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Abstract: In order to simulate the grinding surface more accurately, a novel modeling method is
proposed based on the ubiquitiform theory. Combined with the power spectral density (PSD) analysis
of the measured surface, the anisotropic characteristics of the grinding surface are verified. Based on
the isotropic fractal Weierstrass–Mandbrot (W-M) function, the expression of the anisotropic fractal
surface is derived. Then, the lower bound of scale invariance δmin is introduced into the anisotropic
fractal, and an anisotropic W-M function with ubiquitiformal properties is constructed. After that, the
influence law of the δmin on the roughness parameters is discussed, and the δmin for modeling the
grinding surface is determined to be 10−8 m. When δmin = 10−8 m, the maximum relative errors of
Sa, Sq, Ssk, and Sku of the four surfaces are 5.98%, 6.06%, 5.77%, and 4.53%, respectively. In addition,
the relative errors of roughness parameters under the fractal method and the ubiquitiformal method
are compared. The comparison results show that the relative errors of Sa, Sq, Ssk, and Sku under the
ubiquitiformal modeling method are 5.36%, 6.06%, 5.84%, and 4.53%, while the maximum relative
errors under the fractal modeling method are 23.21%, 7.03%, 83.10%, and 7.25%. The comparison
results verified the accuracy of the modeling method in this paper.

Keywords: grinding surface; modeling method; anisotropy; fractal theory; ubiquitiform theory

1. Introduction

The modeling of machined surfaces has always been a fundamental topic in the field
of tribology [1]. An accurate surface can provide a model basis for research on contact
characteristics for mechanical joint surfaces, which has practical engineering significance for
the design of precision instruments [2]. Grinding is one of the most widely used machining
methods and determining how to achieve accurate modeling of the grinding surface has
always been a hot topic for relevant scholars [3]. There are three modeling methods of
micro-topography for grinding surfaces: The numerical simulation method, geometric
simulation method, and fractal modeling method [4,5].

The numerical simulation method simulated the grinding surface by Gaussian or
non-Gaussian surfaces [6]. Wu et al. generated Gauss and non-Gauss surfaces separately
to simulate grinding surfaces [7,8]. Wang et al. combined Fourier transform with the
Johnson conversion system [9] to simulate non-Gaussian surfaces with specific roughness
parameters [10]. The advantage of this method is that the simulated surface is based on
roughness parameters, which can satisfy the statistical characteristics. However, with
deepening research, defects gradually emerged [11,12]. In the simulation process, the
truncation length of the autocorrelation function has a great impact on the simulation
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topography. Improper truncation length of the autocorrelation function may lead to wrong
results [12]. Moreover, using Gaussian or non-Gaussian surfaces instead of actual grinding
surfaces will introduce errors in the analysis of the contact characteristics [2,13].

The geometric simulation method is based on grinding kinematics theory. Combined
with the grinding parameters and the motion trajectory of abrasive particles on a grind-
ing wheel, the simulation of the grinding surface was realized. Based on the grinding
parameters, Warneck et al. deduced the motion equation between the grinding wheel and
the workpiece [14]. Based on the research of Saini [15], Cooper et al. added the empiri-
cal equation of plough and sliding friction in the process of topography simulation [16].
Nguyen et al. developed a numerical simulation program for a grinding surface based on
topography data of a grinding wheel and grinding kinematics theory [17,18]. Based on
the research of Nguyen, Cao et al. considered the influence of the vibration between the
grinding wheel and the workpiece during the simulation of the surface topography [19].
Combined with the Johnson transform [9], Wen conducted simulation research on the
theoretical grinding topography based on the topography of the grinding wheel and the
grinding kinematics [20]. Chen et al. introduced the waviness information into the simula-
tion process of surface topography [21,22]. Lipiński et al. applied artificial neural networks
to the modelling of surface roughness and grinding forces [23].

