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Abstract: Milstein and approximate coupling approaches are compared for the pathwise numerical
solutions to stochastic differential equations (SDE) driven by Brownian motion. These methods
attain an order one convergence under the nondegeneracy assumption of the diffusion term for the
approximate coupling method. We use MATLAB to simulate these methods by applying them to a
particular two-dimensional SDE. Then, we analyze the performance of both methods and the amount
of time required to obtain the result. This comparison is essential in several areas, such as stochastic
analysis, financial mathematics, and some biological applications.
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1. Introduction

It is observed in the literature that the research studies investigating methods for
solving stochastic differential equations (SDEs) are progressing rapidly and are attracting
the interest of many researchers working in this field. Recently, numerical solutions to
stochastic differential equations have become popular with computing simulations. The
solution of SDEs has potential applications in many fields, such as economics, finance, and
physics [1–3]. Some studies have been conducted to find strong solutions to stochastic
differential equations to obtain approximations of an order greater than 1

2 . In [1,4,5], the
authors developed new methods and used the truncation of the related transforms of
the stochastic process to approximate double integrals in higher dimensions. However,
these methods required significant computational time. In [6], Fournier used the quadratic
Wasserstein metric approach to approximate the Euler scheme. In [7], Davie described
the application of the Wasserstein bound to approximate the solutions of SDE and used a
version of the method in [2] to obtain order one approximation under some assumptions.
Yang et al. [8] used the Itô-Taylor expansion with a specific condition to approximate
the densities of multivariate. Under some conditions, Alfonsi et al. [9,10] developed
the Wasserstein convergence for the Euler–Maruyama scheme and proved an O(h(

2
3−ε))

convergence for one-dimensional diffusions. Gaines and Lyons [11] developed a new
method for two-dimensional SDEs using the rectangle-wedge-tail method. A new method
for solving two-dimensional SDEs using the condition on the endpoints was presented
in [12]. In [13], the coupling method was used to establish the bounds of an approximate
pathwise solution in a given probability space. Some simulation methods for the stochastic
differential equation have been studied in [14]. The MATLAB implementation for the Euler
and Milstein methods in one- and two-dimensional SDEs was introduced in [15]. Readers
interested in knowing more about the simulation of stochastic differential equations can
refer to [16,17]. Recently, Kerimkulov et al. [18] proposed a modification to the MSA method
based on meticulous estimates for the backward stochastic differential equation. For broad
stochastic control problems with control in both the drift and diffusion coefficients, this
improved MSA is demonstrated to converge. In [19], the rate of convergence results for a
new class of explicit Euler schemes that approximate SDEs with superlinearly rising drift
coefficients that meet a certain form of strong monotonicity are described.
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There are many applications for finding numerical solutions to stochastic differential
equations using several innovative methods, see [20–28].

Based on the Milstein method, references [29–32] provide approximate solutions to
some stochastic differential equations. In [29], the infinite-dimensional version of Milstein’s
approach for finite-dimensional stochastic ordinary differential equations is investigated.
Guo et al. [30] suggested the truncated Milstein approach, which was inspired by Mao’s [33]
truncated Euler–Maruyama method. Alnafisah [31] showed how the Milstein approach
may be utilized to simulate a two-dimensional SDE using the Fourier series expansion of
the Wiener process. To numerically solve the system that consists of replication of several
reacting species using activated monomers and inactivated residues, Zahri [32] considered
a generalized Milstein method for multi-dimensional SDEs.

In this paper, two numerical methods, Milstein and approximate coupling, are used
and compared. This comparison is based on the first-order Milstein method using a Wasser-
stein matrix with the condition that SDE has invertible diffusion. We show the MATLAB
implementation for both methods and compare the result as well as the computational time.
We used (MATLAB ver. R2017b) software to obtain the implementation and approximation
results. The importance of these comparisons is that they determine the most appropriate
method for use in many vital applications in stochastic analysis, financial mathematics, and
some biological applications.

The remainder of this article is structured in the following manner. In Section 2, we
review various findings concerning SDEs and the Davie method [34]. In Section 4, the
comparison between the Milstein and approximate coupling methods is presented. In
addition, we provide a numerical implementation to illustrate the convergence behavior in
two-dimensional SDEs.

