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Abstract: In this paper, a (4+1)-dimensional nonlinear integrable Fokas equation is studied. It is rarely
studied because the order of the highest-order derivative term of this equation is higher than the
common generalized (4+1)-dimensional Fokas equation. Firstly, the (4+1)-dimensional time-fractional
Fokas equation with the Riemann–Liouville fractional derivative is derived by the semi-inverse
method and variational method. Further, the symmetry of the time-fractional equation is obtained by
the fractional Lie symmetry analysis method. Based on the symmetry, the conservation laws of the
time fractional equation are constructed by the new conservation theorem. Then, the

(
G′
G

)
-expansion

method is used here to solve the equation and obtain the exact traveling wave solutions. Finally, the
spectral method in the spatial direction and the Grünwald–Letnikov method in the time direction are
considered to obtain the numerical solutions of the time-fractional equation. The numerical solutions
are compared with the exact solutions, and the error results confirm the effectiveness of the proposed
numerical method.

Keywords: (4+1)-dimensional time-fractional Fokas equation; conservation laws;
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G′
G

)
-expansion

method; spectral method

1. Introduction

Due to the dimensions of equations increasing, which causes difficulties in the analysis
and calculation of high-dimensional partial differential equations, there are more studies
on low-dimensional problems than on high-dimensional problems. However, the real
world is (3+1)-dimensional, thus high-dimensional equations have important applications
in real-world problems [1–3]. For the past few years, more and more scholars have begun
to pay attention to high-dimensional integrable equations in the integrable field. These
equations are mathematical models that can describe some complex physical phenomena
in physics, ocean process, engineering, biology, chemistry, nonlinear optics and so on. Now,
the research of high-dimensional problems mainly focuses on the integer order. Many
scholars are devoted to the study of the exact solutions of integer-order high-dimensional
problems. These exact solutions have rich physical meanings and can describe some
physical phenomena that cannot be observed easily. In recent years, the theory of fractional
calculus has developed rapidly [4–6], and it has been applied to various fields, such as
viscoelastic mechanics, biology, signal and image processing, machinery, physics and other
fields. The fractional calculus has great significance for us to observe and study these
practical problems because the fractional-order equations can describe complex problems
that integer order equations cannot. So it is necessary to study some useful properties
and solutions of the fractional order high-dimensional equation. Motivated by the above
considerations, in this paper, a (4+1)-dimensional time fractional Fokas equation is derived
and studied.

A popular (4+1)-dimensional research issue is a common generalized Fokas equation.
It is generated by extending the Lax pair of the low-dimensional Kadomtsev–Petviashvili
equation and Davey–Stewartson equation to higher dimensions [7]. It is mainly used
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to describe the interaction between elastic and inelastic internal waves. The common
generalized Fokas equation is as follows:

(4ut − ux1x1x2 + ux2x2x2 + 12uux2)x1
− 6uy1y2 = 0. (1)

This is a nonlinear partial differential equation with four variables x1, x2, y1, y2 in space
direction, one variable t in time direction and a fourth derivative term. A similar equation
to be introduced in this paper is produced together with the common generalized Fokas
equation, but it is rarely studied because it is more complex, and its form is as follows:

16utx2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2 − 12(u2)x2x2

+ 12(u2)x1x1 − 24uy1y1 + 24uy2y2 = 0, (2)

where x1, x2, y1, y2 ∈ R4, t ∈ [0, T]. This is a fifth-order nonlinear integrable partial differen-
tial equation with four variables x1, x2, y1, y2 in space direction and one variable t in time
direction. Compared with Equation (1), Equation (2) is more complicated, so it is more
difficult to study Equation (2).

As far as we all know, Equation (2) has hardly been studied and has not been extended
to the time-fractional form. In this paper, the time-fractional form of Equation (2) is
studied; the time-fractional form of Equation (2) can be derived for the first time by
using the semi-inverse method and the variational method [8]. Because the Kadomtsev–
Petviashvili equation and Davey–Stewartson equation have important physical applications
in describing surface waves and internal waves in channels with different depths and
widths, respectively, this (4+1)-dimensional time fractional Fokas equation can be used
to represent many complex nonlinear phenomena in ocean engineering, shallow water
waves, fluid mechanics, plasma physics and other fields. We mainly study the symmetry,
conservation laws, exact solutions and numerical solutions of this equation.

The symmetry and conservation laws of partial differential equations play an impor-
tant role in the study of integrability and solutions of partial differential equations [9,10],
and it can explain various physical phenomena described by partial differential equations.
At first, the Noether theorem [11] provides us with a method of constructing the conser-
vation laws of an integer order partial differential equation. This method establishes the
relationship between conservation laws and the symmetry of partial differential equations.
However, this approach requires that they are Euler–Lagrange equations. For fractional
partial differential equations, we can use the extended Noether theorem to construct the
conservation laws [12–14], but this method also requires the fractional partial differential
equations to satisfy the Lagrangian. Recently, some research has been conducted, where,
based on the new conservation law [15], the fractional generalization of Noether opera-
tors can be used to obtain the conservation laws of the time-fractional partial differential
equation, which does not require the fractional partial differential equation to have the La-
grangian [16]. In this paper, the symmetry property of the time fractional (4+1)-dimensional
partial differential equation can be obtained by using Lie symmetry analysis, and the new
conservation theorem (Lie points symmetry combined adjoint equations) are considered to
obtain the conservation laws of the (4+1)-dimensional time-fractional Fokas equation.

The exact solutions of Equation (1) have been studied by many scholars using dif-
ferent methods. The main methods include the exponential function method, modified
tanh-coth method, extended Jacobian elliptic function method,

(
G′
G

)
-expansion method,

extended F-expansion method, extended simplest function method, modified simplest
function method, simplified Hirota method and Lie group method. Using the above meth-
ods, traveling wave solutions, multi-soliton solutions, soliton solutions, periodic wave
solutions, rouge wave and lump wave solutions, V-type solitary wave solutions, breather
wave solutions and rational solutions in the determinant form can be obtained [17–23].
Influenced by the analysis of the exact solutions of the Equation (1), for the exact so-
lutions of the (4+1)-dimensional time-fractional equation, we adopt the

(
G′
G

)
-expansion
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method [24,25]. We can obtain several exact traveling wave solutions, which we hope to
enrich the dynamic behaviors of high-dimensional nonlinear evolution equations. This
method is mainly used to find traveling wave solutions of nonlinear evolution equations.
Its advantage is that it can transform partial differential equations into ordinary differential
equations for solving equations, simplifying the calculation. This method is very effective
for solving high-dimensional nonlinear problems in mathematical physics. Some research
can be studied from these articles [26–30].

At present, there are few numerical solutions for (4+1)-dimensional partial differential
equations. Bi et al. numerically solved the (4+1)-dimensional anomalous diffusion equa-
tion by using the alternating direction method [31]. However, this method is suitable for
parabolic equations, but not for other types of partial differential equations. In addition,
the finite difference method, finite element method and iterative algorithms for stochas-
tic systems [32] need a lot of calculation to deal with high-dimensional problems, which
brings great difficulties to the computer. For the numerical solutions of (3+1)-dimensional
seismic waves, as early as 1998, Takashi et al. proposed a numerical method [33,34], which
is the spectral method in the spatial direction and the finite difference method in the time
direction. Recently, Sun and Wang et al. used this method to numerically calculate the
(3+1)-dimensional seismic wave, and compared it with the finite difference method [35–37].
They found that the accuracy is improved. The advantage of this method is that it can cal-
culate the equations in each spatial direction and time direction discretely. So it can greatly
reduce the amount of calculation compared with the classical finite difference method
and finite element method. Inspired by this, we apply it to the (4+1)-dimensional time
fractional Fokas equation. The numerical solutions obtained by the considered method is
satisfactory and this method may provide a new technique for numerically solving such
(4+1)-dimensional high-dimensional equations.

