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Abstract: We deal with backward stochastic differential equations driven by a pure jump Markov
process and an independent Brownian motion (BSDEJs for short). We start by proving the existence
and uniqueness of the solutions for this type of equation and present a comparison of the solutions in
the case of Lipschitz conditions in the generator. With these tools in hand, we study the existence
of a (minimal) solution for BSDE where the coefficient is continuous and satisfies the linear growth
condition. An existence result for BSDE with a left-continuous, increasing and bounded generator is
also discussed. Finally, the general result is applied to solve one kind of quadratic BSDEJ.

Keywords: backward stochastic differential equations; jump Markov process; comparison principle;
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1. Introduction

In this work, we are interested in the following backward stochastic differential
equations driven by both Wiener and Markov jump processes.

Ys = h(XT) +
∫ T

s
f (r, Xr, Yr, Zr, Kr(·))dr (1)

−
∫ T

s
ZrdBr −

∫ T

s

∫
Γ

Kr(e)q(dr, de).

where X is a Γ-valued (to be defined later) jump Markov process defined on a complete fil-
tered probability space (Ω,F , (Ft)t∈[0,T],P), {Bt : t ∈ [0, T]} is a standard R-valued Wiener
process, f is the generator, h(XT) is the terminal condition and q(dt, de) stands for a random
measure associated with the jump Markov process X.

It is well known that BSDEs driven by continuous Brownian motion without the jump
part have been studied extensively in the literature and they comprise an important tool in
the real world concerning applications such as control theory, finance, stochastic games,
partial differential equations and homogenization. After the seminal work of Pardoux and
Peng [1], where they proved the first results for the existence and uniqueness concerning
BSDEs, many efforts have been made to relax the assumptions concerning the terminal
data and the generator with respect to the state variables. More precisely, Hamadène [2]
studied a BSDE whose generator f is locally Lipschitz and satisfies a reasonably growing
condition. Thereafter, Lepeltier and San Martin [3] studied a one-dimensional BSDE with a
bounded terminal condition and an only continuous generator, which satisfies the linear
growth conditions. Bahlali [4] studied the existence and uniqueness of solutions for a
multidimensional BSDE with a local Lipschitz coefficient and square-integrable terminal
data. More recently, Abdelhadi and Khelfallah [5] extended the former results to the case
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of BSDEs driven by a jump Markov process. Regarding BSDE with unbounded generators,
recently a paper was published by Gashi and Li [6] in the Brownian setting using Picard’s
iteration scheme.

Many papers have also studied BSDEs driven by random jump processes, we can
refer the reader to [7–14] and the references therein for more information about this subject.
However, only a few papers have studied BSDEs driven by a random measure related to
a pure jump process. Among these, Confortola and Fuhrman in [10] provided existence
and uniqueness results for global Lipschitz BSDE driven by a pure Markov jump process.
Further, they applied their own results to study nonlinear variants of the Kolmogorov
equation of the Markov process and also to solve some optimal control problems. Then, the
same authors in [9] studied a class of backward stochastic differential equations driven by
a marked point process. Under appropriate assumptions, they proved the well-posedness
and continuous dependence of the solution on the data. More recently, Confortola [15]
proved the existence and uniqueness of Lp-solutions (p > 1) for a BSDE driven by a marked
point process on a bounded time interval.

The aim of our work is to study BSDE driven by both a random measure associated
with a jump Markov process and independent Brownian motion with a continuous and
non-necessary continuous generator. We recall that El Otmani [16] studied BSDEs driven
by a simple Lévy process with a continuous coefficient. Later, Yin and Mao [17] dealt
with a class of BSDEs with Poisson jumps and random terminal times. They proved the
existence of a unique solution along with two comparison theorems for such BSDEs under
non-Lipschitz assumptions for the coefficient. These results were applied to investigate the
existence and uniqueness of a minimal solution to one-dimensional BSDE with jumps in the
case where its generator is merely continuous and of linear growth. Subsequently, Qin and
Xia [18] studied one-dimensional BSDE driven by Poisson point processes with continuous
and discontinuous coefficients. By means of the comparison theorem, the authors proved
the existence of a (minimal) solution for such BSDEs where the coefficient is continuous
and satisfies an improved linear growth assumption. Then, they extended the results for a
left or right continuous coefficient.

The main contributions of the present paper are divided into two parts. The first
part contains the first result which consists in proving the existence and uniqueness of the
solution to the BSDEJ (1) under a global Lipschitz condition on the generator f . The ideas
of the proof for the existence and uniqueness are classical but we include them for the sake
of completeness. The second result concerns the comparison principle which compares
solutions for different and comparable data (terminal values and generators). Its proof
is new and non-standard, it makes use of appropriate martingales to perform Girsanov’s
theorem. Moreover, this principle will be used to prove the existence of a minimal solution
when the generators of the BSDE are only continuous with linear growth. The first result
of the second part concerns the structure of the set of solutions of (1) in the case where
the generator f is only continuous with linear growth in (y, z) and Lipschitz in k(·). The
comparison theorem is the main tool in the proof. The second result of this part consists in
proving an existence result of solutions of (1) when the generator f is left-continuous and
increasing in y.

This paper is organized as follows. In Section 2, we present some preliminary informa-
tion concerning the jump Markov process and state some auxiliary results. In Section 3,
we study BSDEJs with global Lipschitz coefficients; therein, we prove the existence and
uniqueness result and comparison theorem as well. Section 4 is devoted to the BSDEJ with
a continuous coefficient and the BSDEJ with a left continuous and increasing coefficient.

2. Preliminaries and Auxiliary Results

In this section we recall some notations for the jump Markov process. Let (Ω,F ,P) be
a complete probability space. Let (Γ, E) be a measurable space such that E contains all one-
point sets, and let X be a normal jump Markov process and B a standard Wiener process.
We denote by Ft the filtration (F[t,s])s∈[t,+∞[, such that (F[t,s])s∈[t,+∞[ is the right-continuous
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increasing family of F , defined by F[t,s] = σ(Xr, t ≤ r ≤ s) ∨ σ(Br, t ≤ r ≤ s) ∨N , where
N is the totality of P-null sets.

Let Progt be the progressive σ-algebra on [t,+∞[×Ω ; the same symbols will also
denote the restriction to [t, T]×Ω; let P t be the predictable σ-algebra. We define a transition
measure (also called rate measure) ν(s, x, A), s ∈ [t, T], x ∈ Γ, A ∈ Γ from [t,+∞[×Γ to Γ,
such that sups∈[0,T],x∈Γ ν(s, x, Γ) is finite and ν(s, x, {x}) = 0.

For every t ≥ 0, we define a sequence
(
Tt

n
)

n≥0 of random variables with values in
[0, ∞] as follows

Tt
0(ω) = t, Tt

n+1(ω) = inf
{

s > Tt
n(ω) : Xs(ω) 6= XTt

n(ω)(ω)
}

,

with the convention that Tt
n+1(ω) = ∞ if the indicated set is empty. Since X is a jump

process, we have Tt
n(ω) < Tt

n+1(ω) if Tt
n(ω) < ∞. Since X is non-explosive, Tt

n(ω) tends
towards infinity with n.

In other words, Tt
n are the jump times of X; we consider the marked point process

(Tt
n, XTt

n
) and the associated random measure

pt(ds, de) := ∑
n≥1

δ(Tt
n ,XTt

n
)(ds, de) on ]t,+∞[× Γ,

where δ stands for the Dirac measure. The compensator (also called the dual predictable
projection) p̃t of pt is p̃t(ds, de) = ν(s, Xs−, de)ds, so that qt(ds, de) := pt(ds, de) −
ν(s, Xs−, de)ds is the Itô differential of an Ft-martingale. Notice that∫ s

t

∫
Γ

Kr(e)pt(dr, de) = ∑
n≥1,Tt

n≤s

KTt
n

(
XTt

n

)
, s ∈ [t, T]

is always well defined since Tt
n → ∞.

Next, we define functional spaces needed in the following.

• For m ∈ [1, ∞), we define Lm(pt) as the space of P t ⊗ E -measurable real functions
Ks(ω, e) on Ω× [t, T]× Γ such that

Et,x
[∫ T

t

∫
Γ
|Kr(e)|m pt(dr, de)

]
= Et,x

[∫ T

t

∫
Γ
|Kr(e)|mv(r, Xr−, de)ds

]
(2)

= Et,x
[∫ T

t

∫
Γ
|Kr(e)|mv(r, Xr, de)ds

]
< +∞

• L1
loc(pt) is the space of the real functions K such that K1]0,τn ] ∈ L

1(pt) for some
increasing sequence of Ft-stopping times τn diverging to +∞.

• M2 is the space of real valued square integrable, progressively measurable and
predictable processes φ = {φu : u ∈ [0, T]} such that

‖φ‖2 =
∫ T

0
E
[
|φu|2

]
du < +∞.