The advantage of this method is that the simulation method is based on the grinding
kinematics theory, which can obtain the influence mechanism of the machining parameters
on the grinding topography. However, the following shortcomings cannot be ignored:
Firstly, the premise of this method requires an accurate grinding wheel surface, and its
modeling accuracy is the basis for ensuring the accuracy of the grinding surface. The
abrasive particle distribution or other random variables in the modeling process of grinding
wheel surface have always been the key factors affecting the accuracy of grinding wheel
surface modeling [24]. Secondly, due to the vibration of the machine, feed error, thermal
deformation, and other factors, there is a large deviation between the theoretical topography
and the measured topography [25]. In addition, there are many influencing factors in
the grinding process, and it is difficult to detect each influencing factor accurately and
quantitatively. Therefore, with the deepening of research, the difficulty of analysis will
increase greatly [1]. Finally, this method is limited to only realizing the characterization of
the grinding surface and cannot provide a model basis for the subsequent analysis of the
contact characteristic for the grinding joint surface [26].

The fractal modeling method simulated the grinding surface by fractal surface.
Sayles et al. [27] pointed out that the machined surface has fractal characteristics. Ma-
jumdar and Bhushan introduced the fractal theory into the field of tribology and used
the two-dimensional (2D) W-M function to characterize the rough surface, and then ana-
lyzed the contact characteristics of the rough joint surface [28]. Subsequently, Ausloos and
Berman extended the 2D W-M function to a three-dimensional (3D) space and derived the
generalized expression of 3D W-M function [29]. Later, Yan and Komvopoulos deduced
the generalized form of the 3D W-M function and obtained the 3D W-M function in the
Cartesian coordinate system [30]. This fractal expression is a common form to characterize
rough surfaces [31,32], and many results have been obtained in the analysis of contact
characteristics for rough joint surfaces [32–34]. However, with the deepening of research,
the disadvantages of the fractal modeling method have gradually emerged, especially in
the aspect of the fractal measure [5,35,36].

Ou et al. pointed out that the integer dimension measure of a fractal is divergent, and
the fractal dimension is discontinuous with respect to the measurement scale [37]. Espe-
cially considering the measure, it is unreasonable to describe a physical object with a fractal
approximation. Furthermore, after an infinite number of self-similar or self-affine iterative
processes, the Hausdorff dimension mutates from an integer dimension to a fractal dimen-
sion, which means the integer dimension measure of the fractal has singular characteristics.
Therefore, Ou et al. proposed the concept of ubiquitiform on the basis of fractal theory to
solve the difficulty caused by the singularity of the fractal measure [37]. The ubiquitiform
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was defined as a self-similar or self-affine structure with finite levels, which can usually be
generated by a finite number of iterations under some given generation rule. Subsequently,
the ubiquitiform theory has been applied to the equivalent elastic modulus characterization
for a bimaterial bar [38], the one-dimensional steady-state conduction model for a cellular
material rod [39], the softening behavior for concrete [40,41], and the research of parameters
for material fracture energy characterization [42], the crack propagation in quasi-brittle
materials [43], and the mesostructural characterization of polymer-bonded explosives [44].
Relevant scholars have introduced the concept of ubiquitiform theory into the analysis of
contact characteristics of rough joint surfaces. Shang et al. studied the normal contact stiff-
ness of rough joint surfaces based on the ubiquitiform theory [45]. Unfortunately, there was
no relevant literature on the modeling of grinding surfaces based on ubiquitiform theory.

According to the previous research results of our team, the fractal surface may be more
suitable for isotropic machined surfaces such as polishing, electrical discharge machining,
or electroplating [1,3,46]. During the analysis of the measured grinding surface [1], it
was found that the measured surface has anisotropic characteristics, which are quite
different from the commonly used fractal surfaces. Combined with the analysis of grinding
kinematics, the grinding surface will show anisotropy in the direction of linear motion of the
workpiece. Therefore, the anisotropic ubiquitiform theory is introduced into the modeling
of a grinding surface, and the modeling accuracy of the grinding surface is analyzed.

2. Characteristic Analysis of Measured Surfaces

In order to obtain the grinding surface under different ubiquitiformal dimensions, the
specimens are prepared by using grinding wheels with different abrasive grains. The 45#
steel is selected as the specimen material. The abrasive grains of the grinding wheel are
60#, 80#, 100#, and 120#, respectively. Meanwhile, in order to ensure the reliability of the
data, the number of specimens under each abrasive grain is three, and the average values
of the three surfaces are taken as the final data for later calculation of the ubiquitiformal
dimensions. After the specimens are machined, the micro-topography of grinding sur-
faces is measured and analyzed. The noncontact micro topography measurement system
ZYGONexView (ZYGO Corporation, Middlefield, CT, USA) is used to measure the micro-
topography of the grinding surface. The sampling area is 3 mm × 3 mm and the number of
sampling points is 1024 × 1024. The sampling method complied with ISO25178-3 [5], and
the sampling area conformed to the S-F surface. Figure 1 shows the micro-topography of
45# steel under different roughness.