2. Preliminaries

In this section, we provide background information relevant to this study, see [1,3].
Throughout this paper, N denotes the normal distribution, and E represents the expectation.

A standard Brownian motion (Weiner process) over an interval [0, T] is a random
variable ψ(t), which depends continuously on a time t ∈ [0, T), if the following conditions
are satisfied:

(i) ψ(0) = 0 (with probability one).
(ii) The random variable is given by increment ψ(u) − ψ(ν), for 0 ≤ ν < u ≤ T, is

normally distributed with mean zero and variance u− ν. Equivalently, ψ(u)−ψ(ν) ≈
N(0, u− ν).

(iii) The increments ψ(u)− ψ(ν) and ψ(t)− ψ(s) for 0 ≤ ν < u < s < t ≤ T.

The stochastic process ψ = ψ(u), which is considered in this work, can be described
by stochastic differential equations

dψ(u) = η(u, ψ(u))du + µ(u, ψ(u))dϕ(u), u ∈ [0, T], (1)

where {ϕ(u)}u≥0 is a m-dimensional standard Brownian motion with probability space
(Ω, F, P) equipped with a filtration F = (Fu)u≥0, η = η(u, ν) is a m-dimensional vector
function, and µ = µ(u, ν) is a m×m-matrix function. These functions are called the drift
coefficient and diffusion coefficient, respectively.

A Fu-adapted stochastic process ψ = (ψ(u))u≥0 is called a solution of Equation (1), if

ψ(u) = ψ(0) +
∫ u

0
η($, ψ($))d$ +

∫ u

0
µ($, ψ($))dϕ($), (2)

holds, where the initial condition ψ(0) = ν is an F0-measurable random vector in Rm. We
note that the integral processes∫ u

0
η($, ψ($))d$ and

∫ u

0
µ($, ψ($))dϕ($),
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must be well-defined in order for (2) to be satisfied. The functions η($, ψ($)) and µ($, ψ($))
must satisfy the following conditions:

E
∫ u

0
µ2($, ψ($))d$ < ∞,

and almost surely for all u ≥ 0, ∫ u

0
|η($, ψ($))|d$ < ∞.

One property for the stochastic integral is∫ u

0
ϕ($)dϕ($) =

1
2

∫ u

0
d(ϕ2($))− 1

2

∫ u

0
d$ =

1
2

ϕ2(u)− u
2

.

For more details on the stochastic integral, the interested reader is referred to [1].
To present the existence and uniqueness theorems, we need the following conditions:

1. Measurability: Let η :[0, ∞)×Rm → Rm and µ:[0, ∞)×Rm → Rm×m be jointly Borel
measurable in [u0,T]×Rm.

2. Lipschitz condition: There is a positive constant C > 0 such that |η(u, ν)− η(u, y)| ≤
C|ν− y|, and |µ(u, ν)− µ(u, y)| ≤ C|ν− y|, for all u∈ [u0,T] and ν, y ∈ R.

3. Growth condition: There is a constant K > 0 such that |η(u, ν)|2 ≤ K2(1 + |ν|2), and
|µ(u, ν)|2 ≤ K2(1 + |ν|2), for all u∈ [u0,T] and ν, y ∈ R.

Theorem 1 ([1], Theorem 4.5.3). Under the previous conditions (1)–(3), the stochastic differential
Equation (1) has a unique solution ψ(u) ∈ [u0,T] with

supu0≤u≤u E(|ψ(u)|2) < ∞.

2.1. Approximation Schemes

In this subsection, we briefly review the schemes of the Euler–Maruyama, Milstein
and Davie methods. Consider the stochastic differential equation

dψi(u) = ηi(u, ψ(u))du +
m

∑
k=1

µik(u, ψ(u))dϕk(u), ψi(0) = ψ
(0)
i , (3)

where u ∈ [0, T], ψ(u) is an m-dimensional vector, and ϕ(u) is an m-dimensional driving
Brownian path. Moreover, the coefficients µik(u, ψ(u)) satisfy the global Lipschitz conditions

|η(u, ν)− η(u, y)| ≤ A|ν− y|

and
|µ(u, ν)− µ(u, y)| ≤ A|ν− y|,

for all u∈ [u0,T] and ν, y ∈ R, where A > 0 is a constant. If ηi and µi are continuous in u,
for each ψ, then the Equation (3) has a unique solution ψ(u). This is a process adapted to
the filtration induced by Brownian motion. Under these conditions, the solution satisfies
E(|ψ(u)|p) < ∞ for each p ∈ [1, ∞] and u ∈ [0, T]. The standard method for the pathwise
approximation of the solution of Equation (3) is to divide [0, T] into a finite number of
N of equal intervals with length h = T/N. The simplest form of such approximation
for the SDE by using only the linear term in the Taylor expansion, gives the following
Euler–Maruyama scheme