• L2(Γ, E , ν(·, x, de)) is the space of processes k : Γ −→ R such that

‖k(·)‖ν =

(∫
Γ
|k(e)|2ν(·, x, de)

) 1
2
< +∞.
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• S2 is the space of processes y = {y(ω, t) ∈ Ω× [0, T]},Ft-adapted and right-continuous
with the left limit (rcll), such that

E
[

sup
t∈[0,T]

|yt|2
]
< +∞.

• B = S2×M2× L2(Γ, E , ν(·, x, de)) is the space of processes (Y, Z, K(·)) on [0, T], such
that

‖(Y, Z, K(·))‖2
B = E

[
sup

s∈[0,T]
|Ys|2 +

∫ T

0
|Zr|2dr +

∫ T

0
‖Kr(·)‖2

νdr

]
< +∞.

The space B, endowed with this norm, is a Banach space.

Remark 1. A stochastic integral
∫ ·

0

∫
Γ Wr(e)qt(dr, de) is a finite variation martingale if

W ∈ L1(pt).

A solution of Equation (1) is the triple (Y, Z, K(·)) which belongs to the space (B, ‖·‖B)
and satisfies (1).
Now, we give the representation theorem which is one of the important tools to prove the
results concerning the existence of solutions. Its proof can be found in ([19] Theorem 2.9).

Proposition 1. Given (t, x) ∈ [0, T]× Γ, let M be a square integrable martingale and Ft-adapted
on [t, T]. Then, there exist two unique processes K(·) ∈ L2(p) and Z ∈ M2 such that

Mr = Mt +
∫ r

t
ZudBu +

∫ r

t

∫
Γ

Ku(e)qt(du, de), r ∈ [t, T].

In what follows, we recall Girsanov’s theorem which plays a key role in the sequel.
Let us denote byH2 the set of square integrable martingales and byH the subset:

H =
{
(Ms)s∈[0,T] ∈ H2 : |wr(e)| ≤ C, wr(e) > −1, u ∈ M2

}
,

such that Ms =
∫ s

t urdBr +
∫ s

t

∫
Γ wr(e)q(dr, de). For all M ∈ H, the Doleans–Dade expo-

nential is defined as

ET(M) = eMT− 1
2 〈M

c〉T ∏
s∈[0,T]

(1 + ∆Ms)e−∆Ms .

Proposition 2 (Girsanov’s theorem [20]). Let W ∈ L2(q), V ∈ M2 and
Us =

∫ s
t VrdBr +

∫ s
t

∫
Γ Wr(e)q(dr, de). For a given M ∈ H, we define Ũs = Us − 〈M, U〉s;

then, the process Ũ is a martingale under the probability measure dQ := ET(M)dP.

Remark 2. For the sake of simplicity, throughout the following three sections we drop the super-
scripts t, x and shall state the results and their proofs for t = 0.

3. BSDEJ with Global Lipschitz Coefficients
3.1. Problem Statement and Main Results

In this subsection, we discuss in short the existence and uniqueness results for the
Equation (1) in the global Lipschitz case. The main hypothesis needed is the following:

Hypothesis 1:

Hypothesis 1.1 (H1.1). The final condition h : Γ −→ R is E -measurable and E[|h(XT)|2] < +∞.



Fractal Fract. 2022, 6, 331 5 of 23

Hypothesis 1.2 (H1.2). For every s ∈ [0, T], x ∈ Γ, r ∈ R, z ∈ R, f (s, x, r, z, ·) maps
L2(Γ, E , ν(s, x, de)) to R.

Hypothesis 1.3 (H1.3). For every bounded and E-measurable function k(·) : Γ −→ R, the mapping
(s, x, r, z) 7−→ f (s, x, r, z, k(·)) is B([0, T])⊗ E ⊗ B(R)⊗B(R)-measurable.

Hypothesis 1.4 (H1.4).
∫ T

0 E[| f (s, Xs, 0, 0, 0)|2]ds < +∞.

Hypothesis 1.5 (H1.5). There exists L ≥ 0 such that for every s ∈ [0, T], x ∈ Γ, r, ŕ, z, ź ∈ R
and k(·), ḱ(·) ∈ L2(Γ, E , ν(s, x, de))∣∣∣ f (s, x, r, z, k(·))− f (s, x, ŕ, ź, ḱ(·))

∣∣∣ ≤ L
(
(|r− ŕ|+ |z− ź|) + ||k(·)− ḱ(·)||ν

)
.

It is worth noting that, under Hypotheses 1, it was shown in Lemma 3.2 in [10]
that the mapping (ω, s, y, z) 7−→ f (s, Xs−(ω), y, z, Ks(ω, ·)) is P ⊗ B(R)-measurable if
K(·) ∈ L2(p). Furthermore, if Y is a Prog-measurable process then the mapping

(ω, s) 7−→ f (s, Xs−(ω), Ys(ω), Zs(ω), Ks(ω, ·))

is Prog-measurable.
Throughout the following theorem, we reveal the first main result of this paper.

Theorem 1. Let Hypothesis 1 hold. Then, the BSDEJ (1) has a unique solution (Y, Z, K(·)) in B.

To prove the above theorem, we shall start by giving and proving the following
lemmas.

Lemma 1. Suppose that H1.1 holds and fr : Ω× [0, T] −→ R is Prog-measurable, such that both
h(XT) and fr are square integrable. Then, the following BSDEJ

Ys = h(XT) +
∫ T

s
frdr−

∫ T

s
ZrdBr −

∫ T

s

∫
Γ

Kr(e)q(dr, de), (3)

has a unique solution (Y, Z, K(·)) ∈ B.

Proof. We break down the proof into two steps.
Step 1: We want to prove that there exists a process (Y, Z, K(·)) satisfying Equation (3). To
do so, we consider the following martingale

Ms = E
[(

h(XT) +
∫ T

0
frdr

)
| F[0,s]

]
.

The martingale representation property in Proposition 1 confirms that there exist two
unique processes Z ∈ M2 and K(·) ∈ L2(p) such that

Ms = M0 +
∫ s

0
ZrdBr +

∫ s

0

∫
Γ

Kr(e)q(dr, de) s ∈ [0, T].

Define the process Y as follows

Ys = Ms −
∫ s

0
frdr, s ∈ [0, T].

It is worth noting that YT = h(XT); then, a simple computation shows that BSDEJ (3) is
verified. The uniqueness of Y is guaranteed by the uniqueness of Z· and K·(·).
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Step 2: We shall show that (Y, Z, K(·)) ∈ B. By taking the conditional expectation in (3),
we arrive at

Ys = E
[(

h(XT) +
∫ T

s
frdr

)
| F[0,s]

]
.

Squaring both sides of the former equality and taking account of Jensen and Schwarz
inequalities, we obtain

|Ys|2 ≤ 2E
[(
|h(XT)|2 + T

∫ T

0
| fr|2dr

)
| F[0,s]

]
=: θs.

Manifestly, the process (θs)0≤s≤T is an F-martingale. For every stopping time τ with values
in [0, T], we have, using the optional stopping theorem

E
[
|Yτ |2

]
≤ E[θτ ] = E[θT ] < +∞. (4)

Let us define the increasing sequence of stopping times

τn = inf
{

s ∈ [0, T] : |Ys|2 +
∫ s

0
|Zr|2dr +

∫ s

0
‖Kr(·)‖2

νdr > n
}
∧ T,

It is not difficult to check that τn increases to T. Then, using Itô’s formula for semi-
martingales (see Theorem 32 in [20]) to |Ys|2 and integrating on the time interval [s, T],

|Ys|2 = |h(Xτn)|
2 + 2

∫ τn

s
Yr frdr−

∫ τn

s
|Zr|2dr (5)

− 2
∫ τn

s
YrZrdBr − 2

∫ τn

s

∫
Γ

Yr−Kr(e)q(dr, de)− ∑
s≤r≤τn

|∆Yr|2.

Due the fact that Yr−Kr(·) ∈ L1(p), one can easily check that the process(∫ t

s

∫
Γ

Yr−Kr(e)q(dr, de)
)

t∈[s,T]

is an F-martingale. Indeed, from Young’s inequality and the fact that supt∈[0,T],x∈Γ ν(t, x, Γ)
is finite, we obtain∫ τn

s

∫
Γ
|Yr−||Kr(e)|ν(r, Xr, de)dr ≤ 1

2
sup

t∈[0,T],x∈Γ
ν(t, x, Γ)

∫ T

0
|Yr|2dr

+
1
2

∫ T

0

∫
Γ
|Kr(e)|2ν(r, Xr, de)dr < +∞.

In addition, we can rewrite the last term in equality (5) as the following:

∑
s≤r≤τn

|∆Yr|2 =
∫ τn

s

∫
Γ
|Kr(e)|2 p(dr, de) (6)

=
∫ τn

s

∫
Γ
|Kr(e)|2q(dr, de) +

∫ τn

s

∫
Γ
|Kr(e)|2ν(r, Xr, de)dr.