The arithmetic mean deviations of the surfaces are Sa 0.112 µm, Sa 0.266 µm, Sa
0.403 µm, and Sa 0.672 µm, respectively. Different from the 2D roughness parameter R, the
symbol S represents the 3D roughness parameter. For the convenience of distinguishing dif-
ferent surfaces, the rough surfaces are defined as Surface 1, Surface 2, Surface 3, and Surface
4 according to the roughness Sa from small to large. In addition, the coordinate directions
involved in the following statements are described with reference to the coordinates in
Figure 1.

The power spectral density analysis is performed on the measured grinding surfaces.
The calculation flow of 2D power spectral density can be found in Figure S1. Figure 2
shows the 2D power spectral density of the measured surfaces.

It can be seen from Figure 2 that the grinding surface is not an isotropic surface, and
exhibits anisotropic characteristics in the y-direction. This result is the same as the result
from the literature [47]. Moreover, in the literature, the fractal dimension of the grinding
surface at different angles was measured. The results have shown that the fractal dimension
of the grinding surface varies greatly under different inclination angles. However, in the y-
direction, the error of fractal dimension was small. The results further verify the anisotropic
characteristics of the grinding surface.



Fractal Fract. 2022, 6, 341 4 of 16
Fractal Fract. 2022, 6, x FOR PEER REVIEW 4 of 17 
 

 

Sa 0.672  μm
Sq 0.733  μm
Sz 10.742 μm 

0

Y：
3001.332 μm

1500 2000 2500 3000

500
1000

0

15
00

20
00

25
00

30
00

50
0

10
00

9.745 μm

-3.997 μm

9.0

7.5

6.0

4.5

3.0

1.5

0.0

-3.0

X：
30

01
.3

32
 μ

m
-1.5 

Sa 0.112 μm
Sq 0.132 μm
Sz 1.416 μm 

0

Y
：

3001.332 μ
m

1500
2000

2500
3000

500
1000

0

1500
2000

2500
3000

500
1000

0.574 μm

-1.542 μm

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

X：
3001.332 μ

m

Sa 0.266 μm
Sq 0.288 μm
Sz 4.436 μm 

0

Y：
3001.332 μm

1500 2000 2500 3000

500
1000

0

15
00

20
00

25
00

30
00

50
0

10
00

2.839 μm

-3.097 μm

2.8

2.0

1.2

0.4

-0.6

-1.4

-2.2

-3.0

X：
30

01
.3

32
 μ

m

Sa 0.403 μm
Sq 0.523 μm
Sz 8.199 μm 

0

Y：
3001.332 μm

1500 2000 2500 3000

500
1000

0

15
00

20
00

25
00

30
00

50
0

10
00

4.007 μm

-4.191 μm

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0X：
30

01
.3

32
 μ

m

-4.0

(a) (b)

(c) (d)

 

Figure 1. Measured grinding surfaces: (a) Surface 1; (b) Surface 2; (c) Surface 3; (d) Surface 4. 
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shows the 2D power spectral density of the measured surfaces. 

Figure 1. Measured grinding surfaces: (a) Surface 1; (b) Surface 2; (c) Surface 3; (d) Surface 4.

The following is a supplementary formation analysis of the grinding surface from the
perspective of grinding kinematics. During the grinding process, the grinding wheel is in a
rotating state, while the workpiece is in a linear motion state. With the relative movement
between the grinding wheel and the workpiece, the abrasive particles on the grinding
wheel will leave a trajectory on the surface of the workpiece. If a certain circumferential
section of the grinding wheel is selected as the reference coordinate system, the workpiece
surface will move relative to the section of the grinding wheel, and this grinding wheel
section will leave a trajectory in the direction of workpiece movement. Moreover, this
continuous trajectory also has anisotropic characteristics. This viewpoint is consistent with
the geometric simulation method.

