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Abstract: We study some fractal properties of the hereditary αω-dynamo model in the two-mode
approximation. The phase variables of the model describe the temporal dynamics of the toroidal
and poloidal components of the magnetic field. The hereditary operator of the quenching the α-
effect by field helicity in numerical simulation is determined using the Riemann–Liouville fractional
differentiation operator. The model also includes a stochastic term. The structure of this term
corresponds to the effect of coherent structures from small-scale magnetic field and velocity modes. A
difference scheme and a program code for numerical simulation have been developed and verified. A
series of computational experiments with the model has been carried out. The Hausdorff dimension
of the polarity scale in the model and the distribution of polarity intervals are calculated. It is
shown that the Hausdorff dimension of the polarity scale is less than 1, i.e., this scale is a fractal.
The numerical value of the dimension for some values of the control parameters is 0.87, which is
consistent with the dimension of the real geomagnetic polarity scale. The distribution histogram
of polarity intervals in the model has a pronounced power-law tail, which also agrees with the
properties of real polarity scales.

Keywords: hereditary systems; fractional dynamics; αω-dynamo; geodynamo; geomagnetic polarity
scale; fractal time series; Hausdorff dimension; power-law

1. Introduction

The large-scale magnetic fields exist in space objects of various spatial scales—galaxies,
planets, stars. All these fields are formed and maintained at a fairly stable level by a single
physical mechanism—a hydromagnetic dynamo [1]. The main method for studying cosmic
dynamo systems is modeling, since it is impossible to reproduce in laboratories the values
of the dimensionless parameters of the Reynolds number Re and the Reynolds magnetic
number Rm, which are typical for cosmic media.

Briefly, the idea of a dynamo is in the following [1]. Let at the initial moment of time
the conducting medium be weakly magnetized by some external magnetic field. Then the
movement of such media can, under certain conditions, lead to the formation of a new
magnetic field, which is much larger than the original one. This field, in turn, influences
the motion of the medium, correcting the generation process. Feedback arises, leading to
the generation of a field of finite magnitude. Since the magnetic field has zero divergence,
it is always possible to distinguish between toroidal and poloidal components in it. In the
cycle of dynamo work, these two components mutually generate each other.

The dynamo equations are quadratic in the magnetic field, which always makes it
possible to have symmetric solutions, i.e., no preferred field polarity. It also gives the
possibility of reversals—quick changes in the polarity of the field. These reversals are
observed in real dynamo systems [2,3].

In general, such systems are characterized by different dynamic regimes. Regular and
chaotic oscillations, vacillations, bursts, excursions (short changes in polarity after which
the polarity is restored) are observed. Therefore, we can say that cosmic dynamo systems
are complex oscillatory systems.
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In dynamo theory, it is established that field generation is impossible under conditions
of axial symmetry. On the other hand, the observed large-scale magnetic fields and media
streams are axisymmetric in the first approximation.

Cosmic objects have very large values of Re and Rm. For example, for the Earth
Re ∼ 109, Rm ∼ 103, and for the Sun Re ∼ 1014, Rm ∼ 109. This is a sign of strong
turbulence with many spatial scales. Since direct numerical simulation is not possible with
such numbers, mean field models are used. In these models, large-scale axis-symmetric
fields and three-dimensional small-scale pulsations are distinguished. Then, the dynamo
equations are averaged over the fluctuations. The most popular model is αω-dynamo.

The idea of αω-dynamo for cosmic magnetic field was proposed by [4]. The main
difficulty of this dynamo is in the feedback, when a large-scale magnetic field affects the
turbulent generator, providing a self-consistent nonlinear mechanism for generating a
finite field. Usually this feedback assumed to be instantaneous in time and local in space.
However, the proper description of turbulent transport involves the convolution of integral
kernels with the mean field [5]. The authors of [6] showed that the memory effect strongly
affects the dynamo action. The [7] used the formalism of response functions and showed
that the effect of the integral kernels can be significant for anisotropic flows. Therefore,
when modeling a dynamo, it is desirable to take into account this memory (heredity).

One way to build the desired models is as follows. For the fields of velocity and mag-
netic induction, additive expansions into large-scale modes with time-varying coefficients
(amplitudes) are introduced. These expansions are substituted into the dynamo equations
and the procedure of the Galerkin method is applied. In order to take into account the
memory effect for the mode amplitudes in a dynamic system, it is necessary to introduce
hereditary terms in one way or another. In this way, a two-mode model was constructed
in [8] where it was shown that the αω-dynamo can be regarded as an oscillator with a
hereditary potential.

If the large-scale spatial structure of the field is sufficiently simple, a small number of
modes can be used. As a result, we obtain a low-mode model. The advantage of low-mode
models is that they allow calculating the long-term evolution of the magnetic field on the
time scales of the space object’s existence—billions of years.

This makes it possible to compare the statistical characteristics of solutions with data
on the behavior of the geomagnetic field in the distant past. Information about the temporal
evolution of the geomagnetic field is contained in paleomagnetic records that record the
residual magnetization of ferromagnetic minerals during their crystallization. Based on
these records, geomagnetic polarity timescales (GMPTS) are constructed. It turns out a
time series of evolution of a large-scale field, unique in duration, in a real dynamo system.
The longest GMPTS covers 1700 Myr [9].

The different GMPTS form a self-similar fractal structures [9,10]. Intervals between the
reversals (polarity intervals) differ by several orders of magnitude, there are long intervals
without reversals, superchrons [2,11]. Similar fractal properties of solutions were found in
various geodynamo models, for example [12–14].

In this work, we study one two-mode fractional stochastic hereditary αω-dynamo
model. The phase variables describe the time dynamics of the toroidal and poloidal
field components.

The model takes into account the memory effect in the feedback—in the quenching of
the turbulent generator by the helicity or energy of the field. The popular way to introduce
heredity into mathematical models is to use fractional derivatives [15–17]. However, the
formal replacement of ordinary differentiation operators in differential models by fractional
operators is physically difficult to comprehend. Therefore, in this work, we first introduce
the hereditary term in a general form, which is physically well understood, and only then
we introduce fractional derivatives for the particular case.

The use of low-mode approximations always assumes that the total effect of discarded
small-scale modes is zero. However, in reality, these modes can spontaneously synchronize
and have a significant effect on the system. The formation of such coherent structures
is well known in the theory of turbulence [18]. Therefore, we introduce into the model



Fractal Fract. 2022, 6, 328 3 of 26

a random process that simulates the action of such structures. Previously, we used this
approach in one simple model [14].

Note that in this paper we do not consider the reproduction in the model of the complex
properties of turbulence, which have been studied in many stochastic dynamo models.