ν
(j+1)
i = ν

(j)
i +

m

∑
k=1

µik(ν
(j))∆ϕ

(j)
k , (4)
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where ∆ϕ
(j)
k = ϕk((j + 1)h)− ϕk(jh). Now, we represent a scheme that is proposed by

Milstein and gives an order one strong Taylor scheme.

ν
(j+1)
i = ν

(j)
i + ηi(jh, ν(j))h +

m

∑
k=1

µik(jh, ν(j))∆ϕ
(j)
k +

m

∑
k,l=1

ρikl(jh, ν(j))M(j)
kl , (5)

where

∆ϕ
(j)
k : = ϕk((j + 1)h)− ϕk(jh),

M(j)
kl : =

∫ (j+1)h

jh
{ϕk(u)− ϕk(jh)}dϕl(u),

and

ρikl(u, ν) :=
q

∑
m=1

µmk(u, ν)
∂µil
∂νm

(u, ν).

If the following condition

ρikl(u, ν) = ρilk(u, ν), (6)

for all ν ∈ Rm, u ∈ [0, T] and all i, k, l holds, then the Milstein scheme reduces to

ν
(j+1)
i = ν

(j)
i + ηi(jh, ν(j))h +

m

∑
k=1

µik(jh, ν(j))∆ϕ
(j)
k +

m

∑
k,l=1

ρikl(jh, ν(j))B(j)
kl . (7)

This is dependent on the generation of the Brownian motion ∆ϕ
(j)
k . It can be imple-

mented for the Milstein method using Brownian motion ∆ϕ
(j)
k and a unique set of equations.

This comes from the observation that M(j)
kl + A(j)

lk = 2B(j)
kl where B(j)

kl = 1
2 ∆ϕ

(j)
k ∆ϕ

(j)
l , for

k 6= l and B(j)
kk = 1

2{(∆ϕ
(j)
k )2 − h}. Scheme (7) achieves an order of 1, for m = 1. How-

ever, for the dimension m > 1, we obtain the order 1
2 . According to Davie’s approximate

coupling method, we could modify the previous scheme (7). This gives order one under
invertible diffusion conditions.

One can implement the Milstein scheme by separately generating the random variables
∆ϕ

(j)
k and M(j)

kl and combining them to obtain the RHS of the scheme (7). According to
Davie’s (approximate coupling) method, we attempt to directly generate the following:

Y := ∑ µik(jh, ν(j))∆ϕ
(j)
k + ∑ ρikl(jh, ν(j))M(j)

kl ,

By replacing ∆ϕ
(j)
k with ψ

(j)
k , and not assuming ∆ϕ

(j)
k = ψ

(j)
k , the following scheme

ν
(j+1)
i = ν

(j)
i + ηi(jh, ν(j))h + ∑ µik(jh, ν(j))ψ

(j)
k + ∑ ρikl(jh, ν(j))(ψ

(j)
k ψ

(j)
l − hδkl), (8)

is the same as (7) with the increment ψ
(j)
k being independent and N(0, h) being random

variables.

