ig11

ω0τ20
q(0)eiθω0τ20 +

iḡ11

ω0τ20
q̄(0)e−iθω0τ20 + C2.

Here, C1, C2 ∈ R3 satisfy

A1C1 = f0(20),

A1 =


2iω0 + aV∗e−2iω0τ10 −bV∗ 0

cE∗e−2iω0τ10 − ηK∗e−2iω0τ20 2iω0 − r2 + cV∗ −ηV∗

−(1− η)e−2iω0τ20 0 2iω0 + δ

,

f0(20) = 2


(−ae−iω0τ10 + bβ)e−iω0τ10

−cβe−iω0τ10 + ηγe−iω0τ20

0

,

and

A2C2 = f0(11),

A2 =


−aV∗ bV∗ 0

−cE∗ + ηK∗ r2 − cV∗ ηV∗

1− η 0 −δ

,

f0(11) = 2


−a + bRe(βeiω0τ0)

−cRe(βeiω0τ0) + ηRe(γeiω0τ0)

0

.

From Hassard’s method [25], we have

l1(0) =
i

2ω0τ20
(g20g11 − 2|g11|2 −

1
3
|g02|2) + g21. (32)

µ2 = − Re{l1(0)}
Re{λ′(τ20)}

confirms the Hopf bifurcation direction: if Re{λ′(τ20)} > 0, µ2 > 0
(or if µ2 < 0), the Hopf bifurcation periodic solution exists for τ2 > τ20 (or τ2 < τ20),
the bifurcation is supercritical ( or subcritical). If Re{λ′(τ20)} < 0, the bifurcation is
on the opposite direction.

ν2 = 2Re{l1(0)} confirms the stability of the Hopf bifurcation periodic solutions:
the solution is stable if ν2 < 0 or it is unstable if ν2 > 0.

4. Numerical Simulations of the System

We consider some numerical results with different values of τ1, τ2. Let the parameters
of system (4) be r1 = 1, r2 = 0.1, a = 0.09, b = 0.2, c = 4, η = 0.8, δ = 0.5, then condition
(H2) holds. The unique positive equilibrium is S∗ = (13.5189, 1.0835, 5.4076).

The corresponding characteristic equation of system (4) at S∗ is

λ3 + 54.4757λ2 + 26.9879λ + (1.2167λ2 + 77.9992λ + 38.6954)e−λτ1 + (−11.6967λ− 11.6967)e−λτ2 = 0. (33)

When τ1 = 0, τ2 = 0, the roots of Equation (33) are −53.9732,−1.3481,−0.3710. Thus,
S∗ is asymptotically stable.
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Next, we just consider τ1 6= τ2. From Lemma 3, we obtain that if and only if ω ∈
[1.173, 1.676], P(λ, τ1, τ2) = 0 has a solution λ = iω (see Figure 1).
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-400

-300
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-100

0

100

200

300

400

500

G
i(
)

G1( )

G2( )

G3( )

Figure 1. For r1 = 1, r2 = 0.1, a = 0.09, b = 0.2, c = 4, η = 0.8, δ = 0.5, G1(ω), G2(ω), G3(ω) are all
less then or equal to 0 if ω ∈ [1.173, 1.676].

From Theorem 3, we know that if (τ1, τ2) ∈ T◦, which is surrounded by T =
⋃5

j=1 Tj,
coordinate axis τ1 = 0, τ2 = 0 and τ2 = 7 (see Figure 2, here, τ2 can be larger); thus, S∗
is asymptotically stable, where T1 = ((τ1−

10 (ω), τ2−
20 (ω)), T2 = ((τ1−

10 (ω), τ2+
20 (ω)), T3 =

((τ1−
10 (ω), τ1−

20 (ω)), T4 = ((τ1−
10 (ω), τ1+

20 (ω)), T5 = ((τ1−
10 (ω), τ0−

20 (ω)) from (16) and (17).
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Figure 2. For r1 = 1, r2 = 0.1, a = 0.09, b = 0.2, c = 4, η = 0.8, δ = 0.5, T1 − T5 are stability crossing
curves. The stable region is on the left of the stability crossing curves.

When (τ1, τ2) crossing T and (H5) holds, there are periodic solutions bifurcating
from S∗. We choose some points (τ1, τ2) to illustrate the result.