The rest of this article is organized as follows. In Section 2, the semi-inverse method
and the variational approach are used to derive the (4+1)-dimensional time fractional Fokas
equation. In Section 3, we make use of Lie symmetry analysis to study the symmetry of the
time-fractional equation, and we construct the conservation laws of the equation by the
new conservation theorem [38–44]. In Section 4, the exact solutions of the time fractional
equation are given by using the

(
G′
G

)
-expansion method. In Section 5, the time-fractional

equation is numerically solved by the spectral method in the spatial direction and the
Grünwald–Letnikov method [45,46] in the time direction. Then, we have some discussions
between the exact solutions and numerical solutions. Finally, some conclusions are given
in Section 6.

2. Derivation of the (4+1)-Dimensional Time Fractional Fokas Equation

In this section, a (4+1)-dimensional time-fractional Fokas equation in the sense of the
Riemann–Liouville fractional derivative is derived by the semi-inverse method and the
variational approach. An integer-order (4+1)-dimensional Fokas equation is

16utx2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2

− 12(u2)x2x2 + 12(u2)x1x1 − 24uy1y1 + 24uy2y2 = 0. (3)

The derivation of the (4+1)-dimensional time-fractional Fokas equation is as follows.
Introducing a potential function v = v(x1, x2, y1, y2, t) and u = vx2 , the subscript of

v represents the partial derivatives of v with respect to the variable x2, so the potential
equation of Equation (3) can be written as

16vx2tx2 − vx2x1x1x1x1 − vx2x2x2x2x2 + 6vx2x1x1x2x2x2

− 12(u2)x2x2 + 12(u2)x1x1 − 24vx2y1y1 + 24vx2y2y2 = 0. (4)
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The functional form of Equation (4) is as follows:

J(v) =
∫

R
dx2

∫
X1

dx1

∫
Y1

dy1

∫
Y2

dy2

∫
T

dt{v[16c1vx2tx2 − c2vx2x1x1x1x1

−c3vx2x2x2x2x2 + 6c4vx2x1x1x2x2x2 − 12c5(u2)x2x2 + 12c6(u2)x1x1

−24c7vx2y1y1 + 24c8vx2y2y2

]
},

(5)

where the coefficients ci(i = 1, 2, ..., 8) are the undetermined Lagrange multipliers. A new
integral is obtained by integrating by parts of the above equation with considering the
conditions that (u2)x2x2 , (u2)x1x1 are fixed functions and vx2 |R = vx2 |X1 = vx2 |Y1 =
vx2 |Y2 = vx2 |T = 0. Then using the variation of the new integral, we integrate by parts
for each term of the new integral under the variational optimal condition δJ(v) = 0, so
we have

32c1vx2tx2 − 2c2vx2x1x1x1x1 − 2c3vx2x2x2x2x2 + 12c4vx2x1x1x2x2x2

−12c5(u2)x2x2 + 12c6(u2)x1x1 − 48c7vx2y1y1 + 48c8vx2y2y2 = 0.
(6)

We know Equation (6) is equal to Equation (4), so by comparing these two equations,
we obtain the constant multipliers c1 = c2 = c3 = c4 = c7 = c8 = 1

2 , c5 = c6 = 1.
Substituting the values of ci(i = 1, 2, ..., 8) into Equation (5), we obtain the Lagrangian form
of Equation (3):

L(v, vx1 , vx2 , vy1 , vy2 , vt, vx2x2 , vx2y1 , vx2y2 , vx2x1x1x1 , vx2x2x2x2 , vx2x1x2x2x2)

= −8vtvx2x2 +
1
2

vx1 vx2x1x1x1 +
1
2

vx2 vx2x2x2x2 − 3vx2 vx2x1x1x2x2

− 12(u2)x2x2 v + 12(u2)x1x1 v + 12vy1 vx2y1 − 12vy2 vx2y2 .

(7)

Similarly, the time-fractional form of Equation (3) has the following Lagrangian form:

F(v, vx1 , vx2 , vy1 , vy2 , Dα
t v, vx2x2 , vx2y1 , vx2y2 , vx2x1x1x1 , vx2x2x2x2 , vx2x1x2x2x2)

= −8Dα
t vvx2x2 +

1
2

vx1 vx2x1x1x1 +
1
2

vx2 vx2x2x2x2 − 3vx2 vx2x1x1x2x2

− 12(u2)x2x2 v + 12(u2)x1x1 v + 12vy1 vx2y1 − 12vy2 vx2y2 ,

(8)

where Dα
t is the Riemann–Liouville fractional derivative operator [40].

Consequently, the functional form of (4+1)-dimensional time-fractional Fokas equation
is as follows:

J(v) =
∫

R
dx2

∫
X1

dx1

∫
Y1

dy1

∫
Y2

dy2

∫
T
(dt)αF(v, vx1 , vx2 , vy1 , vy2 , Dα

t v,

vx2x2 , vx2y1 , vx2y2 , vx2x1x1x1 , vx2x2x2x2 , vx2x1x2x2x2),
(9)

where
∫ t

a (dτ)α f (τ) = α
∫ t

a dτ(t− τ)α f (τ).
Giving the relation of integrating by parts [47]:

∫ b

a
(dτ)α f (t)Dα

t g(t) = Γ(1 + α)

[
g(t) f (t)|ba −

∫ b

a
(dt)αg(t)Dα

t f (t)
]

, f (t), g(t) ∈ [a, b].
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Integrating by parts for Equation (9), making use of the above relation and variational
optimal condition δJ(v) = 0, the Euler–Lagrangian equation of (4+1)-dimensional time-
fractional Fokas equation can be given as follows:(

∂F
∂v

)
· v +

(
∂F

∂vx1

)
· vx1 +

(
∂F

∂vx2

)
· vx2 +

(
∂F

∂vy1

)
· vy1 +

(
∂F

∂vy2

)
· vy2

+

(
∂F

∂Dα
t v

)
· Dα

t v +

(
∂F

∂vx2x2

)
· vx2x2 +

(
∂F

∂vx2y1

)
· vx2y1

+

(
∂F

∂vx2y2

)
· vx2y2 +

(
∂F

∂vx2x1x1x1

)
· vx2x1x1x1 +

(
∂F

∂vx2x2x2x2

)
· vx2x2x2x2

+

(
∂F

∂vx2x1x1x2x2

)
· vx2x1x1x2x2 = 0.

(10)

By substituting Equation (8) into Equation (10) and making use of the fractional
potential function Dα

x2
v(x1, x2, y1, y2, t) = u(x1, x2, y1, y2, t), the (4+1)-dimensional time-

fractional Fokas equation can be obtained:

16Dα
t ux2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2 − 12(u2)x2x2

+ 12(u2)x1x1 − 24uy1y1 + 24uy2y2 = 0.
(11)

Equation (11) is the (4+1)-dimensional time-fractional Fokas equation in the sense of
the Riemann–Liouville derivative. So Dα

t u can be defined as [40]

Dα
t u =

{
1

Γ(n−α)
∂n

∂tn

∫ t
0 (t− s)n−α−1u(x1, x2, y1, y2, s)ds, n− 1 < α < n,

∂nu
∂tn , α = n.

where Γ(x) is a gamma function.

3. Analysis of the Symmetry and Conservation Laws for the (4+1)-Dimensional
Time-Fractional Fokas Equation

In this section, the Lie symmetry analysis and the new conservation theorem are used
to study the symmetry and conservation laws of the (4+1)-dimensional time-fractional
Fokas equation.