In conclusion, based on the power spectral density analysis and grinding kinematics
analysis of the measured grinding surface, the anisotropic characteristics of the surface
topography are verified. In the next section, the modeling method will be described
in detail.
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3. Modeling Method

Different from the regular tool shapes such as turning and milling, there are essential
differences in the formation of the grinding surface. Due to the disordered and irregular
shape of abrasive particles on the grinding wheel’s surface, the modeling of the grinding
surface has always been a difficult problem. In the case of not analyzing the measured grind-
ing surface, relevant scholars proposed the use of a fractal surface to simulate the grinding
surface [22,48]. The current fractal modeling methods and defects are described in this
section. Then, the lower bound of scale invariance δmin is introduced into the anisotropic
fractal, and an anisotropic W-M function with ubiquitiformal properties is constructed,
which provides a theoretical basis for the construction of a ubiquitiformal surface.

3.1. Modeling Method Based on Fractal Theory

Majumdar and Bhushan introduced fractal theory into the field of tribology and used
the 2D W-M function to characterize the rough surface [28]. With the increase in research,
Ausloos and Berman extended the 2D W-M function to 3D space and derived the general-
ized expression of the 3D W-M function. The expression is shown in Equation (1) [29].

W(r) =
(
(ln γ)1/2/M1/2

) M

∑
m=1

Am

∞

∑
n=−∞

[1− exp(ik0γnr cos(θ − αm))]× exp(iϕm,n)(k0γn)D−3 (1)

where W(r) is the vertical height of the 3D fractal surface; D is the fractal dimension of
the fractal surface, and 2 < D < 3; G is the scale coefficient of the fractal surface; γ is the
frequency density parameter of the fractal surface, and the rough surface that satisfies the
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normal distribution takes γ = 1.5, where γn refers to the spatial frequency on the surface.
Exp is an exponential function; k0 is the wave number on the surface, which satisfies the
relation k0 = 2π/L, the sampling length L; M is the number of overlapping wrinkles on
the fractal surface. When M = 1, the surface is anisotropic, and when M 6= 1, the surface
is isotropic. Am is the height of the highest point on the fractal surface, and it satisfies the
relation Am = 2π(2π/G)2-D; αm is used to represent the direction of the wave corresponding
to m on the rough surface, which satisfies the relation αm = πm/M; ϕm,n is the random phase,
where the value range is [0, 2π]. N is the frequency index of the asperity, and its value
range is (-∞, +∞).

Yan and Komvopoulos deduced the generalized form of the 3D W-M function, and ob-
tained the 3D W-M function in the Cartesian coordinate system. The functional expression
is shown in Equation (2) [30].

z(x, y) = L
(

G
L

)D−2
·
(

ln γ
M

)1/2
·

M
∑

m=1

nmax
∑

n=nl

{
γ(D−3)n ×

[
cos ϕm,n − cos

(
2πγn(x2+y2)

1/2

L × cos
(
arctan

( y
x
)
− πm

M
)
+ ϕm,n

)]} (2)

Different from Equation (1), z is the vertical height of the fractal surface, x and y are the
coordinates of the data points in the x and y directions, respectively, and the value range of
n is (nl, nmax).

The frequency index n of the asperity is introduced in detail below. According to Equa-
tion (2), the value range of n is (nl, nmax), where nl is the lower limit of the frequency index,
and nmax is the upper limit of the frequency index. For a fractal surface, the calculation
formula of nl is shown in Equation (3).

nl = f loor
(

ln(L/L)
ln γ

)
= 0 (3)

where L is the sample length and floor is the rounding function. Since n cannot be made to
tend to infinity during the surface simulation, it is necessary to restrict the high-frequency
part of the function, that is, the frequency exponent nl = 0.