Then, from (5) and (6), we obtain

|Ys|2 = |Yτn |
2 + 2

∫ τn

s
Yr frdr−

∫ τn

s
|Zr|2dr (7)

−2
∫ τn

s
YrZrdBr − 2

∫ τn

s

∫
Γ

Yr−Kr(e)q(dr, de)

−
∫ τn

s

∫
Γ
|Kr(e)|2q(dr, de)−

∫ τn

s
‖Kr(·)‖2

νdr.
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Taking the expectation, we obtain

E
[
|Ys|2

]
+E

[∫ τn

s
|Zr|2dr

]
+E

[∫ τn

s
‖Kr(·)‖2

νdr
]
= E

[
|Yτn |

2
]
+ 2E

[∫ τn

s
Yr frdr

]
.

We deduce, using (4) and Young’s inequality, 2xy ≤ 2x2 + y2

2 ,

E
[
|Ys|2

]
+E

[∫ τn

s
|Zr|2dr

]
+E

[∫ τn

s
‖Kr(·)‖2

νdr
]
≤ E

[
|YT |2

]
+ 2(T + 1)E

[∫ T

0
| fr|2dr

]
.

Consequently,

sup
s∈[0,τn ]

E
[
|Ys|2

]
+E

[∫ τn

0
|Zr|2dr

]
+E

[∫ τn

0
‖Kr(·)‖2

νdr
]
≤ C. (8)

Now, we turn back to (7) and, using the Burkholder–Davis–Gundy inequality together with
(8), we obtain

E
[

sup
0≤s≤τn

|Ys|2
]
+E

[∫ τn

0
|Zr|2dr

]
+E

[∫ τn

0
‖Kr(·)‖2

νdr
]
≤ C,

where C is a constant not dependent on n. Now, with n −→ +∞ in the above inequality,
we infer, using Fatou’s lemma,

E
[

sup
0≤s≤T

|Ys|2
]
+
∫ T

0
E
[
|Zr|2

]
dr +

∫ T

0
E
[
‖Kr(·)‖2

ν

]
dr < +∞.

Then, we conclude that (Y, Z, K(·)) ∈ B. This achieves the proof of the Lemma.
Let us define the following sequence (Yn, Zn, Kn(·))n∈N as follows:

Y0 = Z0 = K0(·) = 0,

and (Yn+1, Zn+1, Kn+1(·)) is the solution of the following BSDEJ,

Yn+1
s = h(XT) +

∫ T

s
f (r, Xn

r , Yn
r , Zn

r , Kn
r (·))dr (9)

−
∫ T

s
Zn+1

r dBr −
∫ T

s

∫
Γ

Kn+1
r (e)q(dr, de),

for all s ∈ [0, T].

Lemma 2. Let Hypothesis 1 hold true. Then, (Yn, Zn, Kn
r (·)) is a Cauchy sequence in the Banach

space B.

Proof. First, let us denote

δYn,m = Ym −Yn, δZn,m = Zm − Zn, δKn,m = Km(·)− Kn(·),

and
δ f n,m = f (r, Xm

r , Ym
r , Zm

r , Km
r (·))− f (r, Xn

r , Yn
r , Zn

r , Kn
r (·)).

Obviously δYT = 0, so Itô’s formula applied to exp(βs)
∣∣∣δYn+1,m+1

s

∣∣∣2 shows that
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2E
[∫ T

s
exp(βr)δYn+1,m+1

r δ f n,m
r dr

]
= E[exp(βs)

∣∣∣δYn+1,m+1
s

∣∣∣2]
+βE

[∫ T

s
exp(βr)

∣∣∣δYn+1,m+1
r

∣∣∣2dr
]
+E

[∫ T

s
exp(βr)

∣∣∣δZn+1,m+1
r

∣∣∣2dr
]

+E
[∫ T

s

∫
Γ

exp(βr)
∣∣∣δKn+1,m+1

r (e)
∣∣∣2ν(r, Xr, de)dr

]
.

From the Lipschitz condition on f and the inequality 2xy ≤ α2x2 + y2

α2 , we obtain

E[exp(βs)
∣∣∣δYn+1,m+1

s

∣∣∣2] + (β− 3Lα2)E
[∫ T

s
exp(βr)

∣∣∣δYn+1,m+1
r

∣∣∣2dr
]

+E
[∫ T

s
exp(βr)

∣∣∣δZn+1,m+1
r

∣∣∣2dr
]

+E
[∫ T

s

∫
Γ

exp(βr)
∣∣∣δKn+1,m+1

r (e)
∣∣∣2ν(r, Xr, de)dr

]
≤ L

α2

(
E
[∫ T

s
exp(βr)|δYn,m

r |2dr
]
+E

[∫ T

s
exp(βr)|δZn,m

r |
2dr
])

+
L
α2

(
E
[∫ T

s

∫
Γ

exp(βr)|δKn,m
r (e)|2ν(r, Xr, de)dr

])
,

choosing β and α such that β− 3Lα2 = 1 and L
α2 = 1

2 , we obtain

E
[∫ T

s
exp(βr)

∣∣∣δYn+1,m+1
r

∣∣∣2dr
]
+E

[∫ T

s
exp(βr)

∣∣∣δZn+1,m+1
r

∣∣∣2dr
]

≤ 1
2

[
E
∫ T

s
exp(βr)|δYn,m

r |2dr +E
∫ T

s
exp(βr)|δZn,m

r |
2dr

+E
∫ T

s

∫
Γ

exp(βr)|δKn,m
r (e)|2ν(r, Xr, de)dr

]
.

Again using Itô’s formula, Burkholder–Davis–Gundy and Gronwall’s lemma, it follows
that for all m > n, there exists a universal constant M, such that

E
[

sup
s∈[0,T]

exp(βs)
∣∣∣δYn+1,m+1

s

∣∣∣2]+E
[∫ T

s
exp(βr)|δZn,m

r |
2dr
]

+E
[∫ T

s

∫
Γ

exp(βr)|δKn,m
r (e)|2ν(r, Xr, de)dr

]
≤ M

2n .

Hence, (Yn, Zn, Kn
r (·)) is a Cauchy sequence in the Banach space B.

Proof of Theorem 1. Now, we turn to giving the proof of the first main result of this
section.
Existence: Thanks to Lemma 1, the sequence (Yn, Zn, Kn(·)) in (9) is well defined and due
to Lemma 2 (Yn, Zn, Kn(·)) is a Cauchy sequence in the Banach space B.
Set (Y, Z, K(·)) := limn→+∞(Yn, Zn, Kn(·)), using classical limit arguments one can check
that (Y, Z, K(·)) is a solution of BSDEJ (1).
Uniqueness: To prove the uniqueness let us consider (Y, Z, K(·)) and (Ý, Ź, Ḱ(·)) as two
solutions of Equation (1); we note:

Ȳs = Ys − Ýs, K̄s(·) = Ks(·)− Ḱs(·), Z̄s = Zs − Źs,

and
f̄s = f (s, Xs, Ys, Zs, Ks(·))− f (s, Xs, Ýs, Źr, Ḱs(·)).
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Noting that ȲT = 0, Itô’s formula applied to
∣∣Ȳs
∣∣2 gives for all s ∈ [0, T]

E
[∣∣Ȳs

∣∣2]+E
[∫ T

s
|Z̄r|2dr

]
+E

[∫ T

s
‖K̄r(·)‖2

νdr
]
= 2E

[∫ T

s
Ȳr f̄rdr

]
.

Since f is Lipschitz, we obtain

E
[∣∣Ȳs

∣∣2]+E
[∫ T

s
|Z̄r|2dr

]
+E

[∫ T

s
‖K̄r(·)‖2

νdr
]

≤ 2LE
[∫ T

s

∣∣Ȳr
∣∣[∣∣Ȳr

∣∣+ |Z̄r|+ ‖K̄r(·)‖ν

]
dr
]

.

From the inequality 2xy ≤ α2x2 + y2

α2 , we obtain

E
[∣∣Ȳs

∣∣2]+ ∫ T

s
E
[
|Z̄r|2

]
dr +

∫ T

s
E
[
‖K̄r(·)‖2

ν

]
dr

≤ 2L
∫ T

s
E
[∣∣Ȳr

∣∣2]dr + α2L
∫ T

s
E
[∣∣Ȳr

∣∣2]dr

+
L
α2

∫ T

s

[
E|Z̄r|2

]
dr + α2L

∫ T

s
E
[∣∣Ȳr

∣∣2]dr

+
L
α2

∫ T

s
E
[
‖K̄r(·)‖2

ν

]
dr.