3.1. Analysis of the Lie Symmetry for the (4+1)-Dimensional Time-Fractional Fokas Equation

The (4+1)-dimensional time-fractional Fokas equation here has five variables x1, x2, y1, y2,
t, giving some infinitesimal transformations as follows:

Infinitesimal transformation of each variable:

x∗1 = x1 + εξ1(x1, x2, y1, y2, t, u) + o(ε2),

x∗2 = x2 + εξ2(x1, x2, y1, y2, t, u) + o(ε2),

y∗1 = y1 + εξ3(x1, x2, y1, y2, t, u) + o(ε2),

y∗2 = y2 + εξ4(x1, x2, y1, y2, t, u) + o(ε2),

t∗ = t + ετ(x1, x2, y1, y2, t, u) + o(ε2),

u∗ = u + εη(x1, x2, y1, y2, t, u) + o(ε2),

(12)
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where ε � 1 is a group parameter, ξ1, ξ2, ξ3, ξ4, τ, η are infinitesimal parameters. The in-
finitesimal transformations of the partial derivatives of u with respect to different variables
are

∂u∗

∂x∗1
=

∂u
∂x1

+ εηx1(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂x∗2
=

∂u
∂x2

+ εηx2(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗x2

∂t∗α
=

∂αux2

∂tα
+ εηα,t(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂x∗2
1

=
∂u
∂x2

1
+ εηx1x1(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂x∗2
2

=
∂u
∂x2

2
+ εηx2x2(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂y∗2
1

=
∂u
∂y2

1
+ εηy1y1(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂y∗2
2

=
∂u
∂y2

2
+ εηy2y2(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂x∗4
1

=
∂u
∂x4

1
+ εηx1x1x1x1(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂x∗4
2

=
∂u
∂x4

2
+ εηx2x2x2x2(x1, x2, y1, y2, t, u) + o(ε2),

∂u∗

∂x∗2
1 ∂x∗3

2

=
∂u

∂x2
1∂x3

2
+ εηx1x1x2x2x2(x1, x2, y1, y2, t, u) + o(ε2),

(13)

where ε� 1 is the group parameter, ηx1 , ηx2 , ηx1x1 , ηx2x2 , ηy1y1 , ηy2y2 , ηx1x1x1x1 , ηx2x2x2x2 ,
ηx1x1x2x2x2 , ηα,t are extended infinitesimal parameters. According to the previous study [40],
ηx1 , ηx2 , ηx1x1 , ηx2x2 , ηy1y1 , ηy2y2 , ηx1x1x1x1 , ηx2x2x2x2 , ηx1x1x2x2x2 , ηα,t can be defined as the fol-
lowing form.

The extended infinitesimal transformations of the first-order partial derivative of u
and fractional derivative of u are as follows:

ηx1 = Dx1(η)− ux1 Dx1(ξ1)− ux2 Dx1(ξ2)− uy1 Dx1(ξ3)− uy2 Dx1(ξ4)− utDx1(τ),

ηx2 = Dx2(η)− ux1 Dx2(ξ1)− ux2 Dx2(ξ2)− uy1 Dx2(ξ3)− uy2 Dx2(ξ4)− utDx2(τ),

ηy1 = Dy1(η)− ux1 Dy1(ξ1)− ux2 Dy1(ξ2)− uy1 Dy1(ξ3)− uy2 Dy1(ξ4)− utDy1(τ),

ηy2 = Dy2(η)− ux1 Dy2(ξ1)− ux2 Dy2(ξ2)− uy1 Dy2(ξ3)− uy2 Dy2(ξ4)− utDy2(τ),

ηα,t = Dα
t (η

x2) + ξ1Dα
t (ux2x1)− Dα

t (ξ1ux2x1) + ξ2Dα
t (ux2x2)− Dα

t (ξ2ux2x2)

+ ξ3Dα
t (ux2y1)− Dα

t (ξ3ux2y1) + ξ4Dα
t (ux2y2)− Dα

t (ξ4ux2y2) + Dα
t (Dt(τ)ux2)

− Dα+1
t (τux2) + τDα+1

t (ux2),

(14)

the extended infinitesimal transformation of the second-order partial derivative of u is

ηx1x1 = Dx1(η
x1)− ux1x1 Dx1(ξ1)− ux2x1 Dx1(ξ2)− uy1x1 Dx1(ξ3)− uy2x1 Dx1(ξ4)

− utx1 Dx1(τ),

ηx2x2 = Dx2(η
x2)− ux1x2 Dx2(ξ1)− ux2x2 Dx2(ξ2)− uy1x2 Dx2(ξ3)− uy2x2 Dx2(ξ4)

− utx2 Dx2(τ),

ηy1y1 = Dy1(η
y1)− ux1y1 Dy1(ξ1)− ux2y1 Dy1(ξ2)− uy1y1 Dy1(ξ3)− uy2y1 Dy1(ξ4)

− uty1 Dy1(τ),

ηy2y2 = Dy2(η
y2)− ux1y2 Dy2(ξ1)− ux2y2 Dy2(ξ2)− uy1y2 Dy2(ξ3)− uy2y2 Dy2(ξ4)

− uty2 Dy2(τ),

(15)
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the extended infinitesimal transformation of the third-order partial derivative of u is:

ηx1x1x1 = Dx1(η
x1x1)− ux1x1x1 Dx1(ξ1)− ux2x1x1 Dx1(ξ2)− uy1x1x1 Dx1(ξ3)

− uy2x1x1 Dx1(ξ4)− utx1x1 Dx1(τ), (16)

ηx2x2x2 = Dx2(η
x2x2)− ux1x2x2 Dx2(ξ1)− ux2x2x2 Dx2(ξ2)− uy1x2x2 Dx2(ξ3)

− uy2x2x2 Dx2(ξ4)− utx2x2 Dx2(τ),

the extended infinitesimal transformations of the fourth-order partial derivative of u and
fifth-order partial derivative of u can be written as

ηx1x1x1x1 = Dx1(η
x1x1x1)− ux1x1x1x1 Dx1(ξ1)− ux2x1x1x1 Dx1(ξ2)

− uy1x1x1x1 Dx1(ξ3)− uy2x1x1x1 Dx1(ξ4)− utx1x1x1 Dx1(τ),

ηx2x2x2x2 = Dx2(η
x2x2x2)− ux1x2x2x2 Dx2(ξ1)− ux2x2x2x2 Dx2(ξ2)

− uy1x2x2x2 Dx2(ξ3)− uy2x2x2x2 Dx2(ξ4)− utx2x2x2 Dx2(τ),

ηx1x1x2x2x2 = Dx2(η
x1x1x2x2)− ux1x1x2x2x2 Dx2(ξ1)− ux1x2x2x2x2 Dx2(ξ2)

− ux1y1x2x2x2 Dx2(ξ3)− ux1y2x2x2x2 Dx2(ξ4)− ux1tx2x2x2 Dx2(τ),

(17)

in which Dx1 , Dx2 , Dy1 , Dy2 and Dt are total derivative operators:

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx1

∂

∂ux1

+ utx2

∂

∂ux2

+ uty1

∂

∂uy1

+ uty2

∂

∂uy2

+ ...,

Dx1 =
∂

∂x1
+ ux1

∂

∂u
+ ux1x1

∂

∂ux1

+ ux1x2

∂

∂ux2

+ ux1y1

∂

∂uy1

+ ux1y2

∂

∂uy2

+ ux1t
∂

∂t
+ ...,

Dx2 =
∂

∂x2
+ ux2

∂

∂u
+ ux2x2

∂

∂ux2

+ ux2x1

∂

∂ux1

+ ux2y1

∂

∂uy1

+ ux2y2

∂

∂uy2

+ ux2t
∂

∂t
+ ...,

Dy1 =
∂

∂y1
+ uy1

∂

∂u
+ uy1y1

∂

∂uy1

+ uy1x1

∂

∂ux1

+ uy1x2

∂

∂ux2

+ uy1y2

∂

∂uy2

+ uy1t
∂

∂t
+ ...,

Dy2 =
∂

∂y2
+ uy2

∂

∂u
+ uy2y2

∂

∂uy2

+ uy2x1

∂

∂ux1

+ uy2x2

∂

∂ux2

+ uy2y1

∂

∂uy1

+ uy2t
∂

∂t
+ ....

(18)

Consider the structure of the fractional derivative under the transformations of Equa-
tions (12) and (13). Noting that the lower limit of integral of Equation (11) is fixed, it is
supposed to be invariant under transformations Equations (12) and (13). The invariant
condition yields τ(x1, x2, y1, y2, t, u)|t=0 = 0.