We discuss the fractional differential model of the two-mode dynamo and the fractal
properties of the polarity scale, such as the fractional Hausdorff dimension and the power-
law distribution of polarity intervals. Moreover, we are trying to introduce fractional
operators in the model not formally, but through heredity. Our work is formal mathematical.
The possibility of applying its results to specific space objects requires a separate study.

Next, we describe the derivation of the model equations and the difference scheme,
simulation results, as well as the statistical properties of the obtained solutions. It turned
out that they are in good agreement with the properties of real GMPTS.

2. Hereditary Two-Modes αω-Dynamo Model

Consider the construction of one hereditary dynamical system, which is one model of
a cosmic dynamo-system.

Let an axis-symmetric large-scale magnetic field of a star or planet is generated by large-
scale differential rotation and turbulent α-effect. This is the so-called Parker dynamo [4]. We
consider that the spatial structure of the field is simple and can be described by one-poloidal
and one-toroidal modes.

Then the field generation can be described by the following simple system [8]:

dBT

dt
= ωBP − ηT BT ,

dBP

dt
= αBT − ηPBP,

(1)

where BT(t) and BP(t) have the meaning of the toroidal and poloidal modes amplitudes.
Positive constant coefficients: ω is the measure of generation toroidal mode by large-scale
differential rotation, α is the measured generation poloidal mode by helicity of small-scale
turbulence, 1/ηT and 1/ηP are the character times of modes dissipation. Explicit expres-
sions for these coefficients (Galerkin coefficients) are given in [8] and are not important now.

The model (1) is linear (so-called kinematic dynamo), so the generation of a finite

magnetic field is impossible. It is also clear that generation will occur in case D =
αω

ηTηP > 1.

Exactly in this case the zero equlibrium point will be unstable and the small initial values
of the field will increase. Therefore, the dimensionless parameter D is called the relative
dynamo number. In what follows, we will call it the dynamo number for short.

In the real physical dynamo system the magnetic field is changes turbulent medium
flow by Lorentz force, and the generation of field is quench. In particular, the small-scale
turbulence helicity is changes.

We can introducing feedback (α-quenching) into the (1). The Lorentz force is quadratic
in the magnetic field, so the feedback can be introduced into the model in the form:

α→ α(1− w(t)), (2)

where α is the helicity in the absence of a strong magnetic field, and w(t) is dimensionless
dynamical correction. This correction is quadratic expressed in terms of BT(t) and BP(t).

In the simplest case w(t) = Q
(

BT(t), BP(t)
)
, where Q(·, ·) is a quadratic form. Such

type models are known as algebraic quenching models [1,19,20].
In more complex models, an evolution equation (dynamical quenching) is introduced

for w(t) in the form:

Dw(t) = Q
(

BT(t), BP(t)
)

, (3)

where D is some differential operator [21,22].
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A more general form of dynamical quenching is obtained by defining w(t) as t-
parametric functional [8,23]:

w(t) =
1

tKB2
0

∫ t

0
K
(

t− τ

tK

)
Q
(

BT(τ), BP(τ)
)

dτ, (4)

where K(·) is some dimensionless kernel, with the properties K(≥ 0) ≥ 0 and K(+∞) = 0,
tK is the time scale of kernel, B0 is some typical value of field. This predetermined expression
specifies the model of hereditary quenching. This is a memory model. Obviously, if we
change the kernel K by a constant factor c > 0, this is equivalent to changing B0 by the
factor

√
c. Therefore, in what follows, we always consider the kernel K in a normalized

suitable way.
Two special cases of form Q

(
BT(t), BP(t)

)
have an obvious physical meaning. In

the first case Q = |BT(t)|2 + |BP(t)|2 determined field energy. In the second case Q =
BT(t)BP(t) determined field helicity. More generally,

Q = γ
(
|BT(t)|2 + |BP(t)|2

)
+ (1− γ)BT(t)BP(t), 0 ≤ γ ≤ 1. (5)

It must be said that the α-quenching models listed above, with an arbitrary quadratic
form Q, have an abstract mathematical character. Most of the works mentioned above
use energy as a form Q. It is known that for a strong large-scale field, α ∼ B−2 [1]. In
addition, the magnetic helicity in reality does not keep up with the changes in the large-
scale magnetic field. Helicity cannot be given by an algebraic expression for the large-scale
field components. It is determined by the differential equation on the right side of the
large-scale field [24–26].

However, we will consider the general expression (5) as a mathematical generalization
of the models. It will be shown below that this type of form allows one to obtain the Lorenz
system as a special case. This classical system was used as a simple model for the chaotic
component of the Solar cycle [21].

Now let us make the model ((1), (2), (4)) dimensionless. We will use the diffusion time
of the poloidal field 1/ηP as the time scale. Let us now turn to new dimensionless variables
(keep the notation for time):

t→ ηPt, BT =
B0

ηP

√
α

tK
x(t), BP =

B0ηT

ηPω

√
α

tK
y(t), w =

ηTηP

αω
z(t),

and to the new dimensionless parameters:

D =
αω

ηTηP , µ =
ηT

ηP , r =
ω

ηT
, p = tKηP.

For these parameters: D is the dynamo-number; µ−1 is the dimensionless time of
toroidal field decay; r is the ratio of toroidal and poloidal modes scales; p is the dimension-
less time scale of the kernel.

Then the dimensionless model of a two-modes dynamo with memory takes the form:

dx
dt

= µ(y− x),

dy
dt

= (D− z)x− y,

z(t) =
∫ t

0
K
(

t− τ

p

)
qr,γ(x(τ), y(τ)) dτ,

(6)

where dimensionless quadratic form,

qr,γ(x(τ), y(τ)) = γ

(
rx2(τ) +

1
r

y2(τ)

)
+ (1− γ)x(τ)y(τ). (7)
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We shall also study the case of a «working dynamo», i.e., D > 1.
The hereditary model of αω-dynamo (6) and (7) with qr,γ(x(τ), y(τ)) = x(τ)y(τ), i.e.,

γ = 0 was studied in [8]. It was shown that the model can be considered as an oscillator
with a hereditary potential.

We can highlight two particular cases of the kernel. In the first case, the kernel is

a power function of the form K(s) =
s−β

Γ(1− β)
, 0 < β < 1. Then, differentiating third

equation of system (6) with respect to time t, we get:

dz
dt

=
pβ

Γ(1− β)
· d

dt

∫ t

0

qr,γ(x(τ), y(τ))

(t− τ)β
dτ = pβDβ

0+qr,γ(x(t), y(t)), (8)

where Dβ
0+ is the Riemann–Liouville fractional derivative operator of order β.

So, the dynamo model in this case is the system of fractional differential equations:

dx
dt

= µ(y− x),
dy
dt

= (D− z)x− y,

dz
dt

= pβDβ
0+qr,γ(x, y), z(0) = 0.