Hence

E
[∣∣Ȳs

∣∣2]+(1− L
α2

)(∫ T

s
E
[
|Z̄r|2

]
dr +

∫ T

s
E
[
‖K̄r(·)‖2

ν

]
dr
)

≤ 2L
(

1 + α2
) ∫ T

s
E
[∣∣Ȳr

∣∣2]dr.

If we choose α such that L
α2 = 1

2 , we obtain after a simple computation

E
[∣∣Ȳs

∣∣2]+ 1
2

∫ T

s
E
[
|Z̄r|2

]
dr +

1
2

∫ T

s
E
[
‖K̄r(·)‖2

ν

]
dr

≤ 2L(1 + 2L)
∫ T

s
E
[∣∣Ȳr

∣∣2]dr.

The uniqueness of the solution follows immediately using Gronwall’s Lemma.

3.2. Comparison Principle

In this subsection, we shall compare the solutions of two BSDEJs whenever we can
compare their inputs which are described by their generators and terminal conditions. To
this end, we consider the following assumptions on the generator f :

Hypothesis 2:

Hypothesis 2.1 (H2.1). There exists L ≥ 0 such that for every s ∈ [0, T], x ∈ Γ, r, ŕ ∈ R, z, ź ∈
R, k(·) ∈ L2(Γ, E , ν(s, x, de)), we have

| f (s, x, r, z, k(·))− f (s, x, ŕ, ź, k(·))| ≤ L(|r− ŕ|+ |z− ź|).

Hypothesis 2.2 (H2.2). There exist two constants a and b, −1 < a < 0, b > 0 such that for every
s ∈ [0, T], x ∈ Γ, r, z ∈ R and k, ḱ ∈ L2(Γ, E , ν(s, x, de)), we have

f (s, x, r, z, k(·))− f (s, x, r, z, ḱ(·)) ≤
∫

Γ
(k(e)− ḱ(e))ϕs(e)ν(s, x, de),
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where ϕ : Ω× [0, T]× Γ −→ R is P ⊗ E -measurable and satisfies a < ϕs(·) < b.

Theorem 2 (Comparison Theorem). Let h1 and h2 be two final conditions E -measurable for
two BSDEJs driven by f 1 and f 2, respectively, such that f 1 satisfies H1.1 − H1.5 and f 2 satisfies
H1.1–H1.3, H1.5 and H2.1–H2.2. We denote by (Y1, Z1, K1(·)) and (Y2, Z2, K2(·)) the associated
solutions in B.
(i) If

h1(XT) ≤ h2(XT) P-a.s. and f 1(s, x, y, z, k(·)) ≤ f 2(s, x, y, z, k(·)),

then
Y1

s ≤ Y
2

s , ∀ s ∈ [0, T], P-a.s. (10)

(ii) Assume that the function ϕs(·) defined in H2.2 is nonnegative and for all (s, x, y, z) ∈ [0, T]
×R×R×R, k(·) ∈ L2(Γ, E , ν(s, x, de)) we have

f 2(s, x, y, z, k(·)) = λ(1 + |y|+ |z|+ ‖(kϕs)(·)‖).

Then we obtain (10).
(iii) If Y1

0 = Y2
0 , P-a.s., then Y1

s = Y2
s ∀ s ∈ [0, T], P-a.s., Z1

s = Z2
s ds ⊗ dP-a.e. and

K1
s (e) = K2

s (e) ν(s, x, de)ds⊗ dP-a.e.

Proof. Let us first prove (i). We denote δYs = Y1
s − Y2

s , δKs(·) = K1
s (·) − K2

s (·),
δZs = Z1

s − Z2
s and δh = h1(XT) − h2(XT); thus, the difference of the two solutions

can be decomposed as follows

δYs = δh +
∫ T

s

(
f 1(r, Xr, Y1

r , Z1
r , K1

r (·))− f 2(r, Xr, Y1
r , Z1

r , K1
r (·))

)
dr

+
∫ T

s

(
f 2(r, Xr, Y1

r , Z1
r , K1

r (·))− f 2(r, Xr, Y1
r , Z1

r , K2
r (·))

)
dr

+
∫ T

s

(
f 2(r, Xr, Y1

r , Z1
r , K2

r (·))− f 2(r, Xr, Y1
r , Z2

r , K2
r (·))

)
dr

+
∫ T

s

(
f 2(r, Xr, Y1

r , Z2
r , K2

r (·))− f 2(r, Xr, Y2
r , Z2

r , K2
r (·))

)
dr

−
∫ T

s
δZrdBr −

∫ T

s

∫
Γ

δKr(e)q(dr, de).

We denote Λr = e
∫ r

0 βudu, where

βu =


f 2(u, Xu, Y1

u , Z2
u, K2

u(·))− f 2(u, Xu, Y2
u , Z2

u, K2
u(·))

Y1
u −Y2

u
if Y1

u −Y2
u 6= 0

0 otherwise.

We apply Itô’s formula to ΛsδYs between s and T to obtain:

ΛsδYs = ΛTδh +
∫ T

s
Λr

(
f 1(r, Xr, Y1

r , Z1
r , K1

r (·))− f 2(r, Xr, Y1
r , Z1

r , K1
r (·))

)
dr

+
∫ T

s
Λr

(
f 2(r, Xr, Y1

r , Z1
r , K1

r (·))− f 2(r, Xr, Y
1

r , Z
1

r , K2
r (·))

)
dr

+
∫ T

s
Λr

(
f 2(r, Xr, Y1

r , Z1
r , K2

r (·))− f 2(r, Xr, Y
1

r , Z
2

r , K2
r (·))

)
dr

−
∫ T

s
ΛrδZrdBr −

∫ T

s

∫
Γ

ΛrδKr(e)q(dr, de). (11)

Using H2.2 and the fact that

ΛTδh +
∫ T

s
Λr

(
f 1(r, Xr, Y1

r , Z1
r , K1

r (·))− f 2(r, Xr, Y1
r , Z1

r , K1
r (·))

)
dr ≤ 0,
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we obtain

ΛsδYs ≤
∫ T

s

∫
Γ

ΛrδKr(e)ϕr(e)ν(r, Xr, de)dr + λ
∫ T

s
Λr|δZr|dr (12)

−
∫ T

s

∫
Γ

ΛrδKr(e)q(dr, de)−
∫ T

s
ΛrδZrdBr.

Set
Ms =

∫ s

0

∫
Γ

ϕr(e)q(dr, de) + λ
∫ s

0
sgn(δZr)dBr.

and
Us =

∫ s

0

∫
Γ

ΛrδKr(e)q(dr, de) +
∫ s

0
ΛrδZrdBr.

Thus,

Ũs =
∫ s

0

∫
Γ

ΛrδKr(e)q(dr, de)−
∫ s

0

∫
Γ

ΛrδKr(e)ϕr(e)ν(r, Xr, de)dr

+
∫ s

0
ΛrδZrdBr − λ

∫ s

0
Λr|δZr|dr.

Girsanov’s theorem (see Proposition 2) claims that the process Ũ is a martingale under
the probability measure dQ := ET(M)dP; taking the conditional expectation under the
probability measure Q on both sides of (12), we obtain ΛsδYs ≤ 0 Q-a.s. and thus P-a.s.
Then, Y1

s ≤ Y
2
s , ∀ s ∈ [0, T], P-a.s.

Next, we proceed to prove (ii). Arguing as in the proof of assertion (i), one can easily
show that

ΛsδYs ≤
∫ T

s

∫
Γ

Λr

(∣∣∣K1(e)
∣∣∣− ∣∣∣K2(e)

∣∣∣)ϕr(e)ν(r, Xr, de)dr

+
∫ T

s
Λr|δZr|dr−

∫ T

s

∫
Γ

ΛrδKr(e)q(dr, de)−
∫ T

s
ΛrδZrdBr,

≤
∫ T

s

∫
Γ

Λr|δKr(e)|ϕr(e)ν(r, Xr, de)dr +
∫ T

s
Λr|δZr|dr

−
∫ T

s

∫
Γ

ΛrδKr(e)q(dr, de)−
∫ T

s
ΛrδZrdBr. (13)

Define the new martingale

Ns =
∫ s

0

∫
Γ

sgn(δKr(e))ϕr(e)q(dr, de) + λ
∫ s

0
sgn(δZr)dBr.