2.2. Strong Order of Convergence

A discrete-time approximation νS with step-size S converges strongly with order γ at
time u = NS to the solution ψ(u), if

E|νS − ψ(u)| ≤ CSγ, S ∈ (0, 1).

where S is the step size, which divides the interval [0, T] into equal length S = u
N and

ψ(u) is the solution to the stochastic differential equation. C is a positive constant and
independent of S
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Theorem 2. Assume that µik is a twice differentiable invertible matrix, and that µik, µ′′ik and the
inverse of the matrix µik are bounded. Then

(E|ν(j+1,2r)
i − ν

(j,r)
i |p)2/p ≤ k2h2eTL,

where ν
(j,r)
i and ν

(j+1,2r)
i are defined as

ν
(j,r+1)
i = ν

(j,r)
i +

d

∑
k=1

µik(ν
(j,r))ν

(j,r)
k +

1
2

d

∑
k,l=1

ρikl(ν
(j,r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl),

ν
(j+1,2r+1)
i = ν

(j+1,2r)
i +

d

∑
k=1

µik(ν
(j+1,2r))ν

(j+1,2r)
k

+
1
2

d

∑
k,l=1

ρikl(ν
(j+1,2r))(ν

(j+1,2r)
k ν

(j+1,2r)
l − h(j+1)δkl),

and

ν
(j+1,2r+2)
i = ν

(j+1,2r+1)
i +

d

∑
k=1

µik(ν
(j+1,2r+1))ν

(j+1,2r+1)
k

+
1
2

d

∑
k,l=1

ρikl(ν
(j+1,2r+1))(ν

(j+1,2r+1)
k ν

(j+1,2r+1)
l − h(j+1)δkl).

Proof. Suppose that
max

i
(E(|ν(j+1,2r)

i − ν
(j,r)
i |p))2/p = er.

Hence,

(E|ν(j+1,2r+2)
i − ν

(j,r+1)
i |p)2/p = (E|(y− ν

(j,r+1)
i ) + (ν

(j+1,2r+2)
i − y)|p)2/p

= (E|(ν(j+1,2r)
i − ν

(j,r)
i ) + (y− ν

(j+1,2r)
i )

− (ν
(j,r+1)
i − ν

(j,r)
i ) + (ν

(j+1,2r+2)
i − y)|p)2/p

≤ er + a1[|(E(ν(j+1,2r)
i − ν

(j,r)
i )|ν(j+1,2r)

i − ν
(j,r)
i |(p−2)

(y− ν
(j+1,2r)
i )− (ν

(j,r+1)
i − ν

(j,r)
i ) + (ν

(j+1,2r+2)
i − y))|]2/p

+ a2[(E|(y− ν
(j+1,2r)
i )− (ν

(j,r+1)
i − ν

(j,r)
i )

+ (ν
(j+1,2r+2)
i − y)|p)]2/p.

It follows from Lemma 3.1 in [35] with ν = (ν
(j+1,2r)
i − ν

(j,r)
i ) that

Y = (y− ν
(j+1,2r)
i )− (ν

(j,r+1)
i − ν

(j,r)
i ) + (ν

(j+1,2r+2)
i − y)

= (
d

∑
k=1

µik(ν
(j+1,2r))ν

(j,r)
k +

1
2

d

∑
k,l=1

ρikl(ν
(j+1,2r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl)))

− ((
d

∑
k=1

µik(ν
(j,r))ν

(j,r)
k +

1
2

d

∑
k,l=1

ρikl(ν
(j,r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl)) + (ν

(j+1,2r+2)
i − y),
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and so

E(Y|ν) = E[(
d

∑
k=1

µik(ν
(j+1,2r))ν

(j,r)
k +

1
2

d

∑
k,l=1

ρikl(ν
(j+1,2r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl)))

− ((
d

∑
k=1

µik(ν
(j,r))ν

(j,r)
k +

1
2

d

∑
k,l=1

ρikl(ν
(j,r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl))

+ (ν
(j+1,2r+2)
i − y)|(ν(j+1,2r)

i − ν
(j,r)
i )] = 0.

Thus, we obtain

(E|ν(j+1,2r+2)
i − ν

(j,r+1)
i |p)2/p ≤ er + a2[(E|(y− ν

(j+1,2r)
i )− (ν

(j,r+1)
i − ν

(j,r)
i )

+ (ν
(j+1,2r+2)
i − y)|p)]2/p

≤ er + a3[(E|(y− ν
(j+1,2r)
i )− (ν

(j,r+1)
i − ν

(j,r)
i )|p]2/p

+ a4E[|(ν(j+1,2r+2)
i − y)|p)]2/p,

and then

(E|ν(j+1,2r+2)
i − ν

(j,r+1)
i |p)2/p = er + a3[(E|(

d

∑
k=1

µik(ν
(j+1,2r))ν

(j,r)
k − (

d

∑
k=1

µik(ν
(j,r))ν

(j,r)
k

+
1
2

d

∑
k,l=1

ρikl(ν
(j+1,2r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl))

+
1
2

d

∑
k,l=1

ρikl(ν
(j,r))(ν

(j,r)
k ν

(j,r)
l − h(j)δkl))|p]2/p

+ a4E[|(ν(j+1,2r+2)
i − y)|p)]2/p.