(9)

In the second particular case (for a whole class of kernels), the dynamo model can be
written as a classical differential system. Let the kernel be a solution of a linear homoge-
neous differential equation of order n with constant coefficients:

anK(n)(t) + an−1K(n−1)(t) + · · ·+ a1K′(t) + a0K(t) = 0. (10)

Then, the third equation of system (6) is equivalent to differential Equation (8):

n

∑
k=0

ak pk dkz
dtk =

n

∑
k=0

ak

k−1

∑
m=0

pk−mK(m)(0)
dk−m−1

dtk−m−1 qr,γ(x, y), (11)

with initial conditions

z(0) = 0, z(m)(0) =
m−1

∑
k=0

K(m−k−1)(0)
dk

dtk qr,γ(x(t), y(t))
∣∣∣
t=0

, m = 1, . . . , n− 1. (12)

Therefore, the integro-differential system (6) can be specified using the l-th order
differential system, where 3 ≤ l ≤ 3n− 2. The order l of this system depends on the initial
conditions for the kernel K and its derivatives.

Note that arbitrary initial conditions can only be chosen for variables x and y. The rest
of the initial conditions will be determined from (12), first, and second system (6) equations.
Therefore, the phase space of the model will be only some manifold in the space of variables
x, y, z, z′, . . . , z(n−1).

3. Stochastic αω-Dynamo Model

Let us now introduce into the model the stochastic term ξ(t), which describes the
influence of coherent structures, spontaneously formed by small-scale magnetic modes.
Depending on the morphology of each structure, it can either enhance or weaken the field
generation. Therefore, this term we introduce into the model as an additive correction to
the dynamo number. The mean of this correction should be zero.

Now, we the model structure of this process describe. We assume that the k-th coherent
structure spontaneously forms at random time ϕk and self-destructs at random time θk. We
neglect the possibility of the simultaneous existence of two or more coherent structures.
Therefore, we have the stochastic increasing sequence of time points: 0 < ϕ1 < θ1 < ϕ2 <
θ2 < · · · < ϕk < θk < . . . .
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Then, τW
k = ϕk − θk−1 is a random waiting time for the k-th structure to formation,

and τE
k = θk − ϕk is a random time for the structure existence.

Let the random variables ξk with zero mean describe the intensity of the k-th structure
influence on the field generation. Intensities ξk are independent and identically distributed
Gaussian random variables: ξk ∼ N (0, σ2).

The emergence of coherent structures is quite rare, and they exist for a short time.
Therefore, it is reasonable to assume in the model that the distribution asymptotic properties
for a waiting time and for an existence time should be very different. Therefore, we will
assume that the variables τW

k are power-law distributed with the TW typical value, and the
variables τE

k are exponential law distributed with the TE typical value. Since the mean of
a power-law distribution can be infinite, we will use the median of the distribution as a
typical value.

So, we take the probability density function (pdf) for the waiting time in the form:

pW(t) =
ν− 1
cTW

(
1 +

t
cTW

)−ν

, c =
(

2
1

ν−1 − 1
)−1

, ν > 1, t ≥ 0, (13)

and we take the pdf for the existing time in the form:

pE(t) =
ln 2
TE exp

(
− ln 2

TE t
)

, t ≥ 0. (14)

Random variables with such distributions can be easily simulated using the inver-
sion method:

τE = − TE

ln 2
ln U and τW = cTW

(
U1/(1−ν) − 1

)
, (15)

where random variable U is uniform on [0; 1].
All random variables ξk, τW

k and τE
k are assumed to be independent for different k and

of each other.
Now we define the process ξ(t) as follows:

ξ(t) =
+∞

∑
k=1

ξk[H(t− τk)− H(t− θk)], (16)

where H(·) is Heaviside step function.
So, the stochastic hereditary αω-dynamo model is defined by the following equations:

dx
dt

= µ(y− x),

dy
dt

= (D + ξ(t)− z)x− y,

z(t) =
∫ t

0
K
(

t− τ

p

)
qr,γ(x(τ), y(τ)) dτ.

(17)

The model is closed by the initial conditions x(0) = x0, y(0) = y0.
Let us now find the equilibrium points (x∗, y∗, z∗) of the model (17).
To do this, we solve the system:

µ(y∗ − x∗) = 0, (D + ξ(t)− z∗)x∗ − y∗ = 0,

z∗ = qr,γ(x∗, y∗)
∫ t

0
K
(

t− τ

p

)
dτ.

(18)

Clearly x∗ = y∗ = z∗ = 0 is the solution and anyway x∗ = y∗. We then obtain from
the second equation, that (D + ξ(t)− z∗ − 1)x∗ = 0. If x∗ 6= 0, then z∗ = D + ξ(t)− 1.
Since ξ(t) varies with time and z∗ is constant, this equality is impossible. So, the model (17)
has only zero equlibrium point.
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Now we will determine the stability of this point. To do this, note that in system
(17) there are only two phase variables actually—x(t) and y(t). The variable z(t) is just
a notation for the integral term. Therefore, we consider system (17) as two-dimensional.
Then the elements of the Jacobi matrix:

J11 = −µ, J12 = µ,

J21 = −x
∫ t

0
K
(

t− τ

p

)
∂

∂x
qr,γ(x(τ), y(τ)) dτ+

+D + ξ −
∫ t

0
K
(

t− τ

p

)
qr,γ(x(τ), y(τ)) dτ,

J22 = −x
∫ t

0
K
(

t− τ

p

)
∂

∂y
qr,γ(x(τ), y(τ)) dτ − 1.

(19)

It can be seen that at the equilibrium point (0; 0): J11 = −µ, J12 = µ, J21 = D + ξ,
J22 = −1. We then find the characteristic equation and use the Routh–Hurwitz criteria to
determine its stability. The equilibrium point (0; 0) turns out to be stable if D + ξ(t) < 1
and unstable if D + ξ(t) > 1.

4. Difference Scheme for Model

We introduce the time step h and uniform time grid {tn} = {nh}. The corresponding

values of the phase variables xn, yn and zn. We also denote Kn = K
(

nh
p

)
and qn =

qr,γ(xn, yn).
For the integral part (third equation) of the system (17), we will use the Simpson’s rule:

zn+1 = L +
h
3

K0qn+1 = L +
h
3

K0qr,γ(xn+1, yn+1), (20)

where for even n:

L =
2h
3
(2K1qn + K2qn−1 + 2K3qn−2 + · · ·+ Knq1 + 2Kn+1q0), (21)

and for odd n:

L =
2h
3
(2K1qn + K2qn−1 + 2K3qn−2 + · · ·+ 2Knq1 + Kn+1q0). (22)

These expressions use non-local boundary conditions: x(0) = x0, y(0) = y0, and
x(< 0) = y(< 0) = 0.