In addition, the generalized Leibnitz rule [38] and generalized chain rule [48] are
defined as

Dα
t ( f (t)g(t)) =

∞

∑
n=0

(
α

n

)
Dα−n

t ( f (t))Dn
t (g(t)), α > 0, (19)

dmg(y(t))
dtm =

m

∑
k=0

k

∑
r=0

(
k
r

)
1
k!
[−y(t)]r

dm

dtm

[
(y(t))k−r

]dkg(y)
dyk , (20)

where (α
n) =

−1(n−1)αΓ(n−α)
Γ(1−α)Γ(n+1) and Γ(x) is a gamma function.
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Now, make use of Equations (14)–(19) and Equation (20) with f (t) = 1, which leads to
the specific expression of the extended infinitesimal parameters. Taking ηx1 , ηx2 , ηy1y1 , ηα,t,
for example,

ηx1 = ηx1 + ux1 ηu − u2
x1

ξ1u − ux2 ξ2x1 − ux2 ux1 ξ2u − uy1 ξ3x1

− uy1 ux1 ξ3u − utτx1 − utux1 τu − uy2 ξ4x1 − uy2 ux1 ξ4u,

ηx2 = ηx2 + ux2 ηu − ux1 ξ1x2 − ux1x2 ξ1u − ux2 ξ2x2 − u2
x2

ξ2u − uy1 ξ3x2

− uy1 ux2 ξ3u − utτx2 − utux2 τu − uy2 ξ4x2 − uy2 ux2 ξ4u,

ηy1y1 = ηy1y1 + uy1y1 ηu + 2uy1 ηuy1 − 2ux1y1 ξ1y1 − ux1 ξy1y1 − 2ux1y1 uy1 ξ1u

− ux1 uy1y1 ξ1u − 2ux1 uy1 ξ1uy1 − 2ux2y1 ξ2y1 − ux2 ξ2y1y1 − 2ux2y1 uy1 ξ2u

− ux2 uy1y1 ξ2u − 2ux2 uy1 ξ2uy1 − 2uy1y1 ξ3y1 − uy1 ξ3y1y1 − 3uy1 uy1y1 ξ3u

− 3u2
y1

ξ3uy1 − 2uty1 τy1 − utτy1y1 − 2uty1 uy1 τu − utuy1y1 τu − 2utuy1 τuy1

− 2uy2y1 ξ4y1 − uy2 ξ4y1y1 − 2uy2y1 uy1 ξ4u − uy2 uy1y1 ξ4u − 2uy2 uy1 ξ4uy1

+ u2
y1

ηuu − ux1 u2
y1

ξ1uu − ux2 u2
y1

ξ2uu − u3
y1

ξ3uu − utu2
y1

Tuu − uy2 u2
y1

ξ4uu, (21)

ηα,t = ∂α
t (η

x2) + [(ηx2)u − αDt(τ)]∂
α
t u− u∂α

t (η
x2)u + µ

+
∞

∑
n=1

[(
α

n

)
∂n

t (η
x2)u −

(
α

n + 1

)
Dn+1

t (τ)

]
∂α−n

t u

−
∞

∑
n=1

(
α

n

)
Dn

t (ξ1)∂
α−n
t (ux2x1)−

∞

∑
n=1

(
α

n

)
Dn

t (ξ2)∂
α−n
t (ux2x2)

−
∞

∑
n=1

(
α

n

)
Dn

t (ξ3)∂
α−n
t (ux2y1)−

∞

∑
n=1

(
α

n

)
Dn

t (ξ4)∂
α−n
t (ux2y2).

where

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n + 1− α)
[−u]r

∂m

∂tm [uk−r]
∂n−m+k

∂tn−m∂uk .

Considering the infinitesimal invariant criterion [40] of Equation (12),

prαX(∆)|∆=0 = 0, (22)

where X is the infinitesimal generator of one parameter Lie group transformation, which
has the following form:

X = ξ1(x1, x2, y1, y2, t, u)
∂

∂x1
+ ξ2(x1, x2, y1, y2, t, u)

∂

∂x2

+ ξ3(x1, x2, y1, y2, t, u)
∂

∂y1
+ ξ4(x1, x2, y1, y2, t, u)

∂

∂y2

+ τ(x1, x2, y1, y2, t, u)
∂

∂t
+ η(x1, x2, y1, y2, t, u)

∂

∂u
,

(23)

and
∆ = 16Dα

t ux2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2 − 24(ux2)
2

− 24uux2x2 + 24(ux1)
2 + 24uux1x1 − 24uy1y1 + 24uy2y2 = 0,

(24)
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the prolongation operator prαX is

prαX = X + ηx1x1x1x1
∂

∂ux1x1x1x1

+ ηx2x2x2x2
∂

∂ux2x2x2x2

+ ηx1x1x2x2x2
∂

∂ux1x1x2x2x2

+ ηα,t ∂

∂Dα
t ux2

+ ηx1
∂

∂ux1

+ ηx1x1
∂

∂ux1x1

+ ηx2
∂

∂ux2

+ ηx2x2
∂

∂ux2x2

+ ηy1y1
∂

∂uy1y1

+ ηy2y2
∂

∂uy2y2

.

(25)

According to the specific expression of prαX in Equation (25), substituting Equa-
tion (24) into Equation (22), and then after the calculation, the following formula can be
obtained:

16ηα,t − ηx1x1x1x1 − ηx2x2x2x2 + 6ηx1x1x2x2x2 + 24η(ux1x1 − ux2x2)

+ 24u(ηx1x1 − ηx2x2) + 48(ux1 ηx1 − ux2 ηx2) + 24(ηy2y2 − ηy1y1) = 0.
(26)

Substituting the specific expression of the extended infinitesimal parameters into Equa-
tion (26), the following determining equations can be obtained by equaling the coefficients
of the partial derivatives of u of different orders to zero:

ξ1uuuu = ξ2uuuu = 4ξ1x1 = 4τx1 = 4ξ4x1 = 48τy1 = 24ξ3uu = −48τy2 = −24ξ4uu

= 4τx2 = −36τx2x2x1 = −18τx2x2 = 4ξ2x2 = −18ξ3x2x2 = −36ξ3x2x2 = −18ξ4x2x1

= −18ξ4x2x2 = −36ξ4x2x2x1 = 4ξ3x2 = 4ξ2x2 = 0,

48ηu − 48ξ1x1 + 4ξ1ux1x1x1 + 6ηuux1 − 6ξ1x2x2x2u = 0,

− 6ηux1x1 + 4ξ1x1x1x1 − 12ξ1x2x2x2x1 + 6ηx2x2x2u + 24η = 0,

− 48ξ2u + 6ξ2uux2x2 − 4ηuuux2 − 18ξ2uux2x1 + 6ηuuux1x1 = 0,

− 48ξ1u + 6ξ1uux1x1 − 4ηuuux1 = 0,

48ξ2y1 + 4ξ3x2x2x2 − 18ξ3x2x2x1x1 = 0,

4ξ3x1x1x1 + 48ξ1y1 − 12ξ3x2x2x2x1 = 0,

4ξ4x1x1x1x1 − 12ξ4x2x2x2x2x1 − 48ξ1y2 = 0,

48ξ2y2 + 4ξ4x2x2x2 − 18ξ4x2x2x1x1 = 0,

4ξ1x2 + 12ηux1 − 36ξ2x1 − 6ξ2x1x1 = 0,

12ξ1ux1 − 3ηuu = 0,

48ξ4y1 − 48ξ3y2 = 0,

48ξ4y1 − 48ξ3y2 = 0,

− 18ξ3x2 − 6ξ3x1 = 0,

− 18ξ4x2 − 6ξ4x1 = 0,

− 24ηu − 48ξ3y1 = 0,

24ηu + 48ξ4y2 = 0,(
α

n

)
∂n

t (η
x2)u −

(
α

n + 1

)
Dn+1

t (τ) = 0.