Again using Girsanov’s theorem, it is not difficult to see that

K̂s =
∫ s

0

∫
Γ

ΛrδKr(e)q(dr, de)−
∫ s

0

∫
Γ

Λr|δKr(e)|ϕr(e)ν(r, Xr, de)dr

+
∫ s

0
ΛrδZrdBr − λ

∫ s

0
Λr|δZr|dr,

is an F-martingale under the probability measure dQ̂ := ET(N)dP and thus the result
follows immediately by taking the conditional expectation under the probability measure
Q in both sides of the inequality (13).
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To prove (iii), we turn back to (11) and take s = 0; thus,

ΛT

(
h2 − h1

)
+
∫ T

0
Λr

(
f 2(r, Xr, Y1

r , Z1
r , K1

r (·))− f 1(r, Xr, Y1
r , Z1

r , K1
r (·))

)
dr

=
∫ T

0
Λr

(
f 2(r, Xr, Y1

r , Z1
r , K1

r (·))− f 2(r, Xr, Y
1

r , Z
1

r , K2
r (·))

)
dr

+
∫ T

0
Λr

(
f 2(r, Xr, Y1

r , Z1
r , K2

r (·))− f 2(r, Xr, Y
1

r , Z
2

r , K2
r (·))

)
dr

−
∫ T

0
ΛrδZrdBr −

∫ T

0

∫
Γ

ΛrδKr(e)q(dr, de),

by the fact that the right-hand side of the above equality is an F-martingale under the
probability measure dQ̂ := ET(N)dP; taking the expectation, we obtain

EQ̂
[
ΛT

(
h2 − h1

)]
= 0,

and

EQ̂
[∫ T

0
Λr

(
f 2(r, Xr, Y1

r , Z1
r , K1

r (·))− f 1(r, Xr, Y1
r , Z1

r , K1
r (·))

)
dr
]
= 0.

Hence, h2 = h1 P-a.s. and f 1 = f 2 dt⊗ dP-a.e., which implies that Y1
s = Y2

s P-a.s. for all
s ∈ [0, T]. Therefore, Z1

s = Z2
s ds⊗ dP-a.e. and K1

s (e) = K2
s (e) ν(s, x, de)ds⊗ dP-a.e.

4. BSDEJs with Non-Lipschitz Generators
4.1. BSDEJs with Continuous Coefficients

The purpose of this subsection is to prove an existence result for BSDEJ (1), covering
the case where the generator f is continuous in (y, z), with Lipschitz in k(·), and satisfies
the following linear growth type condition:

Hypothesis 3:

Hypothesis 3.1 (H3.1). For all (s, ω, x, y, z) ∈ [0, T] ×Ω × R× R× R and k(·) ∈ L2(Γ, E ,
ν(s, x, de)), we have

| f (s, x, y, z, k(·))| ≤ λ(1 + |y|+ |z|+ ‖(kϕs)(·)‖ν).

where the function ϕs(·) is defined in Theorem 2 (ii).

Theorem 3. Let Assumptions H1.1–H1.3, H3.1 and H2.2 hold true. Then, BSDEJ (1) has at least a
minimal solution (Y, Z, K(·)).

To prove this theorem, we use an approximation of the generator by increasing se-
quences of Lipschitz functions ( fn)n≥0 defined in the following lemma.

Lemma 3. For all n ≥ λ, we consider ( fn)n≥λ, defined by

fn(s, x, y, z, k(·)) = inf
(a,b)∈Q×Q

{ f (s, x, a, b, k(·)) + n(|a− y|+ |b− z|)}.

The sequence ( fn)n≥λ has the following properties: for all (s, x) ∈ [0, T] × R and
(y, z, k(·)), (ý, ź, ḱ(·)) ∈ R×R× L2(Γ, E , ν(s, x, de)).

(A1) There exists n ≥ 0 such that∣∣∣ fn(s, x, y, z, k(·))− fn(s, x, ý, ź, ḱ(·))
∣∣∣ ≤ n

(
|y− ý|+ |z− ź|+

∥∥∥k(·)− ḱ(·)
∥∥∥

ν

)
,
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(A2) fn+1(s, x, y, z, k(·)) ≥ fn(s, x, y, z, k(·)),
(A3) There exist two constants a and b, −1 < a < 0, b > 0 such that for every s ∈ [0, T], x ∈

Γ, r, z ∈ R and k(·), ḱ(·) ∈ L2(Γ, E , ν(s, x, de)), we have

fn(s, x, r, z, k(·))− fn(s, x, r, z, ḱ(·)) ≤
∫

Γ
(k(e)− ḱ(e))ϕs(e)ν(s, x, de),

where ϕs(e) : Ω× [0, T]× Γ −→ R is P ⊗ E -measurable and satisfies a < ϕs(e) < b.
(A4) | fn(s, x, y, z, k(·))| ≤ λ(1 + |y|+ |z|+ ‖(kϕs)(·)‖ν),
(A5) If limn→+∞(yn, zn) = (y, z) then limn→+∞ fn(s, x, yn, zn, k(·)) = f (s, x, y, z, k(·)).

Proof. Firstly, the proof can be performed as that of Lemma 1 in [21].

We note that for all n ≥ λ, the function fn verifies Hypothesis 3, which implies that
there exists a unique solution (Yn, Zn, Kn(·)) of BSDEJ with data ( fn, h(XT)). We establish
a priori estimates on the sequence (Yn, Zn, Kn(·)).

Lemma 4. There exists a constant C > 0 depending only on h, T, λ2 such that for all n ≥ 1

sup
n≥λ

(
E
[

sup
s∈[0,T]

|Yn
s |

2

]
+
∫ T

0
E
[
|Zn

r |
2
]
dr +

∫ T

0
E
[
‖Kn

r (·)‖
2
ν

]
dr

)
≤ C.

Proof. From Itô’s formula applied to |Yn
s |

2, it follows that

|Yn
s |

2 = |h(XT)|2 + 2
∫ T

s
Yn

r fn(r, Xr, Yn
r , Zn

r , Kn
r (·))dr (14)

−2
∫ T

s

∫
Γ

Yn
r−Kn

r (e)q(dr, de)− 2
∫ T

s
Yn

r Zn
r dBr

−
∫ T

s
|Zn

r |
2dr−

∫ T

s

∫
Γ
|Kn

r (e)|
2q(dr, de)−

∫ T

s
‖Kn

r (·)‖
2
νdr.

Taking the expectation in both sides of the previous inequality, we obtain

E
[
|Yn

s |
2
]
+
∫ T

s
E
[
|Zn

r |
2
]
dr +

∫ T

s
E
[
‖Kn

r (·)‖
2
ν

]
dr

= E
[
|h(XT)|2

]
+ 2

∫ T

s
E[Yn

r fn(r, Xr, Yn
r , Zn

r , Kn
r (·))]dr.

Therefore, we obtain from (A3), Young’s inequality 2xy ≤ 2x2 + y2

2 and (H2.1),

E|Yn
s |

2 +E
∫ T

s
|Zn

r |
2dr +E

∫ T

s
‖Kn

r (·)‖
2dr

≤ 2
(

C + 2λ2T
)
+ 2
(

1
2
+ 4λ2 + 2λ

)
E
∫ T

s
|Yn

r |
2dr.

Hence, Gronwall’s lemma yields

sup
s∈[0,T]

E|Yn
s |

2 +E
∫ T

0
|Zn

r |
2dr +E

∫ T

0
‖Kn

r (·)‖
2dr ≤ C. (15)

Now, returning to (14), we use (A3), Young’s inequality 2xy ≤ 2x2 + y2

2 and Burkholder–
Davis–Gundy inequality to obtain
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E
[

sup
s∈[0,T]

|Yn
s |

2

]
+
∫ T

0
E
[
|Zn

r |
2
]
dr +

∫ T

0
E
[
‖Kn

r (·)‖
2
ν

]
dr

≤ E
[
|h(XT)|2

]
+ 2λ2T +

(
1
2
+ 2λ2 + 2λ

) ∫ T

0
E
[
|Yn

s |
2
]
dr

+
1
2

(∫ T

0
E
[
|Zn

r |
2
]
dr +

∫ T

0
E
[
‖Kn

r (·)‖
2
ν

]
dr
)

+4
C
κ
E
[

sup
s∈[0,T]

|Ys|2
]
+ 4κC

(∫ T

0
E
[
|Zr|2

]
dr +

∫ T

0
E
[
‖Kn

r (·)‖
2
ν

]
dr
)

.

Then (
1− 4

C
κ

)
E
[

sup
t∈[0,T]

|Yn
t |

2

]
+
∫ T

0
E
[
|Zn

r |
2
]
dr +

∫ T

0
E
[
‖Kn

r (·)‖
2
ν

]
dr

≤ Ć + 2λ2T +

(
1
2
+ 4κC

)
+

(
1
2
+ 2λ2 + 2λ

) ∫ T

0
E
[

sup
t∈[0,r]

|Yn
t |

2

]
dr.

Finally, Gronwall’s lemma gives the desired result.

Proof of Theorem 3. We split the proof into the following three steps
Step 1: In this step we prove that there exists a process Y· ∈ S2 as the infimum limit of Yn

· .
Set

g(s, x, y, z, k(·)) = λ(1 + |y|+ |z|+ ‖(kϕs)(·)‖ν).