For the first and second equations (differential part) of the system (17) we use the
trapezoidal rule (implicit second-order Runge–Kutta method [27]):

xn+1 = xn +
h
2
[µ(yn − xn) + µ(yn+1 − xn+1)],

yn+1 = yn +
h
2
[(D + ξn − zn)xn − yn + (D + ξn+1 − zn+1)xn+1 − yn+1].

(23)

Now we combine (20)–(23) together into one system, and we get an implicit non-local
difference scheme for numerical simulation:
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xn+1 = xn +
h
2
[µ(yn − xn) + µ(yn+1 − xn+1)],

yn+1 = yn +
h
2
[(D + ξn − zn)xn − yn + (D + ξn+1 − zn+1)xn+1 − yn+1],

zn+1 =
n+1

∑
i=0

φniKn+1−iqr,γ(xi, yi),

(24)

where φni are defined by (20)–(22).
We determine the equilibrium points of the numerical scheme (24) by setting xn+1 =

xn = · · · = x0 = x∗ and similarly for y and z. We get a system:

2µ(y∗ − x∗) = 0, 2Dx∗ − 2y∗ − z∗x∗ + (ξn + ξn+1)x∗ = 0,

z∗ = qr,γ(x∗, y∗)
n+1

∑
i=0

φniKn+1−i.
(25)

We obtain that x∗ = y∗. Then the second equation gives two cases. In the first case
x∗ = y∗ = 0, then z∗ = 0 from the third equation. In the second case 2D − 2 − z∗ +
(ξn + ξn+1) = 0, which is impossible with a time-varying random process ξ(tn).

So, scheme (24) has zero equilibrium point, as well as model (17). The scheme is
implicit with cubic non-linearity. Therefore, it is very difficult to study the stability of
the equilibrium point by analytical methods. We found out with the help of numerical
experiments that the point of stability conditions for the equilibrium point are the same as
for the model (17). The results of these experiments are described below in the paper.

We then transform the scheme (24) to simplify the calculations.
Note that from the first Equation (23) it is easy to explicitly express xn+1 and in terms

of xn, yn, and yn+1:

xn+1 =
hµ

2 + hµ
yn+1 +

2xn + hµ(yn − xn)

2 + hµ
. (26)

Substituting this expression instead of xn+1 in (20) and in second Equation (23), we
get only one nonlinear equation with the unknown yn+1:

a0 + a1yn+1 + a2y2
n+1a3y3

n+1 = 0. (27)

Expressions for the coefficients ai are given in the Appendix A. We solve this equation
by Newton’s method using yn as an initial guess for yn+1. Then, we calculate xn+1, qn+1
and zn+1:

xn+1 =
hµ

2 + hµ
yn+1 +

2xn + hµ(yn − xn)

2 + hµ
,

qn+1 = qr,γ(xn+1, yn+1),

zn+1 =
h
3

K0qn+1 + L.

(28)

This modified form (27) and (28) of the difference scheme (24) was programmed in
C++ code. The main part of this code is given in the Appendix B.

We studied the stability of the zero equilibrium point in a series of computational
experiments by varying the model parameters and the type of kernel. At the initial stages
of simulation, it always turned out that for D + ξ(t) < 1 the phase trajectories approached
zero. If the phase variables are small and D + ξ(t) > 1, then the growth begins. This
is in full agreement with the equilibrium point stability criteria in the model (17). This
response was very fast at the beginning of the simulation and gradually slowed down with
increasing time. This is a manifestation of memory in the system.
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A typical result is shown in Figure 1. The calculations were carried out for the kernel
K(s) = s−β/Γ(1− β) corresponding to the order β fractional derivative operator. You can
see the fast response of the phase variables to a change of D + ξ(t) for t ≤ 25. Next comes
the fast response to a negative outlier in ξ(t) 5 at t ≈ 31. However, the reaction to switching
ξ(t) at t ≈ 38 is already much slower.
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Figure 1. Example of numerical study of zero equilibrium point stability: K(s) = s−β/Γ(1− β),
β = 0.9, µ = 3.37, p = r = γ = 1, TW = TE = 5, ν = 2, σ = 1.5.

To verify the C++ code, we carried out simulation for kernel K(s) = exp(−s) and for
γ = 0, σ = 0. In this case, the system (17) will not be stochastic, since ξ(t) ≡ 0. However,
the program must correctly resolve the system.

In this case, Equation (11) will take the form
dz
dt

= xy− 1
p

z, process ξ(t) ≡ 0, and the

dynamo model (17) will be equivalent to the system:

dx
dt

= µ(y− x),
dy
dt

= (D− z)x− y,

dz
dt

= xy− 1
p

z, z(0) = 0.
(29)
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This is the classical Lorenz system [28], the dynamics of which at µ = 10 and p = 3/8
is well studied [29,30]. Therefore, if the difference scheme and the C++ code work correctly,
they should reproduce the known regimes.

Note that the Lorenz system as the simplest model of the Solar αω-dynamo was
proposed in the work [21], and as the model of disk dynamo was used in the work [22].

The simulation results are shown in Figure 2. Three typical regimes for the Lorenz sys-
tem are shown: asymptotically stationary regime (Figure 2a), chaotic regime (Figure 2b,c),
quasi-periodic regime (Figure 2d). It can be concluded that the difference scheme and the
program code are working correctly.

y
(t
)

0 10 20 30 40 50

y(t)

t

-20

-15

-10

-5

0

5

10

15
(a)

0 10 20 30 40 50 60 70
t

-20

-10

0

10

20

(b)

y
(t
)

y(t)

z(t)

y(t)
20

0
-20

(c)

40

20

10

0

-10

-20

x(t)

0

20

0 5 10 15 20

(d) y(t)
y
(t
)

-200

-100

0

100

200

t

Figure 2. Result of verification (Lorenz’s case): µ = 10, p = 3/8, x(0) = 0, y(0) = −10−2, h = 10−2.
(a) D = 25—asymptotically stationary regime; (b) D = 25—chaotic regime; (c) D = 28—chaotic
attractor; (d) D = 210—quasi-periodic regime.

Figure 3 shows the simulation results with the same system, but with process ξ(t)
influence. The processes parameters are given in the figure caption. The dynamics of the
field poloidal component y(t) and process ξ(t) are shown. It can be seen that the system
quickly responds to random perturbations.

An important remark needs to be made. On Figure 2a it can be seen that the phase
variables asymptotically approach some constant values. A similar situation can be seen in
Figure 1 at 25 < t < 30 and t > 65. How does this correlate with the fact that the model
does not have nonzero equilibrium points? The reason is that not all of the (x, y, z)-space is
the phase space of the model.