(27)

Solving the above equations, we can obtain

η = 0, ξ1 =
A1

9
x2 + c1, ξ2 = A1x1 + c2, ξ3 = A2y2 + c3,

ξ4 = A2y1 + c4, τ = A3t + A4u + c5, (28)
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where Ai, cj(i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5) are arbitrary constants.
According to Equation (23), the corresponding infinitesimal generator has the follow-

ing form:

X = (A1x2 + c1)
∂

∂x1
+

(
A1

9
x1 + c2

)
∂

∂x2
+ (A2y2 + c3)

∂

∂y1

+ (A2y1 + c4)
∂

∂y2
+ (A3t + A4u + c5)

∂

∂t
, (29)

thus, we can obtain the corresponding Lie algebra that can be spanned by the following
six vectors:

X1 = x2
∂

∂x1
, X2 =

A1

9
x1

∂

∂x2
, X3 = y2

∂

∂y1
, X4 = y1

∂

∂y2
, X5 = t

∂

∂t
,

X6 =
∂

∂x1
+

∂

∂x2
+

∂

∂y1
+

∂

∂y2
+ (1 + u)

∂

∂t
. (30)

3.2. Conservation Laws of the (4+1)-Dimensional Time-Fractional Fokas Equation

In this section, the conservation laws of (4+1)-dimensional time-fractional Fokas
equation are constructed by the new conservation laws theorem. First, recalling some
basic definitions.

Definition 1. The time-fractional integral with order n− α can be defined as [42]

In−α
T f (t, x) =

1
Γ(n− α)

∫ T

t

f (τ, x)
(τ − t)1+α−n dτ, n = [α] + 1,. (31)

where Γ(x) is a gamma function.

Definition 2. A conservation laws for Equation (11) is defined as [42]

Dt(Ct) + Dx1(C
x1) + Dx2(C

x2) + Dy1(C
y1) + Dy2(C

y2) = 0, (32)

where C = (Ct, Cx1 , Cx2 , Cy1 , Cy2) is a conserved vector. According to the Noether operators, we
can obtain the components Ct, Cx1 , Cx2 , Cy1 and Cy2 of conserved vectors C:

Ct = τL+
n−1

∑
k=0

(−1)kDα−1−k
t (W)Dk

t

(
∂L

∂(Dα
t u)

)
− (−1)n J

(
W, Dn

t

(
∂L

∂(Dα
t u)

))
, (33)

and Ci(i stands for x1, x2, y1, y2) can be defined as

Ci = ξ iL+ Wβ

 ∂L
∂uβ

i

− Dj

 ∂L
∂uβ

ij

+ DjDk

(
∂L

∂uijk

)
− · · ·


+ Dj(Wβ)

 ∂L
∂uβ

ij

− Dk

 ∂L
∂uβ

ijk

+ · · ·

+ DjDk(Wβ)

 ∂L
∂uβ

ijk

− · · ·

+ · · ·, (34)

where L is a formal Lagrangian for Equation (11), n = [α] + 1, W = η− ξ1ux1 − ξ2ux2 − ξ3uy1 −
ξ4uy2 − τut is a Lie characteristic function of X = ξ1∂x1 + ξ2∂x2 + ξ3∂y1 + ξ4∂y2 + τ∂t + η∂u,
and J is defined as follows:

J( f , g) =
1

Γ(n− β)

∫ x

0

∫ p

x

f (x, s)g(x, r)
(r− s)β+1−n drds. (35)
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Definition 3. The definition of the Euler operator is as follows [44]:

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
− Dy

∂

∂uy
+ D2

t
∂

∂utt

+ D2
x

∂

∂uxx
+ D2

y
∂

∂uyy
− D2

xDt
∂

∂uxx∂ut
− D2

yDx
∂

∂uyy∂ux
+ ..., (36)

where Dt, Dx and Dy are the total derivative operators introduced in Equation (18).

Now, we start to construct the conservation laws of Equation (11) by using Lie point
symmetry. A formal Lagrangian for Equation (11) is given in the following form:

L = q(x1, x2, y1, y2, t)(16Dα
t ux2 − ux1x1x1x1 − ux2x2x2x2

+ 6ux1x1x2x2x2 − 12(u2)x2x2 + 12(u2)x1x1 − 24uy1y1 + 24uy2y2), (37)

where q(x1, x2, y1, y2, t) is a new dependent variable. Next, we integrate the above equation
and take advantage of the Agrawal fractional variational method [49] under the assumption
that variable q is constant. Then, we can obtain the Euler–Lagrange operator about u,

δ

δu
=

∂

∂u
+ (Dα

t )
∗Dx2

∂

∂Dα
t ux2

− Dx1

∂

∂ux1

− Dx2

∂

∂ux2

+ Dx1x1

∂

∂ux1x1

+ Dx2x2

∂

∂ux2x2

+ Dy1y1

∂

∂uy1y1

+ Dy2y2

∂

∂uy2y2

+ Dx1x1x1x1

∂

∂ux1x1x1x1

+ Dx2x2x2X2

∂

∂ux2x2x2x2

− Dx1x1x2x2x2

∂

∂ux1x1x2x2x2

,

(38)

where (Dα
t )
∗ is the adjoint operator of Dα

t

(Dα
t )
∗ = (−1)n In−α

T (Dn
t ) =

C
t Dα

T . (39)

The adjoint equation of Equation (11) can be given as

F∗ =
δL
δu

= 0. (40)

So according to Equations (38) and (40), the adjoint equation of Equation (11) can be
written as

F∗ = 16(Dα
t )
∗qx2 − qx1x1x1x1 − qx2x2x2x2 − 6qx1x1x2x2x2

+ 24u(qx1x1 − qx2x2)− 24(qy1y1 − qy2y2). (41)

In Equation (32), we give the definition of conservation laws for Equation (11). Then,
according to the definition of the Lie characteristic function and Equation (28), we obtain
the following Lie characteristic function:

W1 = −x2ux1 , W2 = − x1

9
ux2 , W3 = −y2uy2 , W4 = −y1uy1 , W5 = −tut,

W6 = −ux1 − ux2 − uy1 − uy2 − (1 + u)ut. (42)
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Take an example of W6 to obtain the conservation laws for Equation (11). Substituting
W6 into Equations (33) and (34), the conserved components with respect to x1, x2, y1, y2, t of
conserved vector C are as follows, and the conserved component Ct is the following form:

Ct = τL+ Dα−1
t (W6)

∂L
∂Dα

t ux2

+ J
(

W6,
∂L

∂Dα
t ux2

)
= 16qDα−1

t [−ux1 − ux2 − uy1 − uy2 − (1 + u)ut] (43)

+ J
[
(−ux1 − ux2 − uy1 − uy2 − (1 + u)ut), 16qt

]
,

the conserved component Cx1 is the following form:

Cx1 = ξ1L+ W6

[
∂L

∂ux1

− Dx1

∂L
∂ux1x1

− Dx1 Dx1 Dx1

∂L
∂ux1x1x1x1

+ Dx1 Dx2 Dx2 Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx1(W6)

[
∂L

∂ux1x1

+ Dx1 Dx1

∂L
∂ux1x1x1x1

− Dx2 Dx2 Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx2(W6)

[
−Dx1 Dx2 Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx1 Dx1(W6)

[
−Dx1

∂L
∂ux1x1x1x1

]
+ Dx1 Dx2(W6)

[
Dx2 Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx2 Dx2(W6)

[
Dx1 Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx1 Dx1 Dx1(W6)

[
∂L

∂ux1x1x1x1

]
+ Dx1 Dx2 Dx2(W6)

[
−Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx2 Dx2 Dx2(W6)

[
−Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx1 Dx2 Dx2 Dx2(W6)

[
∂L

∂ux1x1x2x2x2

]
=
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
(24ux1 q− 24uqx1 + qx1x1x1 + 6qx1x2x2x2)

+
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1
(24uq− qx1x1 − 6qx2x2x2) (44)

− 6qx1x2x2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2

+ qx1

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x1

+ 6qx2x2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x2

+ 6qx1x2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x2

− q
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x1x1

− 6qx2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x2x2

− 6qx1

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x2x2

+ 6q
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x2x2x2

,

the conserved component Cx2 is the following form:



Fractal Fract. 2022, 6, 338 13 of 23

Cx2 = ξ2L+ W6

[
∂L

∂ux2

− Dx2

∂L
∂ux2x2

− Dx2 Dx2 Dx2

∂L
∂ux2x2x2x2

+ Dx2 Dx2 Dx1 Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx2(W6)

[
∂L

∂ux2x2

+ Dx2 Dx2

∂L
∂ux2x2x2x2

− Dx2 Dx1 Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx1(W6)

[
−Dx2 Dx2 Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx2 Dx1(W6)

[
Dx2 Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx2 Dx2(W6)

[
−Dx2

∂L
∂ux2x2x2x2

+ Dx1 Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx1 Dx1(W6)

[
Dx2 Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx2 Dx2 Dx2(W6)

[
∂L

∂ux2x2x2x2

]
+ Dx2 Dx1 Dx1(W6)

[
−Dx2

∂L
∂ux1x1x2x2x2

]
+ Dx2 Dx2 Dx1(W6)

[
−Dx1

∂L
∂ux1x1x2x2x2

]
+ Dx1 Dx1 Dx2 Dx2(W6)

[
∂L

∂ux1x1x2x2x2

]
=
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
(−24ux2 q + 24uqx2 + qx2x2x2 + 6qx2x2x1x1)

+
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2
(−24uq− qx2x2 − 6qx2x1x1) (45)

− 6qx2x2x1

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1

+ 6qx2x1

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x1

+
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x2

(qx2 + 6qx1x1)

+ 6qx2x2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x1

− q
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x2x2

− 6qx2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x1x1

− 6qx1

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x2x2x1

+ 6q
[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
x1x1x2x2

,

the conserved components Cy1 and Cy2 are the following forms:

Cy1 = ξ3L+ W6

[
−Dy1

∂L
∂uy1y1

]
+ Dy1(W6)

[
∂L

∂uy1y1

]
= 24qy1

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
− 24q

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
y1

, (46)

Cy2 = ξ4L+ W6

[
−Dy2

∂L
∂uy2y2

]
+ Dy2(W6)

[
∂L

∂uy2y2

]
= −24qy2

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
+ 24q

[
−ux1 − ux2 − uy1 − uy2 − (1 + u)ut

]
y2

.

4. Analytical Solutions for the (4+1)-Dimensional Time-Fractional Fokas Equation

In this section, the
(

G′
G

)
-expansion method is given to obtain the analytical solutions of

this (4+1)-dimensional time-fractional Fokas equation. The process of solving Equation (11)
is as follows.

The complex fractional transformation can be introduced:

u(x1, x2, y1, y2, t) = U(ζ), ζ = α1x1 + βx2 + γy1 + δy2 +
εtα

Γ(α + 1)
, (47)

where α1, β, γ, δ, ε are constants to be determined later and α is a fractional order.
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So Equation (11) can be transformed into the following ordinary differential equation:

(16βε− 24γ2 + 24δ2)Uζζ − (α4
1 + β4)Uζζζζ + 6α2

1β3Uζζζζζ

+ 24(α2
1 − β2)(Uζ)

2 + 24(α2
1 − β2)UUζζ = 0.

(48)

Integrating Equation (48) twice with respect to ζ and considering the constant of
integration to be zero, we have

(16βε− 24γ2 + 24δ2)U − (α4
1 + β4)Uζζ + 6α2

1β3Uζζζ + 12(α2
1 − β2)U2 = 0. (49)

Balancing Uζζζ and U2 in Equation (49), we have n + 3 = 2n + 0, which leads to n = 3.

So assuming that the solutions of Equation (49) can be denoted by a polynomial in
(

G′
G

)
as follows:

U(ζ) = a3

(
G′

G

)3

+ a2

(
G′

G

)2

+ a1

(
G′

G

)
+ a0, a3 6= 0, (50)

where G = G(ζ), and G satisfies the second-order ordinary differential equation:

G′′ + λG′ + µG = 0, (51)

in which λ, µ, a0, a1, a2, a3 are constants to be determined later.
Substituting Equation (50) into Equation (49) and putting together items of the same

order of
(

G′
G

)
, the left-hand side of Equation (49) is going to be a polynomial about

(
G′
G

)
.

Let the coefficients of the polynomial be equal to zero, which leads to a set of algebraic
equations. These algebraic equations are solved, and we have a set of nontrivial solutions
as follows:

a3 =
18α2

1β3

(α2
1 − β3)

, a2 =
3(α4

1 + β4) + 234α2
1β3λ

4(α2
1 − β2)

a1 = −
4500α4

1β6λ2 − 6048α4
1β6µ + 36α6

1β3λ + 36α2
1β7λ + α8

1 + 2α4
1β4 + β8

208α3
1β3(α2

1 − β2)
,

a0 = a0, ε = ε,

(52)

where α1, β, γ, δ, λ and µ are arbitrary constants.
According to the above results, we can obtain a set of exact solutions of Equation (11).

For brevity, the specific expression for a1 is not shown in the following exact solutions.
When λ2 − 4µ > 0, we have the hyperbolic function solution of the following form:

U(ζ) =
18α2

1β3

8(α2
1 − β2)

A3 +

[
126α2

1β3λ + 3α4
1 + 3β4

16(α2
1 − β2)

]
A2

−
[

180α2
1β3λ2 + 3λα4

1 + 3λβ4

8(α2
1 − β2)

− a1

2

]
A

+
3λ2(66α2

1β3λ + α4
1 + β4)

16(α2
1 − β2)

+ a0 −
λa1

2
,

(53)

where A =

√
λ2−4µ

(
C1sinh 1

2

√
λ2−4µζ+C2cosh 1

2

√
λ2−4µζ

)
C1cosh 1

2

√
λ2−4µζ+C2sinh 1

2

√
λ2−4µζ

, and c1, c2 are arbitrary constants.
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When λ2 − 4µ < 0, we have the trigonometric function solution

U(ζ) =
18α2

1β3

8(α2
1 − β2)

B3 +

[
126α2

1β3λ + 3α4
1 + 3β4

16(α2
1 − β2)

]
B2

−
[

180α2
1β3λ2 + 3λα4

1 + 3λβ4

8(α2
1 − β2)

− a1

2

]
B

+
3λ2(66α2

1β3λ + α4
1 + β4)

16(α2
1 − β2)

+ a0 −
λa1

2
,

(54)

where B =

√
4µ−λ2

(
−C1sin 1

2

√
4µ−λ2ζ+C2cos 1

2

√
4µ−λ2ζ

)
C1cos 1

2

√
4µ−λ2ζ+C2sin 1

2

√
4µ−λ2ζ

, and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0, we have the following solution:

U(ζ) =
18α2

1β3

α2
1 − β2

(
c2

c1 + c2ζ

)3
+

[
126α2

1β3λ + 3α4
1 + 3β4

4(α2
1 − β2)

](
c2

c1 + c2ζ

)2

−
[

180α2
1β3λ2 + 3λα4

1 + 3λβ4

4(α2
1 − β2)

− a1

](
c2

c1 + c2ζ

)

+
3λ2(66α2

1β2λ + α4
1 + β4)

16(α2
1 − β4)

+ a0 −
λa1

2
,

(55)

where c1, c2 are arbitrary constants.
Taking solutions in Equation (53) as an example, we give the following images of the

exact solutions. It is evident from Figure 1a–c that when the time changes slightly, both
the amplitude and the shape of the waves vary markedly in the x1 − y1 plane with fixed
x2 = y2 = 9.7, α = 0.9. In addition, it can be seen from Figure 2a–c that the exact solutions
can be influenced by fractional-order α of the (4+1)-dimensional time-fractional Fokas
equation. As α increases, the waveform becomes regular, the amplitude increases, and the
wavelength becomes longer. Therefore, it can be inferred that the nonlinear phenomena
of the (4+1)-dimensional time-fractional Fokas equations studied in this paper are very
complex and changeable in practical problems. Additionally, the study of Equation (11) is
very necessary and meaningful.
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Figure 1. Exact solutions in Equation (53) at different time with α = 0.9, α1 = 1, β = 0.5, γ = 1,
δ = 0.5, λ = 1.5, µ = 0.5, ε = 85.746, a0 = 1, c1 = 1, c2 = 2, x2 = 9.7, y2 = 9.7.
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Figure 2. Exact solutions in Equation (53) for different α with α1 = 1, β = 0.5, γ = 1, δ = 0.5, λ = 1.5,
µ = 0.5, ε = 85.746, a0 = 1, c1 = 1, c2 = 2, x2 = 4, y2 = 4, t = 0.1.