Let (Ý, Ź, Ḱ(·)) be the unique solution of the BSDEJ with data (g, h(XT)), which is ensured
by Theorem 1. Remember that for each n, (Yn, Zn, Kn(·)) is the unique solution of BSDEJ
with data ( fn, h(XT)). Now, thanks to (A2) and Theorem 2, the sequence (Yn

s )n≥1 is non-
decreasing and bounded by Ýs. Therefore, there exists a stochastic process Y as the limit of
the sequence Yn

s : Ys = limn→+∞ Yn
s . From Lemma 4, we have E[sups∈[0,T]|Yn

s |
2] ≤ C; then,

Fatou’s Lemma gives

E
[

sup
s∈[0,T]

|Ys|2
]

= E
[

sup
s∈[0,T]

∣∣∣∣ lim
n→+∞

Yn
s

∣∣∣∣2
]

≤ lim inf
n→+∞

E
[

sup
s∈[0,T]

|Yn
s |

2

]
≤ C,

which implies that Y ∈ S2. Then, from Lebesgue’s dominated convergence theorem,
we obtain

lim
n→+∞

∫ T

0
E
[
|Yn

r −Yr|2
]
dr = 0.

Step 2: In this step, we shall prove that (Zn, Kn(·))n≥1 is a Cauchy sequence on
M2 × L2(Γ, E , ν(·, x, de)).
Using Itô’s formula and Holder’s inequality, we obtain for n, m ≥ 1:

E
[
|Yn

s −Ym
s |

2
]
+
∫ T

s
E
[
|Zn

r − Zm
r |

2
]
dr +

∫ T

s
E
[
‖Kn

r (·)− Km
r (·)‖

2
ν

]
dr

≤ 2
(∫ T

s
E
[
|Yn

r −Ym
r |

2
]
dr
) 1

2
(∫ T

s
E
[
| fn(r, Xr, Yn

r , Zn
r , Kn

r (·))|
2
]
dr
) 1

2

+2
(∫ T

s
E
[
|Yn

r −Ym
r |

2
]
dr
) 1

2
(∫ T

s
E
[
| fm(r, Xr, Ym

r , Zm
r , Km

r (·))|
2
]
dr
) 1

2

.
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Thanks to (A3), Lemma 4 and (a + b + c + d)2 ≤ 4
(
a2 + b2 + c2 + d2), we obtain

∫ T

s
E
[
| fm(r, Xr, Ym

r , Zm
r , Km

r (·))|
2
]
dr

≤ 4λ
∫ T

s
dr +

∫ T

s
E
[
|Ym

r |
2
]
dr +

∫ T

s
E[|Zm

r |]
2dr

+
∫ T

s
E
[
‖Km

r (·)‖
2
ν

]
dr

≤ 4λ
(
T + C̃

)
= C.

Thus

E
[
|Yn

s −Ym
s |

2
]
+
∫ T

s
E
[
|Zn

r − Zm
r |

2
]
dr +

∫ T

s
E
[
‖Kn

r (·)− Km
r (·)‖

2
ν

]
dr

≤ C
(∫ T

s
E
[
|Yn

r −Ym
r |

2
]
dr
) 1

2

−→
n→+∞

0.

The term in the right-hand side of the previous inequality tends to 0 as n goes to infinity;
therefore, (Zn, Kn(·))n≥1 is a Cauchy sequence onM2× L2(Γ, E , ν(s, x, de)), and thus there
exists a process (Y, Z, K(·)) ∈ B as the limit of the sequence (Yn, Zn, Kn(·)).
Step 3: In this step, we will show that (Y, Z, K(·)) satisfies (1). As n tends towards infinity,
(Yn, Zn, Kn(·)) converges to (Y, Z, K(·)) in the space B; then, we obtain the convergence
dt⊗ dP a.s. to (Y, Z, K(·)). Then from (A5) we have

lim
n→+∞

fn(s, Xs, Yn
s , Zn

s , Ks(·)) = f (s, Xs, Ys, Zs, Ks(·)) P-a.s.

Set (Gs, Hs) = supn≥λ(|Yn
s |, |Zn

s |); then, from (A4), we obtain

sup
n≥λ

| fn(s, Xs, Yn
s , Zn

s , Ks(·))| ≤ λ(1 + Gs + Hs + ‖(Ks ϕs)(·)‖ν) ∈ L1(Ω).

By subtracting and adding fn(r, Xr, Yn
r , Zn

r , Kr(·)), we obtain∫ T

0
E
[
| fn(r, Xr, Yn

r , Zn
r , Kn

r (·))− f (r, Xr, Yr, Zr, Kr(·))|2
]
dr

≤
∫ T

0
E
[
| fn(r, Xr, Yn

r , Zn
r , Kn

r (·))− fn(r, Xr, Yn
r , Zn

r , Kr(·))|2
]
dr

+
∫ T

0
E
[
| fn(r, Xr, Yn

r , Zn
r , Kr(·))− f (r, Xr, Yr, Zr, Kr(·))|2

]
dr.

Since fn is Lipschitz in k(·), the first term in the right-hand side of the above equality tends
to 0 as n goes to infinity; then, the dominated convergence theorem yields the convergence
of the second term to 0. Therefore, there exists a subsection (still indexed by n) such that

lim
n→+∞

∫ T

0
fn(r, Xr, Yn

r , Zn
r , Kn

r (·))dr =
∫ T

0
f (r, Xr, Yr, Zr, Kr(·))dr P-a.s.

Then, the Burkholder–Davis–Gundy inequality leads to

lim
n→+∞

∫ T

0
Zn

r dBr =
∫ T

0
ZrdBr,

and

lim
n→+∞

∫ T

0

∫
Γ

Kn
r (e)q(dr, de)

∫ T

0

∫
Γ

Kr(e)q(dr, de).
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It remains to verify that limn→+∞ Yn
s = Ys P-a.s.

E
[
|Yn

s −Ys|2
]

= E
∣∣∣∣∫ T

s
fn(r, Xr, Yn

r , Zn
r , Kn

r (·))dr−
∫ T

s
Zn

r dBr −
∫ T

s

∫
Γ

Kn
r (e)q(dr, de)

−
∫ T

s
f (r, Xr, Yr, Zr, Kr(·))dr +

∫ T

s
ZrdBr +

∫ T

s

∫
Γ

Kr(e)q(dr, de)
∣∣∣∣2.

Since (a + b + c)2 ≤ 3
(
a2 + b2 + c2), the above equality becomes

E
[
|Yn

s −Ys|2
]
≤ 3E

∣∣∣∣∫ T

s
| fn(r, Xr, Yn

r , Zn
r , Kn

r (·))− f (r, Xr, Yr, Zr, Kr(·))|dr
∣∣∣∣2

+3E
∣∣∣∣∫ T

s
(Zn

r − Zr)dBr

∣∣∣∣2
+3E

∣∣∣∣∫ T

s

∫
Γ
(Kn

r (e)− Kr(e))q(dr, de)
∣∣∣∣2.

But all the three terms on the right-hand side of the above inequality converge to zero as n
goes to infinity; hence, the theorem is proved.

4.2. On the Set of Solutions of BSDEJ

In this subsection, we draw attention to the set of solutions of a one-dimensional BSDEJ
with jump when the drift term is assumed to be continuous and of linear growth in (y, z, k(·)).
We then prove that there exists either one or uncountably many solutions of Equation (1). We
note (Ymax, Zmax, Kmax(·)) as the maximal solution and

(
Ymin, Zmin, Kmin(·)

)
as the minimal

solution of BSDEJ (1).

Hypothesis 3.2 (H3.2). Assume that for every s ∈ [0, T], x ∈ Γ, the mapping r, z, k(·) 7−→
f (s, x, r, z, k(·)) is continuous and there exists L ≥ 0 such that for every r, z ∈ R, k(·), ḱ(·) ∈
L2(Γ, E , ν(s, x, de))∣∣∣ f (s, x, r, z, k(·))− f (s, x, r, z, ḱ(·))

∣∣∣ ≤ L
∥∥∥k(·)− ḱ(·)

∥∥∥
ν
.

Theorem 4. We assume that H1.1–H1.4 and H3.1 − H3.2 hold true. Then, for each t0 ∈ [0, T]
and ξ ∈ L2(Ω,Ft0 ,P) such that Ymin

t0
≤ ξ ≤ Ymax

t0
a.s., there exists at least one solution

(Y, Z, K(·)) ∈ B to BSDEJ (1), satisfying Yt0 = ξ.

Proof. We consider the following BSDEJ for any t ∈ [t0, T]

Y1
t = ξ +

∫ t0

t
f (r, Xr, Y1

r , Z1
r , K1

r (·))dr

−
∫ t0

t
Z1

r dBr −
∫ t0

t

∫
Γ

K1
r (e)q(dr, de).