For example, it is well known that the Lorenz system (29) at D > 1 has two equilib-
rium points (

±
√
(D− 1)/p,±

√
(D− 1)/p, D− 1

)
.

However, for K(s) = exp(−s), the model is equivalent to the Lorenz system together
with the initial condition z(0) = 0. Therefore, this points are «punctured» from the phase
space of the model. Lower «puncture» points can also occur with other kernels, and these
points may turn out to be centers of attraction for phase trajectories. However, it is not
possible to determine them in the general case.
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Figure 3. Result of simulation—Lorenz’s case with the influence of random structures: µ = 10,
p = 3/8, TW = 5, TE = 5, ν = 2, σ = 5, x(0) = 0, y(0) = −10−2, h = 10−2.

5. Fractional Stochastic αω-Dynamo Model–Simulation Results

Further in the work, we will consider the case of a power kernel K(s) =
s−β

Γ(1− β)
,

0 < β < 1, which corresponds to the fractional model. Taking into account the random
effect of coherent structures, the model has the form:

dx
dt

= µ(y− x),

dy
dt

= (D + ξ(t)− z)x− y,

dz
dt

= pβDβ
0+qr,γ(x, y), z(0) = 0.

(30)

We will consider two parameter γ values. In the first case, γ = 0 and α-quenching is
provided by the field helicity. In the second case γ = 1. Then the α-quenching is provided
by the field energy.

It is known that if we take one toroidal and one poloidal modes of free decay of a
magnetic field with the same spatial scales, the poloidal mode has a smaller eigenvalue [31].
Therefore, we consider that µ > 1. For the classic Parker’s dynamo [4], for example, the
work [31], the results give the values µ ≈ 3.37. It is this value that we will further use in
numerical simulation.

For planetary and stellar dynamo systems it is reasonable to assume that x0 = 0 and
|y0| � 1. This is related to the fact that a small external field, which is poloidal, is required
to start the dynamo system at the initial moment [1]. Therefore, further everywhere x0 = 0
and y0 = 10−3. We also recall that the difference scheme implicitly assumes that the
non-local conditions x(< 0) = y(< 0) = 0.

Such conditions are plausible from the physical point of view. At t < 0 there are no
magnetic fields, the dynamo system is in the zero state. At t = 0, a weak poloidal field
arises. It has some external source. Then the dynamo system starts. We will always show
the dynamics of y(t) in the figures, since only the poloidal component of the field can be
observed in real space dynamo systems. The toroidal component of the magnetic field does
not have a radial projection, so it is always hidden inside the field generation area (in the
core of a planet or in the star convective zone). Therefore, its dynamics can be discussed
only on the basis of indirect data.

The model (30) contains many parameters. It was said above that we fixed µ = 3.37.
There are three more parameters in dynamic equations: D > 1, p > 0, and β ∈ (0; 1). First
of all, we determined what these parameters affect, using set numerical simulations for
σ = 0. Thus, we excluded the influence of the random process ξ(t).
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It turned out that when varying the parameters D, p, β the dynamical regimes have a
similar appearance. The magnetic field without reversals reaches a stationary value. The
parameters affect only the magnitude of this stationary value and the time of the transition
process. Several typical results are shown in the Figures 4 and 5. It can be seen that an
increase in the dynamo number D and fractional derivative order β leads to an increase in
the field level. Increasing the scale p, on the contrary, reduces the field level. This pattern
was observed in all computational experiments. Simulations were carried out for dynamo
numbers up to 103.

The field level is lower for the same values of the parameters with quenching by energy,
than with quenching by helicity. Apparently, this is due to the fact that the sign-positive
quadratic form leads to greater α-quenching.

Then, for the model (30), obtaining reversals is possible only with the help of a
random process.

Note that, earlier, one of the authors of this paper studied a similar model (without
random disturbances) with other types of power kernels, that are not related to fractional
differentiation [8]. More complex dynamic regimes were discovered: quasi-regular and
chaotic oscillations and vacillations, dynamo bursts. These regimes arose for dynamo
number D ≥ 200.

For the Earth’s core, the product of the dimensionless intensities of the α- and ω-effects
in less than an order of magnitude exceeds the field generation threshold [32,33]. In the
model (30), the generation threshold: D = 1. Therefore, in numerical simulations, we
always take the value D = 8.

In this work, we were interested in the possibility of reproducing such properties of a
real GMPTS as a fractional dimension and a power-law distribution of field polarity intervals.
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Figure 4. Simulation results for model (30) without the influence of a random process. The α-
quenching by helicity (γ = 0). The parameter p values are shown on the legends. The parameter D
and β values on panels: (a) D = 20, β = 0.5; (b) D = 100, β = 0.5; (c) D = 20, β = 0.9; (d) D = 100,
β = 0.9.
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Figure 5. Simulation results for model (30) without the influence of a random process. The α-
quenching by energy (γ = 1). The parameter p values are shown on the legends. The parameter D
and β values on panels: (a) D = 20, β = 0.5; (b) D = 100, β = 0.5; (c) D = 20, β = 0.9; (d) D = 100,
β = 0.9.

Next, we consider the simulation result for model (30) with parameter values D = 8,
p = 5, β = 0.9. Process ξ(t) parameters TW , TE, σ are fixed, namely: TW = 5, TE = 0.5,
σ = 2.5. The value of the exponent ν in the distribution law of the waiting time τW of a
coherent structure varied in a series of computational experiments.

We suppose the characteristic size of the Earth is L = 3.48 · 106 m (the radius of the
liquid core) and the turbulent magnetic diffusion is η = 102 m2/s. Then our dimensionless
time 5 · 104 corresponds to the length of the longest GMPTS [9] in 1700 Myr. Therefore,
calculations in the model were carried out up to T = 5 · 104.

The values TW and TE used by us in the simulation do not correspond to any known
space objects. It is clear that the typical waiting and existence times for coherent structures
cannot differ greatly from the typical time scale of turbulence—the vortex rotation time.
The turbulent time is several orders shorter than the decay time of large-scale field modes.
This typical decay time is the time scale in the model. Plausible values of TW and TE are
10−3 or less. Then the time step h should be even smaller.

The simulation with such a time step on the interval 5 · 104 requires a very large
amount of computer time and memory. The reason is that the difference scheme is non-
local and this non-locality cannot be eliminated. The non-locality of the scheme is related
to the heredity of the model. The solution at each new time step requires more calculations
than at the previous one. Of course, you can try to make a cutoff. The C++ code we have
developed provides for this possibility. However, the performed calculations showed that
the cutoff changes the solution very much for power kernels. In particular, this happens for
the fractional model.