5. Numerical Solutions

In this section, the Grünwald–Letnikov method for the Riemann–Liouville time-
fractional derivative and Fourier spectral method for spatial derivative are proposed to
obtain the numerical solutions. Recently, Sun et al. numerically solved three-dimensional
seismic waves; the spectral method was used for the numerical calculation in the spatial di-
rection [35]. The method proposed by them is different from the traditional spectral method,
where the difference mainly lies in the discrete calculation for each spatial direction, fast
Fourier transform and inverse fast Fourier transform operations for each spatial direction,
respectively. This saves a lot of calculations, and it is very beneficial to the numerical
calculation for high-dimensional problems. This makes it easier for some high-dimensional
problems to be solved numerically, without the difficulty of the numerical calculation
due to the increase in dimension. Inspired by this, we apply it to the (4+1)-dimensional
time-fractional equation that we study in this paper.

Considering the (4+1)-dimensional time-fractional Fokas equation as

16Dα
t ux2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2 − 12(u2)x2x2

+ 12(u2)x1x1 − 24uy1y1 + 24uy2y2 = 0, (x1, x2, y1, y2) ∈ Ω ⊂ R4, t ∈ (0, T],
(56)

u(x1.x2, y1, y2, 0) = u0(x1, x2, y1, y2), (x1, x2, y1, y2) ∈ ∂Ω ∪Ω, (57)

u(x1.x2, y1, y2, t) = φ(x1, x2, y1, y2, t), (x1, x2, y1, y2) ∈ ∂Ω, t ∈ (0, T]. (58)

5.1. Time Discretization

Take time-step τ = T
N with N as a positive integer and denote time points t = nτ(0 ≤

n ≤ N). The grid function can be given as p = {pn|0 ≤ n ≤ N}. Using the Grünwald–
Letnikov method for the Riemann–Liouville time-fractional derivative operator Dα

t leads to

Dα
t pn ≈ τ−α

n

∑
s=0

w(α)
s pn−s, (59)

where w(α)
s = (−1)s(α

s), and (α
s) =

Γ(α+1)
Γ(s+1)Γ(α−s+1) .

5.2. Space Discretization

In space, we suppose the space domain Ω = [0, a] × [0, b] × [0, c] × [0, d] and spa-
tial mesh size h1 = a

M1
, h2 = b

M2
, h3 = c

M3
, h4 = d

M4
, where h1 = h2 = h3 = h4,

and M1, M2, M3, M4 are both integral powers of 2. The gird points can be given as
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x1j = jh1(0 ≤ j ≤ M1), x2k = kh2(0 ≤ k ≤ M2), y1l = lh3(0 ≤ l ≤ M3), y2m =
mh4(0 ≤ m ≤ M4). Denote the index sets as

h̄ = {(j, k, l, m)|0 < j < M1, 0 < k < M2, 0 < l < M3, 0 < m < M4},
` = {(j, k, l, m)|0 ≤ j ≤ M1, 0 ≤ k ≤ M2, 0 ≤ l ≤ M3, 0 ≤ m ≤ M4},
£ = {j, k, l, m|j = 0, or j = M1; or k = 0, or k = M2; or l = 0, or l = M3; or m = 0, or m = M4}.

(60)

So each grid point can be represented by its coordinate (j, k, l, m). The grid function
can be given as v = {vjklm|(j, k, l, m) ∈ `}.

5.3. The Numerical Scheme

Taking the x1 direction as an example, the numerical method of the space directions is
illustrated. Denoting kx1 = 2πr1

a , where r1 = −M1
2 ,−M1

2 + 1, · · ·, M1
2 − 1, and there are M1

grid points in the x1 direction when fixed x2, y1, y2 and t.
Step 1: Take out the value of u at each grid node in the x1 direction (there are M2 ∗M3 ∗M4

columns in totals, one column has M1 values) and take the fast Fourier transform for each
column of data. We know that when x2, y1, y2 and t are fixed, the u(x1, x2k, y1l , y2m, tn) is a
one-dimensional function of x1. So the fast Fourier transform for u(x1, x2k, y1l , y2m, tn) can be
given as

Fx1 [uj] =
M1−1

∑
i=0

uje
−ikx1 x1j , (61)

where kx1 = 2πr1
a , −M1

2 ≤ r1 ≤ M1
2 − 1.

When taking the fast Fourier transform of each column of data, the fast Fourier
transform of u(x1, x2, y1, y2, t) in the x1 direction is completed, called Fx1 [u].

Step 2: The derivative of the Fourier transform for u(x1, x2k, y1l , y2m, tn) is as follows:

Fx1 [(ux1x1x1x1)j] = k4
x1

Fx1 [uj], (62)

so, we have
Fx1 [ux1x1x1x1 ] = k4

x1
Fx1 [u]. (63)

Step 3: Inverse fast Fourier transform of u(x1, x2j, y1l , y2m, tn) can be given as

F−1
x1

[uj] =
1

M1

M1
2 −1

∑
r1=

−M1
2

Fx1 [uj]e
ikx1 x1j , 0 ≤ j ≤ M1 − 1, (64)

where kx1 = 2πr1
a , −M1

2 ≤ r1 ≤ M1
2 − 1.

Similarly, when taking the inverse fast Fourier transform of each column of data,
the inverse fast Fourier transform of u(x1, x2, y1, y2, t) in the x1 direction is completed,
called F−1

x1
[u]. So, for ux1x1x1x1(x1, x2, y1, y2, t), we have ux1x1x1x1 = F−1

x1
{k4

x1
Fx1 [u]}.

Similarly, we have

ux2x2x2x2 = F−1
x2
{k4

x2
Fx2 [u]}, ux1x1x2x2x2 = F−1

x2
{ik3

x2
Fx2{F−1

x1
{−k2

x1
Fx1 [u]}}},

(u2)x1x1 = F−1
x1
{−k2

x1
Fx1 [(u)

2]}, (u2)x2x2 = F−1
x2
{−k2

x2
Fx2 [(u)

2]}, (65)

uy1y1 = F−1
y1
{−k2

y1
Fy1 [u]}, uy2y2 = F−1

y2
{−k2

y2
Fy2 [u]},

where kx2 = 2πr2
b , ky1 = 2πr3

c , ky2 = 2πr3
d , r2 = −M2

2 ,−M2
2 + 1, · · ·, M2

2 − 1, r3 = −M3
2 ,−M3

2 +

1, · · ·, M3
2 − 1, r4 = −M4

2 ,−M4
2 + 1, · · ·, M4

2 − 1. Fx2 [u], Fy1 [u] and Fy2 [u] are Fast Fourier
transform of u(x1, x2, y1, y2, t) in x2 direction, y1 direction and y2 direction, respectively.
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Consider Equations (56)–(58) at the point (x1j, x2k, y1l , y2m, tn). Denote grid function
{Un

jklm = u(x1j, x2k, y1l , y2m, tn)|(j, k, l, m) ∈ `, 0 ≤ n ≤ N}, and taking v = Dα
t u, Vn

jklm =

Dα
t Un

jklm, (Vx2)
n
jklm = Dα

t (Ux2)
n
jklm, we have

16(Vx2)
n
jklm = F−1

x1
{k4

x1
Fx1 [U

n
jklm]}+ F−1

x2
{k4

x2
Fx2 [U

n
jklm]}

− 6F−1
x2
{ik3

x2
Fx2{F−1

x1
{−k2

x1
Fx1 [U

n
jklm]}}}

+ 12F−1
x2
{−k2

x2
Fx2 [(U

n
jklm)

2]} − 12F−1
x1
{−k2

x1
Fx1 [(U

n
jklm)

2]}

+ 24F−1
y1
{−k2

y1
Fy1 [U

n
jklm]} − 24F−1

y2
{−k2

y2
Fy2 [U

n
jklm]},

(j, k, l, m) ∈ h̄, 1 ≤ n ≤ N,

(66)

U0
jklm = u0(x1j, x2k, y1l , y2m), (j, k, l, m) ∈ `, (67)

Un
jklm = φ(x1j, x2k, y1l , y2m, tn), (j, k, l, m) ∈ £, 0 ≤ n ≤ N.