We know from Figure 2 that if τ1 < 0.9034, then S∗ is always stable. Let τ1 = 1.0003;
we see from Figure 2 that there are three critical points on the stability crossing curves, (τ4

10, τ4
20)

.
=

(1.0003, 1.9807) ∈ T4, (τ3
10, τ3

20)
.
= (1.0003, 4.3577) ∈ T3, (τ2

10, τ2
20)

.
= (1.0003, 6.4977) ∈ T2.

For each point, we calculate Re{λ′(τ20)}, µ2, ν2.
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When delay τ1 = 1.0003 remains unchanged, τ20 < 1.9807, since (τ1, τ2) is in the left
of T, we know that S∗ is asymptotically stable (see Figure 3).
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Figure 3. The phase graph and the trajectories of system (4) with τ1 = 1.00, τ2 = 1.80, S∗ is
asymptotically stable.

Let the delays (τ1, τ2) increase and pass through the critical point (τ10, τ20)
.
= (1.0003, 1.9807),

where ω = 1.372. We obtain that at (τ10, τ20) = (1.0003, 1.9807), Re{λ′(τ20)} = 0.2762 > 0,
Re{l1(0)} = −0.0565 < 0, µ2 = 0.2047 > 0, and ν2 = −0.1131 < 0. Therefore, the bifurcation
is supercritical; the bifurcation periodic solution is in the direction of τ20 > 1.9807 and is stable
(see Figure 4).
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Figure 4. The phase graph and the trajectories of system (4) with τ1 = 1.00, τ2 = 2.55, S∗ is unstable,
from S∗ bifurcates a stable periodic solution.

Let the delays (τ1, τ2) increase further to arrive at the critical point (τ10, τ20)
.
=

(1.0003, 4.3577), where ω = 1.372. We obtain Re{λ′(τ20)} = −0.0935 < 0, Re{l1(0)} =
−0.0580 < 0, µ2 = −0.6206 < 0, and ν2 = −0.1160 < 0. Therefore, the bifurcation is
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subcritical, and the bifurcation periodic solution is stable, which is on the side less than
τ20 = 4.3577. When τ20 increases crossing 4.3577, the delay (τ1, τ2) enters the area of T◦,
and S∗ becomes stable again (see Figure 5).
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Figure 5. The phase graph and the trajectories of system (4) with τ1 = 1.00, τ2 = 4.50, S∗ is stable again.

Let the delays (τ1, τ2) increase further to arrive at the critical point (τ10, τ20)
.
=

(1.0003, 6.4977), where ω = 1.372. We obtain Re{λ′(τ20)} = 0.2771 > 0, Re{l1(0)} =
−0.0538 < 0, µ2 = 0.1941 > 0, and ν2 = −0.1076 < 0. Therefore, the bifurcation is
supercritical; when τ20 increases crossing 6.4977, S∗ becomes unstable, and a stable periodic
solution bifurcates from S∗ (see Figure 6).
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Figure 6. The trajectories and phase graph of system (4) with τ1 = 1.00, τ2 = 6.50, S∗ is unstable and
a stable periodic solution bifurcates from S∗.

In this example, we can see that if the Hopf bifurcation is supercritical for one point
(τm1

10 , τn1
20 ) on the stability crossing curve, then for another point (τm2

10 , τn2
20 ) on the adjacent

stability crossing curve, the Hopf bifurcation is subcritical and vice versa. The Hopf
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bifurcation will be supercritical and subcritical alternately. From Figure 7, we understand
that η is closely related to the delay τ1, with a smaller η, a smaller τ1 is needed for
the equilibrium’s stability.
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Figure 7. Stability crossing curves for different η. From the left to the right are the stability crossing
curves of η = 0.6, η = 0.7, η = 0.8, and η = 0.9.

5. Conclusions

In this paper, we proposed a delayed environmental protection expenditures model
with two delays. We discussed the existence of equilibrium and bifurcation using delays τ1
and τ2 as the bifurcation parameters. We depicted the stability crossing curves and obtained
the stability of the equilibrium S∗; the direction of bifurcation was also considered.

Since the financial support for the protection of the environment is only depending
on the share η of the tourism user fees in this model, the stability of the equilibrium relies
closely on η with delay τ1, the lower the share η, the smaller the spread delay τ1 needs to be.
The external capital support for sustaining the PAs has not been considered in the model;
it will be an interesting problem in the management of PAs. We leave this subject for
future work.
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