In this paper, we did not attempt to model various properties of the turbulent dynamo.
We were only interested in the principal possibility of reproducing only some of the fractal
properties of the polarity scale. Therefore, large values TW and TE were used in the work.
We used time step h = 10−2 in the simulations.
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5.1. Hausdorff Dimension of the Polarity Timescale

Each trajectory of the phase variable y(t) in model (30) on the time interval [0; T] can
be considered as a possible variant of the geomagnetic field poloidal component evolution.
Since we are considering a single-mode approximation for this component, we can only
speak about the most general characteristics of the field, for example, about the direction of
its polarity.

At the same time, it is polarity that is the most clearly defined characteristic of the
behavior of a real field in the geological history of the Earth.

It is known that the GMPTS is a fractal set. The method for calculating the dimension
of this scale was described in [34]. We will apply this method to our model polarity scale.
The polarity value in the model determines the sign y(t). The reversal into the model is the
sign change.

The method for calculating the Hausdorff dimension of the scale is as follows.
On the scale of T length, some interval of length ∆ is distinguished. N(∆) is the

number of intervals of length ∆ on [0; T], on which at least one reversal occurs. There are
two limiting cases. First case—if ∆ � T and the reversal are distributed approximately
uniformly, then N(∆) ∼ ∆−1. In the second case ∆ ∼ T and obviously N(∆) ∼ ∆0.

Then, in a more general case, when ∆ � T and the reversals are not uniformly
distributed, we can expect a dependence of the form:

N(∆) = M · ∆−d, (31)

where M is the Hausdorff measure and d is the Hausdorff dimension.
We made calculations in model (30) for the above fixed parameters and for various ν

from 1.1 to 3.5. The value of ∆ changed with a uniform step in the log-scale from 10−1 to
4 · 105.

To obtain stable statistical characteristics, we obtained 20 realizations of phase variable
evolutions for each combination of parameters. The distributions N(∆) and histograms of
polarity intervals presented below are obtained by averaging over these realizations.

For values ν < 2, non-zero values of the process ξ(t) (coherent structures) and reversals
appeared very rarely. This did not allow obtaining stable estimates and the very number
of reversals is improbably small. Sufficiently good statistical estimates were obtained for
ν ≥ 2. The resulting dependencies N(∆) for some ν are shown in Figures 6 and 7.

It is clearly seen that for all values of ν there are two straight segments on the graphs.
The slope of each of the segments is signed in the figure. This slope corresponds to the
value of d.

The slope for large values of ∆ > 100 increases with ν, so it is controlled by the distribu-
tion of the waiting time τW . Note that, according to the data of [34], Hausdorff dimensions
for GMPTS for 170 Myr, 560 Myr, and 1700 Myr are 0.88, 0.83, and 0.87, respectively. It
turns out that the real fractal dimension in the model polarity scale corresponds to the
value ν = 2.3.
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Figure 6. Number of N(∆) intervals of ∆ length, which contain at least one reversal. The α-quenching
by helicity (γ = 0). (a) ν = 2.0; (b) ν = 2.2; (c) ν = 2.3; (d) ν = 2.6; (e) ν = 2.8; (f) ν = 3.3.
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Figure 7. Number of N(∆) intervals of ∆ length, which contain at least one reversal. The α-quenching
by energy (γ = 1). (a) ν = 2.0; (b) ν = 2.2; (c) ν = 2.3; (d) ν = 2.6; (e) ν = 2.8; (f) ν = 3.3.

The second straight section in the graphs of Figure 6 has a fixed slope, and a very
small one at that. This second fractal dimension manifests itself in the region of small ∆.
Most likely, this is due to the influence of the coherent structures lifetime τE distribution,
which was fixed in the calculations. The exponential distribution law corresponds to the
Poisson process. It is known that a Poisson-type process, whose parameter has a trend, can
have a fractal trajectory [11].

Note that for large values of ∆, there is no significant difference for models with energy
suppression and helicity. The differences are very small and no regularity can be seen in
them. However, for small ∆, α-quenching by energy gives a more fractal polarity scale. This
is an interesting mathematical fact, but it is premature to talk about its physical meaning
for an arbitrarily chosen K(s) and parameters.

5.2. Distribution of the Polarity Intervals

The distributions of the polarity intervals lengths φ for model with α-quenching by
helicity are shown in Figure 8 on a log-scale. The vertical axis is the probability P(φ) of
occurrence of an length interval φ. The straight section starts approximately from the value
φ = 300. Compared to Figure 4, the power dependence is not so clear, so it is impossible to
talk about differences in the slope of different ν. Approximately, this slope is 1.2÷ 1.9. It
grows with the growth of the ν.

It is also interesting to note that the histogram has a maximum at ν = 102. This position
of the maximum coincides with the point where the fractal dimensions of the polarity scale
change. Apparently, the action of two different processes is also manifested here.

Histograms for the model with α-quenching by energy are shown in Figure 9. Here,
the power-law tail of the distribution is not so clearly expressed, although it is also present.
The distribution maximum is also shifted to the right by half an order.
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Figure 9. Distributions of the polarity intervals. The α-quenching by energy (γ = 1). (a) ν = 2.0;
(b) ν = 2.2; (c) ν = 2.3; (d) ν = 2.6; (e) ν = 2.8; (f) ν = 3.3.

So, the distribution of polarity intervals has a clearly defined power-law tail. The
scatter of the observed values is five orders of magnitude. The presence of a clearly defined
maximum and a power-law tail of the distribution of polarity intervals is also characteristic
of the GMPTS.

We also note that there are no significant differences in the studied properties of the
polarity scale for the two types of α-quenching.

6. Conclusions

Cosmic dynamo systems demonstrate very complex dynamic regimes, including reg-
ular and chaotic oscillations, periods of stabilization, excursions, and bursts. Therefore,
it is not necessary to speak about the possibility of reproducing real magnetic fields evo-
lution in models. We can only talk about the reproduction of some averaged statistical
characteristics. To do this, it is necessary to have the possibility of a large set of long-term
implementations of model evolutions. In addition, it is necessary to study the dependence
on the control parameters. However, simulation of the time evolution of a dynamo system
over time intervals of ∼ 109 years is possible only for low-mode approximations of the
dynamo equations.

A feature of the geomagnetic polarity scale is the lack of a characteristic waiting time
of reversal and self-similarity at different scales. The value intervals polarity covers several
orders of magnitude and the polarity scale is chaotic [2,9–11,35]. One of the problems of
the geodynamo theory is the explanation of this phenomenon and reproducing a series
with similar statistical properties in numerical simulation. Some stochastic properties of a
paleomagnetic scale were obtained by dynamical systems of low dimension [36–39].

In these works, models that do not have dynamic memory were studied. However, it
is known that memory can have a strong influence on the operation of the dynamo [6].