Therefore, we arrive at

(E|ν(j+1,2r+2)
i − ν

(j,r+1)
i |p)2/p ≤ er + a5[E|

d

∑
k=1

(µik(ν
(j,r))− µik(ν

(j+1,2r)))ν
(j,r)
k |p]2/p

+ a6[E|
1
2

d

∑
k,l=1

(ρikl(ν
(j,r))− ρikl(ν

(j+1,2r)))

(ν
(j,r)
k ν

(j,r)
l − h(j)δkl)|p]2/p + a4E[|(ν(j+1,2r+2)

i − y)|p)]2/p,

where a1, a2, a3, and a4 are constants that depend on p. We have that the Lipschitz condition
is satisfied because µik is twice differentiable and µ′′ik is bounded. Thus, there exists a
constant C > 0 such that

|µik(ν)− µik(y)| ≤ C|ν− y|

and ∣∣∣∣µik(ν)
∂µik(ν)

∂ν
− µik(y)

∂µik(y)
∂y

∣∣∣∣ ≤ C|ν− y|,

for all t ∈ [t0, slT] and ν, y ∈ R . Hence,

a3[E|
d

∑
k=1

(µik(ν
(j,r))− µik(ν

(j+1,2r)))ν
(j,r)
k |p]2/p ≤ L2her
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and

a3[E|
1
2

d

∑
k,l=1

(ρikl(ν
(j,r))− ρikl(ν

(j+1,2r)))(ν
(j,r)
k ν

(j,r)
l − h(j)δkl)|p]2/p ≤ L2

1h2er.

It follows from Lemma 4.2 in [35] that

(E|ν(j+1,2r+2)
i − y|p)2/p ≤ apη4h3.

Now, we assume that |η|4 is bounded by a constant a1. Hence,

(E|ν(j+1,2r+2)
i − ν

(j,r+1)
i |p)2/p ≤ er + hL2er + L2

1h2er + apη4h3.

Therefore, we obtain

er+1 ≤ er + hL2er + L2
1h2er + apη4h3

≤ er + hL2er + L2
1her + apη4h3

≤ er + hLer + k1h3

≤ (1 + hL)er + j,

where j = k1h3. Since (r + 1)h ≤ T for r < N and e0 = 0, we obtain

er ≤ j
r−1

∑
k=0

(1 + hL)k

≤ j
N−1

∑
k=0

(1 + hL)k

= j
(1 + hL)N − 1

hL

=
(
k1h3)( (1 + hL)N − 1

hL
)

≤ k2h2eTL.

Thus, the proof is complete.

3. Comparison between Milstein and Approximate Coupling Methods

In this section, we present a useful comparison between two methods for solving
SDE. Time-consuming and accurate solutions can be an effective procedure for obtaining
the approximate solution for different types of methods. To give a clear overview of the
methodology as a numerical implementation, we consider a two-dimensional SDE with
invertible diffusion. We apply the Milstein and the approximate coupling methods on a
particular SDE, so that the comparisons are made numerically. For the Milstein method, we
truncate the Fourier series with specific terms, which is enough to give an accurate result.
For the approximate coupling method, the diffusion is nondegenerate.

For comparison purposes, we consider the following two-dimensional SDE:

dχ(t) = (sin(Y(t)))2dψ(t)− 1
1 + χ2(t)

dV(t),

dY(t) =
1

1 + Y4(t)
dψ(t) + (cos(χ(t)))2dV(t),

for 0 ≤ t ≤ 1, with χ(0) = 2 and Y(0) = 0.