According to reference [30], the equation of the upper limit of the frequency index
nmax is as follows.

nmax = f loor
(

ln(L/Ls)

ln γ

)
(4)

where Ls is the resolution of the measuring instrument.
Based on the analysis of the measured surface in Section 2, the grinding surface has

anisotropic characteristics. This result obviously contradicts the isotropic characteristics
of the fractal surface. Therefore, based on the existing isotropic fractal W-M function, the
anisotropic fractal function is derived. It can be seen from the literature [30] that when the
number of overlapping wrinkles M = 1, the fractal surface will appear anisotropic. There-
fore, by inserting M = 1 into Equation (2) and simplifying it, the form shown in Equation (5)
can be obtained. Equation (5) shows the equation of the anisotropic fractal surface.

z(x) = L
(

G
L

)D−2

(ln γ)1/2
nmax

∑
nl=0

{
γ(D−3)n

[
cos φn − cos

(
2πγnx

L
− φn

)]}
(5)

Based on the above analysis, the equations of isotropic and anisotropic fractal surfaces
can be obtained, as shown in Equation (2) and Equation (5), respectively. The numerical
simulation of the above two surfaces is carried out using Matlab software (R2018b, Math-
Works, Natick, MA, USA). The simulation process can be divided into the following four
steps: Firstly, the initial values for simulation need to be inputted. The initial values are
γ = 1.5, L = 3× 10−3 m, Ls = 5× 10−8 m, D = 2.4, G = 10−13, and ϕm,n = π/6. In addition, the
values of M are 10 and 1, respectively. Secondly, the simulation area is set and interpolated.
A 256 × 256 interpolation is performed on the simulation area in this paper, and the data
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after interpolation are taken as the x and y coordinate values. The next step is to use m
and n as loop variables to calculate the vertical height z of the fractal surface. Through
the above process, the topography of the 3D fractal surface can be obtained. Finally, the
vertical height under the corresponding coordinates is displayed graphically.

It should be noted that fractal dimension D and scale coefficient G are the characteristic
parameters of the fractal surface. Figure 3 shows the isotropic fractal surface and the
anisotropic fractal surface under D = 2.4 and G = 1 × 10−13, respectively.
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Combined with Figures 1 and 3 for analysis, compared with the isotropic fractal
surface, the anisotropic fractal surface has a higher similarity to the measured surface. It
is worth noting that since the fractal characteristic parameters are randomly selected, the
fractal surface may differ in detail from the measured surface. In other words, the above
surface is only a qualitative reference.

3.2. Modeling Method Based on Ubiquitiform Theory

Based on the analysis in Section 3.1, the equation of the anisotropic fractal surface
can be obtained. However, in combination with Equation (4), when the resolution of the
measuring instrument Ls changes, the fractal characteristic parameters of the same rough
surface will change accordingly, and then there will be differences in the simulated surfaces.

Compared with fractal theory, the description of actual physical objects in ubiqui-
tiform theory does not have arbitrarily small details and infinite iterations. Therefore,
the ubiquitiform theory is introduced into the modeling of the grinding surface, and the
concept of minimum infimum is introduced into the modeling process of the rough surface.
The minimum infimum of the rough surface is closely related to the surface topography. It
is generally believed that the minimum infimum is the same as the lower bound of scale
invariance of the rough surface, that is, the minimum infimum is the lower bound of scale
invariance δmin. For a given rough surface, the δmin is a fixed value, which will not change
with the resolution of the measuring instrument.

Based on the above analysis, combined with δmin and Equation (4), the upper limit of
the frequency index nmax is redefined, as shown in Equation (6).

nmax =
ln(L/δmin)

ln γ
(6)

Combining Equations (5) and (6), the equation of the anisotropic surface with ubiquiti-
formal properties can be constructed, as shown in Equation (7).

z(x) = L
(

G
L

)Ds−2

(ln γ)1/2

ln (L/δmin)
ln γ

∑
n=0

{
γ(Ds−2)n

[
cos φn − cos

(
2πγnx

L
− φn

)]}
(7)
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Under the ubiquitiform theory, due to the existence of the lower bound to scale
invariance δmin, the ubiquitiform has an integer Hausdorff dimension, which is equal
to the corresponding topological dimension. The research on practical problems under
ubiquitiform theory can avoid many problems caused by the singularity of the integer
dimension measure and measure singularity in the fractal theory.