The traditional way to introduce memory into dynamic models is to use integral
operators. It has now become popular to use fractional calculus for memory modeling.

A fractional two-mode αω-dynamo model is studied in this work. The Riemann–
Liouville fractional differentiation operator is used to model the memory effect in the
suppression of the α-effect by the helicity and energy of the magnetic field. The influence
of discarded small-scale modes is modeled by a random process. The structure of this
process imitates the spontaneous formation and destruction of coherent structures from
small-scale modes.

For the numerical study of the model, a difference scheme has been especially devel-
oped, implemented in the C++ code. Verification of the code and scheme was performed
on a particular case of a model with a priori known dynamics.

Multiple simulations of the time evolution of the model have been carried out. The
Hausdorff dimension of the polarity scale of solutions is calculated. It turned out that
for some values of the control parameters, a dimension is obtained that coincides with
the dimension of real GMPTS. It is shown that the distribution of polarity intervals has
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a power-law tail and they cover several orders of magnitude. This also corresponds to
real GMPTS.

In general, we can say that the described model reproduces the main features of GMPTS.
The numerical scheme makes it easy to adapt the model for various memory operators.

Additionally, this model can be further modified for the α2- and α2ω-dynamo.
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Appendix A. Expressions for the Difference Scheme Coefficients

The coefficients ai in Equation (27) are determined by substituting xn+1, qn+1 and zn+1
from (28) into the second Equation (23). This substitution and determination of coefficients
requires complex transformations of algebraic expressions. Therefore, we carried out
substitution and transformations using the computer algebra system Maple. As a result,
the following formulas were obtained:

a0 = A01yn + A02(xn+1 + V) + A03[xn(ξn − zn) + V(ξn+1 − L)] + A04V3,

a1 = A11(ξn+1 − L) + A12V2 + A13,

a2 = A21V,

a3 = −h2

6
K0WU,

(A1)

where

U =
hµ

2 + hµ
, V =

2xn + hµ(yn − xn)

2 + hµ
,

W = γ

(
rU2 +

1
r

)
+ (1− γ)U,

A01 = 1− h/2, A02 = hD/2, A03 = h/2, A04 = −h2K0γr/6,

A11 = hU/2, A12 = −h2K0(3γrU + 1− γ)/6, A13 = −1 + h(DU − 1)/2,

A21 = −h2K0[(2γrU + 1− γ)U + W]/6.

(A2)

It is clearly seen that the coefficients U, W, Aij, a3 do not depend on time. There-
fore, they must be calculated in the program once before the time loop. The coefficients
V, a0, a1, a2 change over time, so they need to be recalculated at each time step.

https://rscf.ru/project/22-11-00064/
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Appendix B. C++ Code for the Simulation

In this appendix, we present the main fragments of the C++ code with which the
simulation was carried out.

First, macro definitions for constants 2π and ln 2:

#define PI2 6.283185307179586
#define log2 .6931471805599453

Next, the definition of functions for generating random values of the waiting time
τW

k , the existing time τE
k and the process ξk magnitude. The expressions (15) were used

to generate τW
k and τE

k . The following expressions were used to generate the magnitude
ξk ∼ N (0, σ2):

σ
√
−2 ln U1 cos 2πU2, (A3)

where random variables U1, U2 are independent and uniform on [0; 1].

double random_existing_time(double T_E) {
double U=double(rand())/RAND_MAX;
return -T_E/log2*log(U);
}
double random_waiting_time(double T_W,double nu, double c) {
double U=double(rand())/RAND_MAX;
return c*T_W*(pow(U,1./(1.-nu))-1.);
}
double random_xi(double sigma) {
double U1=double(rand())/RAND_MAX;
double U2=double(rand())/RAND_MAX;
return sigma*sqrt(-2.*log(U1))*cos(PI2*U2);
}

The following function noise is needed to generate the values of the process ξ(t) at the
points tn+1. For this, the value ξ(tn), the boolean marker of the process state (the existence
of a coherent structure) *p_coherence and the moment of the nearest switching between
states *p_switch_time are used.

This function is called from the main program only if *p_switch_time lies between tn
and tn+1. Otherwise, changing the value of ξ(t) is not required.

void noise(bool* p_coherence, double* p_switch_time, double* p_xi_next,
double TW, double TE, double nu, double sigma, double dt) {
double tau;
double c=1./(pow(2.,1./(nu-1.))-1.);
if (*p_coherence) {
*p_xi_next=0.;
do {tau=random_waiting_time(T_W,nu,c);} while (tau<dt+(1.e-10));
*p_switch_time+=tau;
}
else {
*p_xi_next=random_xi(sigma);
do {tau=random_existing_time(T_E);} while (q<dt+(1.e-10));
*p_switch_time+=tau;
}
*p_coherence=!(*p_coherence);
return;
}
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The following function calculates kernel values Kn, n = 0, 1, . . . , N by kernel type
number, time step and kernel parameters p and ν (if last present). Possible types of kernels
are indicated in the comments in the code. Note that the first type of kernel corresponds to
the case of a fractional system.

double K_(int kernel_type,double s,double beta) {
double result;
double coef=1./tgamma(1.-beta);
switch (ker_type) {
case 1: // K(s)=s^(-beta)/GAMMA(1-beta)
result=pow(s,-beta)*coef;
break;
case 2: // K(s)=1/(1+s)^beta
result=pow(1.+s,-beta);
break;
case 3: // K(s)=s/(1+s)^(1+beta)
result=pow(1.+s,-1.-beta)*s;
break;
case 4: // K(s)=s^beta*exp(-s);
result=pow(s,beta)*exp(-s);
break;
default: // K(s)=exp(-s)
result=exp(-s);
break;
}
return result;
}

The structure for the linked list qr,γ(x(tn), y(tn)) values:

struct List {
double Value;
List *next;
};

The list of program input parameters and their meaning:

double D; // relative dynamo number
double mu; // inverse time of toroidal field decay
int kernel_type; // type of a quenching kernel: 1 - 5
double p; // time scale of a kernel
double beta; // exponent in the 1-4 kernels types
double gamma; // parameter of the quadratic form q, eq. (7)
double r; // ratio of toroidal and poloidal modes scales
double T_W; // median of a coherent structure waiting time
double nu; // exponent in the waiting time powe-law distribution
double sigma; // process xi(t) standard deviation
double T_E; // median of a coherent structure existing time
double T; // time of simulation
double dt; // time step
double BT; // initial condition for toroidal field x(t)
double BP; // initial condition for poloidal field y(t)

The main part of the program. This part, together with the declaration of input
parameters and their initialization block, form the main() function.