From Theorem 3, the previous equation has at least one solution
(
Y1, Z1, K1(·)

)
; we also

consider the following SDE

Y2
t = ξ −

∫ t

t0

f (r, Xr, Y2
r , Z2

r , K2
r (·))dr (16)

+
∫ t

t0

Z2
r dBr +

∫ t

t0

∫
Γ

K2
r (e)q(dr, de),
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for a fixed Z2, K2(·) ∈ M2 × L2(Γ, E , ν(s, x, de)); let (Y2
t )t∈[t0,T] be a strong solution to

SDE (16). Now, we define a stopping time τ = inf{t ≥ t0 : Y2
t /∈ (Ymin

t0
, Ymax

t0
)}, such that

Ymin
T = Ymax

T , and

(Yt, Zt, Kt) = 1[0,t0[

(
Y1

t , Z1
t , K1

t (·)
)
+ 1[t0,τ[

(
Y2

t , Z2
t , K2

t (·)
)

+1[τ,T[(Y
max
t , Zmax

t , Kmax
t (·))1{Yτ=Ymax

τ }

+1[τ,T[

(
Ymin

t , Zmin
t , Kmin

t (·)
)

1{Yτ<Ymax
τ },

is a solution to BSDEJ (1) with YT = h(XT) and Yt0 = ξ.

This result is an extension of the one obtained by Jia and Peng [22] corresponding to
the Brownian setting to BSDEs with jumps.

4.3. BSDEJ with Left Continuous and Increasing Coefficients

The aim of this subsection is to prove that BSDEJ (1) has at least one solution, which
belongs to the Banach space B, assuming that f is only left-continuous in y and bounded.
We fix a deterministic terminal time T > 0 and we assume further that:

Hypothesis 3.3 (H3.3). There exists L ≥ 0 such that for every s ∈ [0, T], x ∈ Γ, r ∈ R, z, ź ∈
R, k(·), ḱ(·) ∈ L2(Γ, E , ν(s, x, de)), we have∣∣∣ f (s, x, r, z, k(·))− f (s, x, r, ź, ḱ(·))

∣∣∣ ≤ L
(
|z− ź|+

∥∥∥k(·)− ḱ(·)
∥∥∥

ν

)
,

Hypothesis 3.4 (H3.4). The function y 7−→ f (s, x, y, z, k(·)) is left-continuous and increasing.

Hypothesis 3.5 (H3.5). There exists M > 0 such that for all (s, x, y, z, k(·)), | f (s, x, y, z, k(·))| ≤
M.

Theorem 5. Let Assumptions H1.1–H1.4, H2.2 and H3.2–H3.5 hold true. Then, BSDEJ (1) has at
least one solution (Y, Z, K(·)) ∈ B.

To prove this theorem, we use the classical approximation by convolution on the
generator f . We define ( fn)n≥0 by

fn(s, x, y, z, k(·)) = n
∫ y

y− 1
n

f (s, x, r, z, k(·))dr.

The sequence ( fn)n≥0 enjoins the following properties:

P1 There exist Cn ≥ 0 for each n such that∣∣∣ fn(s, x, y, z, k(·))− fn(s, x, ý, ź, ḱ(·))
∣∣∣ ≤ Cn

(
|y− ý|+ |z− ź|+

∥∥∥k(·)− ḱ(·)
∥∥∥

ν

)
;

P2 The sequence ( fn)n≥0 is increasing;
P3 There exist two constants a and b, −1 < a < 0, b > 0 such that for every s ∈ [0, T],

x ∈ Γ, r, z ∈ R and k(·), ḱ(·) ∈ L2(Γ, E , ν(s, x, de)), we have

fn(s, x, r, z, k(·))− fn(s, x, r, z, ḱ(·)) ≤ C
∫

Γ
(k(e)− ḱ(e))ϕs(e)ν(s, x, de);

P4 ∀ ζ ∈ [0, T]×R×R× L2(Γ, E , ν(s, x, de)), supn≥1| fn(ζ)| ≤ M;
P5 If limn→+∞(yn, zn) = (y, z), then limn→+∞ fn(s, x, yn, zn, k(·)) = f (s, x, y, z, k(·)).
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For all n ≥ 1, the function fn verifies Hypothesis 2; then, from Theorem 1 there is a unique
solution (Yn, Zn, Kn(·)) of BSDEJ with data ( fn, h(X)). The following lemma gives a priori
estimates for the sequence (Yn, Zn, Kn(·)) which will be needed in the sequel.

Lemma 5. There exists a constant C > 0 depending only on h, T and M such that for all n ≥ 1

E
[

sup
s∈[0,T]

|Yn
s |

2

]
+
∫ T

0
E
[
|Zn

r |
2
]
dr +

∫ T

0
E
[
‖Kn

r (·)‖
2
ν

]
dr ≤ C.

Proof. The proof of this lemma can be performed as the one of Lemma 4.

Proof of Theorem 5. By a method similar to that in the proof of Theorem 3, we deduce
that there exists a process Y ∈ B as the infimum limit of the sequence Yn:

Yr = lim
n→+∞

Yn
r and lim

n→+∞

∫ T

0
E
[
|Yn

r −Yr|2
]
dr = 0.

Now, we show that (Zn, Kn(·)) is a Cauchy sequence in B; for n, m ≥ 1, we use Itô’s
formula to obtain

E
[
|Yn

s −Ym
s |

2
]
+
∫ T

s
E
[
|Zn

r − Zm
r |

2
]
dr +

∫ T

s
E
[
‖Kn

r (·)− Km
r (·)‖

2
ν

]
dr

≤ 2
∫ T

s
E[|Yn

r −Ym
r || fn(r, Xn

r , Yn
r , Zn

r , Kn
r (·)|]dr

+2
∫ T

s
E[|Yn

r −Ym
r || fm(r, Xm

r , Ym
r , Zm

r , Km
r (·))|]dr.

By invoking P3 and using Holder’s inequality, we obtain

E
[
|Yn

s −Ym
s |

2
]
+
∫ T

s
E
[
|Zn

r − Zm
r |

2
]
dr +

∫ T

s
E
[
‖Kn

r (·)− Km
r (·)‖

2
ν

]
dr

≤ 4M
√

T
(∫ T

0
E
[
|Yn

r −Ym
r |

2
]
dr
) 1

2

.

However, the right-hand side of the above inequality converges to zero as n tends towards
infinity. So (Yn, Zn, Kn(·))n≥1 is a Cauchy sequence on B; then, there exists a process
(Y, Z, K(·)) ∈ B as a limit of the sequence (Yn, Zn, Kn(·)).
To prove that (Y, Z, K(·)) verifies (1), we use the same method as that in the proof of
Theorem 3.

5. Application

In this section, we aim to go beyond the linear growth condition of the BSDEJ’s
generator. More precisely, we use Theorem 3 to show the existence of an unnecessarily
unique solution to one kind of quadratic BSDEJ. We define the following function which
plays a crucial role in the proof of Theorem 6 below. It allows us to eliminate the additive
quadratic and the non-linear functional terms in the BSDEJ (17).
Let ψ be a measurable continuous function that belongs to L1(R). Define the following
function

F(x) =
∫ x

0
exp

(
2
∫ y

0
ψ(t)dt

)
dy.

It was shown in [23] that the function which belongs to C2(R) enjoys the following proper-
ties: (i) For a.e. x, F′′(x)− 2ψ(x)F′(x) = 0. (ii) F is a quasi-isometry; that is, there exist two
positive constants m and M such that, for any x, y ∈ R,

m|x− y| ≤ |F(x)− F(y)| ≤ M|x− y|.
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(iii) F is a one-to-one function from R onto R. Both F and its inverse function F−1 belong to
C2(R). Next, we use Theorem 3 to solve the following quadratic BSDEJ

Ys = h(XT)−
∫ T

s
ZrdBr −

∫ T

s

∫
Γ

Kr(e)q(dr, de) (17)

+
∫ T

s
H(r, Xr, Yr, Zr, Kr(·))ds,

where H(r, Xr, y, z, k(·)) = f (r, Xr, y, z, k(·)) + ψ(y)|z|2 +
[
Kr,Xr− ,y

]
ψ

and

[
ks,x,y

]
ψ

:=
∫

Γ

F(y + k(e))− F(y)− F′(y)k(e)
F′(y)

ν(s, x, de).

Theorem 6. Assume that h satisfies H1.1 and f satisfies Assumptions H1.1, H1.2 and H2.2. Then,
Equation (17) has at least one solution.

Proof. Let (Y, Z, K(·)) be a solution of BSDEJ (17). Then, Itô’s formula applied to F(Ys)
shows that

F(Ys) = F(h(XT)) +
∫ T

s
F′(Yr−) f (r, Xr, Yr, Zr, Kr(·))dr

+
∫ T

s

(
F′(Yr−)

(
ψ(Yr)|Zr|2 +

[
Kr,Xr− ,Yr−

]
ψ

)
− 1

2
F′′(Yr)|Zr|2

)
dr

−
∫ T

s
F′(Yr−)ZrdBr −

∫ T

s

∫
Γ

F′(Yr−)Kr(e)q(dr, de)

− ∑
s<r≤T

(
F(Yr)− F(Yr−)− F′(Yr−)∆Yr

)
,

since F′(x)ψ(x)− 1
2 F′′(x) = 0, and

∑
s<r≤T

(
F(Yr)− F(Yr−)− F′(Yr−)∆Yr

)
=

∫ T

s

∫
Γ

(
F(Yr− + Kr(e))− F(Yr−)− F′(Yr−)Kr(e)p(dr, de)

)
.