The lower bound of scale invariance δmin is introduced into the anisotropic fractal
in this section, and the equation of anisotropic surface with ubiquitiformal properties
is constructed. It should be noted that, corresponding to the fractal surface, the fractal
dimension D, the scale coefficient G, and the lower bound of scale invariance δmin are the
characteristic parameters of the ubiquitiformal surface. In order to explore the influence of
the lower bound to scale invariance δmin on the simulation surface, different δmin values are
taken for analysis. The δmin is taken as 10−3 m, 10−5 m, 10−7 m, and 10−9 m, respectively.
Other initial values for simulation are taken as M = 1; γ = 1.5; L = 3 × 10−3 m; D = 2.4;
G = 10−13; ϕm,n = π/6. The simulation flow is described in Section 3.1. The modeling results
of ubiquitiformal surfaces under different δmin values are shown in Figure 4.
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It can be seen from Figure 4 that with the decrease in δmin, the details of the ubiquitifor-
mal surface increase gradually. When δmin = 10−3 m, there is a clear difference between the
surfaces under other δmin conditions. However, with the decrease in the δmin, the change in
surface details is not obvious. Therefore, in combination with roughness parameters, the
quantitative analysis of the modeling error of the ubiquitiformal surface will be presented
in the next section.
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4. Modeling of Grinding Surface

In order to verify the accuracy of the modeling method in this paper, the fractal surface
and the ubiquitiformal surface are compared and analyzed in this section. The box-counting
method [49] is used to obtain the fractal characteristic parameters of the measured grinding
surface. The fractal characteristic parameters of different grinding surfaces are shown in
Table 1.

Table 1. The fractal characteristic parameters of different grinding surfaces.

Fractal Characteristic
Parameters Surface 1 Surface 2 Surface 3 Surface 4

D 2.553 2.517 2.497 2.491
G 5.279 × 10−12 6.761 × 10−12 7.939 × 10−12 1.802 × 10−11

The above fractal characteristic parameters are used for the modeling of fractal surfaces
and ubiquitiformal surfaces, respectively. The simulation process is described in Section 3.1.
The initial values for simulation are taken as γ = 1.5; L = 3 × 10−3 m; Ls = 1 × 10−8 m;
ϕm,n = π/6. The values of M are 10 and 1, respectively. The fractal characteristic parameters
are taken according to Table 1. In addition, the value of the ubiquitiformal feature parameter
δmin is 10−8 m. The simulated fractal surfaces and ubiquitiformal surfaces based on the fractal
characteristic parameters of measured surfaces are shown in Figures 5 and 6, respectively.
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Based on the fractal characteristic parameters of measured surfaces, the fractal sur-
faces and the ubiquitiformal surfaces are constructed in this section. Compared with
the measured surfaces in Figure 1, it can be seen that the ubiquitiformal surfaces have a
higher similarity than the fractal surfaces. Subsequently, the relative errors of roughness
parameters will be compared and analyzed in the next section.

5. Results Comparison

Combined with the analysis in Section 4, based on the fractal characteristic parameters
of measured surfaces, the fractal surfaces and the ubiquitiformal surfaces are constructed.
Combined with specific roughness parameters, the relative errors of the ubiquitiformal
surface under different δmin values are compared, and then the relative errors under
two modeling methods are analyzed. Four parameters including the arithmetic mean
deviation Sa, root mean square deviation Sq, skewness Ssk, and kurtosis Sku are selected as
measurement standards to calculate and analyze the relative error.

5.1. Different Lower Bound to Scale Invariance δmin

In order to explore the influence of the lower bound of scale invariance δmin on the
roughness parameters, the relative errors of roughness parameters under different δmin values
are compared and analyzed. The δmin is taken as 1 × 10−3 m, 1 × 10−4 m, 1 × 10−5 m,
1 × 10−6 m, 1 × 10−7 m, 1 × 10−8 m, 1 × 10−9 m, and 1 × 10−10 m. The other initial values
for simulation are as follows: M = 1; γ = 1.5; L = 3 × 10−3 m; ϕm,n = π/6. Meanwhile, the
values of other ubiquitiformal characteristic parameters are selected according to Table 1. The
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relative errors of roughness parameters under different δmin are shown in Figure 7. Moreover,
the relative error value can be found in Tables S1–S4 in the Supplementary Materials.
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From the overall presentation of Figure 7, the relative error of each roughness parame-
ter decreases with the decrease in the δmin. When δmin = 10−8 m, the relative error of each
roughness parameter tends to be stable. The following is the separate analysis for the four
roughness parameters.