srand(time(NULL));
double cutoff=T;
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int N=int(floor(cutoff/dt)+1.);
if ((N&1)) N++;
double* K=new double[N+2];
double* Q=new double[N+1];
if (ker_type==1)
K[0]=(1.+beta)*K_(kernel_type,0.1*dt/p,beta);
else
K[0]=K_(kernel_type,0.,beta);
for(int i=1;i<=N+1;i++) K[i]=K_(kernel_type,i*dt/p,beta);
double U=dt*mu/(2.+dt*mu);
double W=gamma*(r*U*U+1./r)+(1.-gamma)*U;
double a3=-dt*dt/6.*K[0]*W*U; //OK
double A2=-dt*dt/6.*K[0]*((2.*gamma*r*U+1.-gamma)*U+W);
double A11=dt*U/2.;
double A12=-dt*dt*K[0]/6.*(3.*gamma*r*U+1.-gamma);
double A13=-1.+dt/2.*(D*U-1.);
double A01=1.-dt/2.;
double A02=dt*D/2.;
double A03=dt/2.;
double A04=-dt*dt*K[0]*gamma*r/6.;
double R1=2.+dt*mu;
double R2=dt*mu;
double R3=dt/3.*K[0];
double R4=dt/3.;
double R5=2.*dt/3.;
double a3_3=a3*3.;
double t=0.;
double z=0.;
bool coherence=false;
double c=1./(pow(2.,1./(nu-1.))-1.);
double switch_time=random_waiting_time(T_W,nu,c);
double xi=0.;
ofstream OutFile("result.txt");
ofstream OutReversals("reversals.txt");
OutFile.width(15); OutFile.precision(4); OutFile << fixed << t;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << BT;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << BP;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << z;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << xi;
OutFile << "\n";
double L,L1,L4,L2,xi_next,V,V2,V3,a2,a1,a0,newton_y,a2_2,newton_y2,
newton_y3,next_newton_y,newton_err,t_next;
int n=0; int k;
bool even=true;
Q[0]=gamma*(r*BT*BT+BP*BP/r)+(1.-gamma)*BT*BP;
while (n<N) {
if (even==true) {
L1=L2=0.;
for(k=0;k<=n;k+=2) L1+=K[n+1-k]*Q[k];
for(k=1;k<=n-1;k+=2) L2+=K[n+1-k]*Q[k];
L=R5*(2.*L1+L2);
}
else {
L1=L2=0.;
for(k=1;k<=n;k+=2) L1+=K[n+1-k]*Q[k];
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for(k=2;k<=n-1;k+=2) L2+=K[n+1-k]*Q[k];
L=R4*K[n+1]*Q[0]+R5*(2.*L1+L2);
}
t_next=t+dt;
if ((t<switch_time)&&(t_next>=switch_time)) {
noise(&coherence,&switch_time,&xi_next,TW,TE,nu,sigma,dt);
}
else xi_next=xi;
V=(2.*BT+R2*(BP-BT))/R1;
V2=V*V;
V3=V2*V;
a2=A2*V;
a2_2=a2*2.;
a1=A13+A11*(xi_next-L)+A12*V2;
a0=A01*BP+A02*(BT+V)+A03*(BT*(xi-z)+V*(xi_next-L))+A04*V3;
newton_y=BP;
do {
newton_y2=newton_y*newton_y;
newton_y3=newton_y2*newton_y;
next_newton_y=newton_y-(a0+a1*newton_y+a2*newton_y2+a3*newton_y3)/
(a1+a2_2*newton_y+a3_3*newton_y2);
newton_err=fabs(newton_y-next_newton_y);
newton_y=next_newton_y;
}
while (newton_err>1e-10);
if (((newton_y>0)&&(BP<0))||((newton_y<0)&&(BP>0)))
OutReversals << t+dt/2. << "\n";
BP=newton_y;
BT=U*BP+V;
Q[n+1]=gamma*(r*BT*BT+BP*BP/r)+(1.-gamma)*BT*BP;
z=L+R3*Q[n+1];
xi=xi_next;
t=t_next;
n++;
even=!even;
OutFile.width(15); OutFile.precision(4); OutFile << fixed << t;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << BT;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << BP;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << z;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << xi;
OutFile << "\n";
}
List* pFirst;
pFirst=new List;
pFirst->Value=Q[0];
List* pLast;
pLast=pFirst;
List* ptmp;
for(int i=1;i<=N;i++) {
ptmp=new List; pLast->next=ptmp;
ptmp->Value=Q[i]; pLast=ptmp;
}
pLast->next=pFirst;
while (t<T) {
L4=L2=0.;
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ptmp=pFirst;
for(int i=N+1;i<=3;i-=2) {
L4+=K[i]*ptmp->Value;
ptmp=ptmp->next;
L2+=K[i-1]*ptmp->Value;
ptmp=ptmp->next;
}
L4+=K[1]*ptmp->Value;
L=R5*(2.*L4+L2);
t_next=t+dt;
if ((t<switch_time)&&(t_next>=switch_time)) {
noise(&coherence,&switch_time,&xi_next,TW,TE,nu,sigma,dt);
}
else xi_next=xi;
V=(2.*BT+R2*(BP-BT))/R1;
V2=V*V;
V3=V2*V;
a2=A2*V;
a2_2=a2*2.;
a1=A13+A11*(xi_next-L)+A12*V2;
a0=A01*BP+A02*(BT+V)+A03*(BT*(xi-z)+V*(xi_next-L))+A04*V3;
newton_y=BP;
do {
newton_y2=newton_y*newton_y;
newton_y3=newton_y2*newton_y;
next_newton_y=newton_y-(a0+a1*newton_y+a2*newton_y2+a3*newton_y3)/
(a1+a2_2*newton_y+a3_3*newton_y2);
newton_err=fabs(newton_y-next_newton_y);
newton_y=next_newton_y;
}
while (newton_err>1e-10);
if (((newton_y>0)&&(BP<0))||((newton_y<0)&&(BP>0)))
OutReversals << t+dt/2. << "\n";
BP=newton_y;
BT=U*BP+V;
pFirst->Value=gamma*(r*BT*BT+BP*BP/r)+(1.-gamma)*BT*BP;
z=L+R3*(pFirst->Value);
pFirst=pFirst->next;
pLast=pLast->next;
xi=xi_next;
t=t_next;
n++;
OutFile.width(15); OutFile.precision(4); OutFile << fixed << t;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << BT;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << BP;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << z;
OutFile.width(15); OutFile.precision(6); OutFile << fixed << xi;
OutFile << "\n";
}
OutFile.close();
OutReversals.close();

The program writes two files. The first "result.txt" contains columns of variables t,
x(t), y(t), z(t), ξ(t). The second "reversals.txt" contains the moments of reversals.
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