Moreover, by adding and subtracting the same term∫ T

s

∫
Γ

(
F(Yr)− F(Yr−)− F′(Yr−)Kr(e)

)
ν(r, Xr, de)dr

we obtain

F(Ys) = F(h(XT)) +
∫ T

s
F′(Yr−) f (r, Xr, Yr, Zr, Kr(·))dr

+
∫ T

s
F′(Yr−)

[
Kr,Xr− ,Yr−

]
ψ

dr

−
∫ T

s
F′(Yr−)ZrdBr −

∫ T

s

∫
Γ

F′(Yr−)Kr(e)q(dr, de)

−
∫ T

s

∫
Γ

(
F(Yr− + Kr(e))− F(Yr−)− F′(Yr−)Kr(e)p(dr, de)

)
+
∫ T

s

∫
Γ

(
F(Yr− + Kr(e))− F(Yr−)− F′(Yr−)Kr(e)

)
ν(r, Xr, de)dr

−
∫ T

s

∫
Γ

(
F(Yr− + Kr(y))− F(Yr−)− F′(Yr−)Kr(e)

)
ν(r, Xr, de)dr.
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This implies

F(Ys) = F(h(XT)) +
∫ T

s
F′(Yr−) f (r, Xr, Yr, Zr, Kr(·))dr

+
∫ T

s
F′(Yr−)

[
Kr,Xr− ,Yr−

]
ψ

dr

−
∫ T

s
F′(Yr−)ZrdBr −

∫ T

s

∫
Γ

F′(Yr−)Kr(e)q(dr, de)

−
∫ T

s

∫
Γ

(
F(Yr− + Kr(e))− F(Yr−)− F′(Yr−)Kr(e)

)
q(dr, de)

−
∫ T

s

∫
Γ

(
F(Yr− + Kr(y))− F(Yr−)− F′(Yr−)Kr(e)

)
ν(r, Xr, de)dr.

According to Lemma 4 and the definition of
[
Kr,Xr− ,Yr−

]
ψ

, we obtain,

F(Ys) = F(h(XT))−
∫ T

s
F′(Yr−)ZrdBr

+
∫ T

s
F′(Yr−) f (r, Xr, Yr, Zr, Kr(·))dr (18)

−
∫ T

t

∫
Γ
(F(Yr− + Kr(e))− F(Yr−))q(dr, de).

Set
yr = F(Yr), zr = F′(Yr−)Zr, kr(e) = F(Yr− + Kr(e))− F(Yr−),

and
F′(Yr−) f (r, Xr, Yr, Zr, Kr(·)) =: g(r, Xr, yr, zr, kr(·)),

we can write the previous equation in the following form

ys = F(h(XT)) +
∫ T

s
g(r, Xr, yr, zr, kr(·))dr (19)

−
∫ T

s
zrdBr −

∫ T

s

∫
Γ

kr(e)q(dr, de)).

Conversely, let (y, z, k(.)) be a solution to BSDEJ (19); then, Itô’s formula applied to
Ys = F−1(ys) shows that

F−1(ys) = h(XT) +
∫ T

s
(F−1)′(yr−)(g(r, Xr, yr, zr, kr(·)))dr

−
∫ T

s

∫
Γ
(F−1)′(yr−)kr(e)q(dr, de)

−
∫ T

s
(F−1)′(yr−)zrdBr −

1
2

∫ T

s
(F−1)′′(yr)|zr|2ds

− ∑
s<r≤T

(
F−1(yr)− F−1(yr−)− (F−1)′(yr−)∆yr

)
.
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Then,

Ys = h(XT)−
∫ T

s
(F−1)′(yr−)zrdBr −

∫ T

s

∫
Γ
(F−1)′(yr−)kr(e)q(dr, de) (20)

+
∫ T

s
(F−1)′(yr−)(g(r, Xr, yr, zr, kr(·)))ds− 1

2

∫ T

s
(F−1)′′(yr)|zr|2dr

−
∫ T

s

∫
Γ

(
F−1(yr− + kr(e))− F−1(yr−)− (F−1)′(yr−)kr(e)

)
p(dr, de)

= h(XT)−
∫ T

s
(F−1)′(yr−)zrdBr −

∫ T

s

∫
Γ
(F−1)′(yr−)kr(e)q(dr, de)

+
∫ T

s
(F−1)′(yr−)(g(r, Xr, yr, zr, kr(·)))dr− 1

2

∫ T

s
(F−1)′′(yr)|zr|2dr

+
∫ T

s

∫
Γ

(
F−1(yr− + kr(e))− F−1(yr−)− (F−1)′(yr−)kr(e)

)
ν(r, Xr, de)dr

−
∫ T

s

∫
Γ

(
F−1(yr− + kr(e))− F−1(yr−)− (F−1)′(yr−)kr(e)

)
q(dr, de).

Notice that
(F−1)′(x) =

1
F′(F−1(x))

and

(F−1)′′(x) = − F′′(F−1(x))
(F′(F−1(x)))2 (F−1)′(x)

= − F′′(F−1(x))
(F′(F−1(x)))3 .

Set Zs = (F−1)′(ys−)zs and Ks(e) = F−1(ys− + ks(e))− F−1(ys−); this implies

1
2
(F−1)′′(yr)|zr|2 = −1

2
F′′(Yr)

(F′(Yr))3
|Zr|2

((F−1)′(yr−))2 (21)

ds a.e.
= −1

2
F′′(Yr)

F′(Yr)
|Zr|2 = −ψ(Yr)|Zr|2

and ∫
Γ

(
F−1(yr− + kr(e))− F−1(yr−)− (F−1)′(yr−)kr(e)

)
ν(r, Xr, de) (22)

=
∫

Γ

(
Kr(e)−

1
F′(Yr)

(F(Yr)− F(Yr−))

)
ν(r, Xr, de)

= −
∫

Γ

(
F(Yr)− F(Yr−)− F′(Yr)Kr(e)

F′(Yr)

)
ν(r, Xr, de)

= −
[
Kr,Xr− ,Yr−

]
ψ

and

(F−1)′(ys−)(g(r, Xr, yr, zr, kr(·)))

= f (r, Xr, F−1(yr),
zr

F′(F−1(yr))
, F−1(yr− + kr(e))− F−1(yr−))

= f (r, Xr, Yr, Zr, Kr(·)). (23)
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Substituting (21), (22) and (23) into (20) we end up with

Yt = h(XT) +
∫ T

s
H(r, Xr, Yr, Zr, Kr(·))dr

−
∫ T

s
ZrdBr −

∫ T

s

∫
Γ

Kr(e)q(dr, de).

So far we have shown that BSDEJ (17) has a solution if and only if BSDEJ (19) has a solution.
Therefore, since h satisfies H1.1 and F is a Lipschitz function, it is easy to see that F ◦ h also
satisfies H1.1. On the other hand, using the fact that F′ is bounded and f satisfies H1.1, H1.2
and H2.2, one can show that g also satisfies assumptions H1.1, H1.2 and H2.2. Therefore,
Theorem 3 confirms that BSDEJ (19) has at least one solution (y, z, k(·)) ∈ B. This implies
that BSDEJ (17) also has at least one solution (Y, Z, K(·)) which also belongs to B. Indeed,
thanks to the Lipschitz continuity of F−1, we can easily show that: |Ys| ≤ M|ys|, |Zs| ≤
M|zs| and |Ks(e)| ≤ M|ks(e)|.

Concluding Remarks and Perspectives

In this paper, we proved some results concerning the existence and uniqueness of the
solution to BSDEJ (1) under a global Lipschitz condition on the generator f . A comparison
principle is discussed and is used to improve or relax some assumptions concerning the
generators, especially the continuity and linear growth assumptions. Another interesting
class of quadratic BSDEs with jumps in the Markovian case was studied, as well as their
connection with PIDEs. Finally, the link between quadratic BSDEJs and BSDEJs with
continuous generators to solve some quadratic backward stochastic differential equations
in the case where the generator f is continuous with linear growth in y and bounded in
(z, k(·)) is established.

We would like to investigate the existence of a solution for one-dimensional backward
stochastic differential equations driven both by a Brownian motion and a pure jump
martingale with two reflecting barriers. We expect that once this problem is solved, one
can take the advantage of the domination method used for the example in [23,24] as well
as the techniques developed in the recently published paper [25] to prove some results on
quadratic BSDEs with jumps. In this direction, the comparison principle proved in this
paper will be of great interest.
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