(68)

For the sake of simplicity, we have

An = F−1
x1
{k4

x1
Fx1 [U

n
jklm]}+ F−1

x2
{k4

x2
Fx2 [U

n
jklm]}

− 6F−1
x2
{ik3

x2
Fx2{F−1

x1
{−k2

x1
Fx1 [U

n
jklm]}}}

+ 12F−1
x2
{−k2

x2
Fx2 [(U

n
jklm)

2]} − 12F−1
x1
{−k2

x1
Fx1 [(U

n
jklm)

2]}

+ 24F−1
y1
{−k2

y1
Fy1 [U

n
jklm]} − 24F−1

y2
{−k2

y2
Fy2 [U

n
jklm]},

(j, k, l, m) ∈ h̄, 1 ≤ n ≤ N.

(69)

So
16(Vx2)

n
jklm = An, (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (70)

U0
jklm = u0(x1j, x2k, y1l , y2m), (j, k, l, m) ∈ `, (71)

Un
jklm = φ(x1j, x2k, y1l , y2m, tn), (j, k, l, m) ∈ £, 0 ≤ n ≤ N. (72)

Taking the Fast Fourier transform and the Inverse Fourier transform both sides of
Equation (70) with respect to the x2 direction leads to

−16ikx2 Fx2 [V
n
jklm] = Fx2 [A

n], (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (73)

Vn
jklm = F−1

x2

{
Fx2 [A

n]

−16ikx2

}
, (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (74)

Un
jklm ≈

(
ταVn

jklm −
n

∑
s=1

w(α)
s Un−s

jklm

)/
w(α)

0 , (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (75)

U0
jklm = u0(x1j, x2k, y1l , y2m), (j, k, l, m) ∈ `, (76)

Un
jklm = φ(x1j, x2k, y1l , y2m, tn), j = 0, (j, k, l, m) ∈ £, 0 ≤ n ≤ N. (77)

Replacing Un
jklm with un

jklm and replacing Vn
jklm with vn

jklm, we have

−16ikx2 Fx2 [v
n
jklm] = Fx2 [A

n], (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (78)

vn
jklm = F−1

x2

{
Fx2 [A

n]

−16ikx2

}
, (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (79)

un
jklm =

(
ταvn

jklm −
n

∑
s=1

w(α)
s un−s

jklm

)/
w(α)

0 , (j, k, l, m) ∈ h̄, 1 ≤ n ≤ N, (80)
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u0
jklm = u0(x1j, x2k, y1l , y2m), (j, k, l, m) ∈ `, (81)

un
jklm = φ(x1j, x2k, y1l , y2m, tn), (j, k, l, m) ∈ £, 0 ≤ n ≤ N. (82)

5.4. Numerical Results

Periodic boundary conditions need to be considered when using the Fourier spectral
method. In order to satisfy the periodic boundary condition, we consider the following two
examples to illustrate the effectiveness of our numerical method proposed in Section 5.3.

Example 1. An unbounded (4+1)-dimensional time-fractional Fokas equation based on Equa-
tion (11) can be described as follows:

16Dα
t ux2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2 − 12(u2)x2x2

+ 12(u2)x1x1 − 24uy1y1 + 24uy2y2 = f (x1, x2, y1, y2, t),
(83)

where (x1, x2, y1, y2) ∈ R4, t ∈ (0, T] and the exact solution of Equation (83) is

u(x1, x2, y1, y2, t) = sech2
(

x1 + x2 + y1 + y2 +
2tα

Γ(1 + α)
− 6
)

, (84)

where Γ(x) is gamma function.

The initial condition, the boundary conditions and f (x1, x2, y1, y2, t) are determined
by exact solutions in Equation (84). In order to illustrate the validity of the numerical
method proposed above, we compare the numerical solutions with the exact solutions in
Equation (84). When α = 0.75, α = 0.8, α = 0.9 and α = 1, the maximum absolute errors
of the time-fractional (4+1)-dimensional partial differential Fokas equation are shown in
Table 1. It can be seen from the table that the numerical results given by the Fourier spectral
method and Grünwald–Letnikov method are satisfactory, which also shows the validity of
this numerical method. In addition, some images of the comparison between numerical
solutions and exact solutions for different fractional order α are given: α = 0.75 in Figure 3a,
α = 0.8 in Figure 3b, α = 0.9 in Figure 3c, and α = 1 in Figure 3d. From these images,
we can see that as α increases, the curves of the exact solutions and numerical solutions
become closer. Additionally, the curve of the numerical solutions and the curve of the exact
solutions are almost coincident with α = 1.

Table 1. The maximum absolute errors between the numerical solutions and the exact solutions in
Equation (84) for different fractional order α.

α Errors α Errors

0.75 5.8927 × 10−5 0.9 3.1545 × 10−5

0.8 5.2142 × 10−5 1 8.6031 × 10−11
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Figure 3. Example 1. Comparison of the numerical solutions and the exact solutions in Equation (84)
at the end time for different fractional order α with x2 = 1/24, y1 = 1/12, y2 = 3/24.

Example 2. A bounded periodic (4+1)-dimensional time-fractional Fokas equation based on Equa-
tion (11) can be given as

16Dα
t ux2 − ux1x1x1x1 − ux2x2x2x2 + 6ux1x1x2x2x2 − 12(u2)x2x2

+ 12(u2)x1x1 − 24uy1y1 + 24uy2y2 = g(x1, x2, y1, y2, t),
(85)

where (x1, x2, y1, y2) ∈ [0, 2π]× [0, 2π]× [0, 2π]× [0, 2π], t ∈ (0, t] and the exact solution of
Equation (85) is

u(x1, x2, y1, y2, t) = e−
tα

Γ(1+α) sin(x1 + x2 + y1 + y2),. (86)

where Γ(x) is gamma function.

The initial condition, the boundary conditions and g(x1, x2, y1, y2, t) are determined
by exact solutions in Equation (86). As in Example 1, for different fractional order α,
the maximum absolute errors between the numerical solutions and the exact solutions
in Equation (86) are given in Table 2, and the comparison images between the numerical
solutions and exact solutions in Equation (86) are given in Figure 4. We can see from the
table that the error results under different fractional order α are acceptable, and it is obvious
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that the curve-fitting results in the figure are satisfactory. The feasibility of the proposed
numerical method can be also judged from the error results and curve-fitting results.

Table 2. The maximum absolute errors between the numerical solutions and the exact solutions in
Equation (86) for different fractional order α.

α Errors α Errors

0.75 1.5015 × 10−5 0.9 1.6518 × 10−8

0.8 1.3549 × 10−7 1 2.0000 × 10−9
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Figure 4. Example 2. Comparison of the numerical solutions and the exact solutions in Equation (86)
at the end time for different fractional order α with x2 = 1/24, y1 = 1/12, y2 = 3/24.

6. Conclusions

In this paper, we studied an uncommon Fokas equation. The (4+1)-dimensional
time-fractional Fokas equation in the sense of the Riemann–Liouville fractional derivative
was derived in detail for the first time. For the (4+1)-dimensional time-fractional Fokas
equation, the Lie symmetry analysis method was used to investigate the symmetry of the
equation, and at the same time, we discussed the conservational laws of the equation. In
addition, several exact traveling wave solutions were obtained by using the

(
G′
G

)
-expansion

method, and numerical solutions were obtained by using the Fourier spectral method
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and the Grünwald–Letnikov method. The error results between numerical solutions
and exact solutions showed the effectiveness of the numerical method considered in
this paper, and the numerical method may be helpful for the study of this kind of high-
dimensional problem.
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