(9)

ϕ(u) and V(u) are both independent standard Brownian motions. Because solutions for
SDEs cannot typically be known explicitly, we uitlize approximate solutions to compare
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the two different methods. We use the absolute error for the different number of steps to
calculate the approximation error for each method. We use the same number of simulations
for both methods (R = 10,000). We compute R = 10,000 different Brownian paths over the
interval [0, 1] with different step sizes. The experimental error and the elapsed time for the
Milstein method are presented in Table 1.

Table 1. Implementation of the Milstein scheme.

Steps Step-Size Absolute Error Elapsed Time (Hour)

1 400 0.0025 0.0692 0.126

2 800 0.0013 0.0353 0.433

3 1600 0.0006 0.0176 21.839

4 3200 0.00030 0.0091 102.817

5 6400 0.000150 0.0046 261.888

Figure 1 displays the log plot of the absolute error with respect to the five different
time steps. We can see that the Milstein scheme converges strongly with order one. We
use five different step-sizes (0.0025, 0.0013, 0.0006, 0.0003, 0.00015) for both methods. It is
clear from Table 1 and Figure 1 that the strong approximation error decreases as the step
size decreases.

Figure 1. Plot of the Milstein scheme.

The strong convergence for the approximate scheme should be an order one conver-
gence as described in Davie’s paper. We run the following MATLAB code with different
step sizes over a large number of paths R as follows:

[ Error f o r approximate coupling ]
S=[ 400 , 800 , 1600 , 3200 , 6 4 0 0 ] ;
Error1=zeros ( 1 , length1 ( S ) ) ;
f o r i =1 : length1 ( S )
Error1 ( 1 , i )=
log ( approximat2022 ( ’YA’ , [ 1 ; 0 ] , 1 , S ( 1 , i ) ) ) ;
end
h=1./ S ;
fad1=log ( h )
p l o t ( log ( h ) , Error1 )

The approximate coupling method is an alternative to the previous Milstein method.
The command Error1(1,i) = log(approximat2022(’YA’,[1; 0],1,S(1,i))) calculates the absolute
value of the difference between the approximate solution νh and the solution ψ(u) of the
SDE with different step sizes. Table 2 provides the experimental error for each of the five
time steps and the elapsed time for the approximate coupling method.



Fractal Fract. 2022, 6, 339 9 of 11

Table 2. Implementation result of approximate coupling method.

Steps Step-Size Absolute Error Elapsed Time (Hour)

1 400 0.0025 0.0029 0.05805

2 800 0.0013 0.0015 0.01163

3 1600 0.0006 0.00075 0.2325

4 3200 0.0003 0.00036 0.4664

5 6400 0.00015 0.00018 0.9344

Figure 2 displays the log plot of the absolute error for each of the five time steps.
The plot indicates a strong convergence between the approximate coupling method and
order one.

Figure 2. Plot of approximate coupling.

Comparing the results in Tables 1 and 2, we observe in both methods that as step size
decreases, the estimate of the absolute error also decreases. We can also observe in the
previous tables and plots that the Milstein and approximate coupling methods strongly
converge with order one. We emphasize that we applied these methods over the same
number of Brownian paths (R = 10,000) for the same step sizes. It can also be seen that
using the approximate coupling method can reduce the total computational time. We see
from the tables that there is a significant difference between the elapsed time. The Milstein
code takes more than two weeks to obtain the result, but the approximate coupling code
takes a few hours.

4. Conclusions

Generally, the solution of the stochastic differential equation cannot be known explic-
itly. Therefore, we use a simulation to find the approximate solution and the convergence
behavior. In this paper, we simulated Milstein and the approximate coupling methods
in MATLAB to find the approximate solution of the SDE. Both of these methods give an
order one convergence. We then implemented these schemes on a stochastic differential
equation to compare the Milstein and the approximate coupling methods to each other
while illustrating efficiency. Additionally, we calculated error values for the Milstein and
the approximate coupling methods to compare the strong order and computation time.
According to our results, we can say that the approximate coupling method is faster for
the solution of invertible two-dimensional SDEs than the Milstein method. However, the
disadvantage of this method is that we should assume the nondegeneracy condition for
the diffusion term. The advantage of the Milstein method is that there is no need for this
condition, but it involves a significant computational cost. Therefore, we may conclude that
the approximate coupling method is more effective than the Milstein method for invertible
SDEs. It is interesting to extend the comparisons to include other new methods or equations
of higher order.
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