Figure 7a shows the relative errors of the roughness parameter Sa. With the decrease
in δmin, the relative error of the surface roughness Sa shows a decreasing trend. In the range
of 10−3 m > δmin > 10−8 m, the relative error decline rate of Sa gradually decreases. When
δmin < 10−8 m, the relative error of Sa tends to be stable. When δmin = 10−8 m, the relative
errors of the four surfaces are 5.98%, 2.22%, 0.40%, and 0.67%, respectively. It can be seen
that when δmin = 10−8 m, the maximum relative error of Sa is 5.98%. For surface 1, there
is a sharp drop in the relative error of Sa at δmin = 10−5 m. The reason may be that the
size of abrasive particles on the grinding wheel is small and the surface topography of the
grinding wheel is disordered, resulting in a large deviation between the simulated surface
and the measured surface. In the range of 10−5 m > δmin > 10−8 m, the relative error of
Sa shows a gradual upward trend, which also confirms the above point of view. With a
further decrease in δmin, the relative error of Sa also tends to be stable.

In addition, under the conditions of the same δmin, the relative error of Sa decreases
gradually with the increase in surface roughness. With the increase in surface roughness,
the size of abrasive particles on the grinding wheel increases gradually. Combined with the
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analysis of the measured grinding surface characteristics in Section 2, the measured surface
topography is more in line with the ubiquitiformal surface, resulting in the relative error of
Sa gradually decreasing with the increase in surface roughness.

Figure 7b shows the relative error of the roughness parameter Sq. With the decrease
in δmin, the relative error of the surface roughness Sq has a decreasing trend. In the range
of 10−3 m > δmin > 10−8 m, the relative error decline rate of Sq gradually decreases. When
δmin < 10−8 m, the relative error of Sq tends to be stable. When δmin = 10−8 m, the relative
errors of Sq of the four surfaces are 6.06%, 5.35%, 3.70%, and 3.44%, respectively. It can
be seen that when δmin = 10−8 m, the maximum relative error of Sq is 6.06%. Different
from the variation trend of the relative error of the roughness parameter Sa, with the
decrease in δmin, the relative error of Sq maintained a downward trend. In addition, under
the same δmin, the relative error of Sq decreases gradually with the increase in surface
roughness. With the increase in surface roughness, the size of abrasive particles on the
grinding wheel increases gradually. Combined with the analysis of the measured grinding
surface characteristics in Section 2, the measured surface topography is more in line with
the ubiquitiformal surface, resulting in the relative error of Sq decreasing gradually with
the increase in surface roughness.

Figure 7c shows the relative error of the roughness parameter Ssk. With the decrease
in δmin, the relative error of the surface roughness Ssk shows a decreasing trend. In the
range of 10−3 m > δmin > 10−5 m, the relative error decline rate of Ssk decreases gradually.
When 10−5 m > δmin > 10−8 m, the relative error of Ssk fluctuates up and down. When
δmin < 10−8 m, the relative error of Ssk tends to be stable. When δmin = 10−8 m, the relative
errors of Ssk on the four surfaces are 4.23%, 2.33%, 5.77%, and 5.11%, respectively. It can
be seen that when δmin = 10−8 m, the maximum relative error of Ssk is 5.77%. Ssk is the
skewness characteristic of the height distribution of the rough surface. Due to the disorder
of the grinding wheel surface, the deflection of the rough surface is not a controllable factor.
However, it is worth noting that the relative error of the roughness parameter Ssk obtained
by the ubiquitiformal modeling method has a small error regarding the measured surface.

Figure 7d shows the relative error of the roughness parameter Sku. With the decrease
in δmin, the relative error of the surface roughness Sku has a decreasing trend. In the
range of 10−3 m > δmin > 10−5 m, the relative error decline rate of Sku decreases gradually.
When 10−5 m > δmin > 10−8 m, the relative error of Sku fluctuates up and down. When
δmin < 10−8 m, the relative error of Ssk tends to be stable. When δmin = 10−8 m, the relative
errors of Sku on the four surfaces are 4.36%, 4.53%, 3.73%, and 4.12%, respectively. It can
be seen that when δmin = 10−8 m, the maximum relative error of Ssk is 4.53%. Ssk is the
kurtosis characteristic of the height distribution of the rough surface. Due to the disorder
of the grinding wheel surface, the deflection of the rough surface is not a controllable factor.
However, it is worth noting that the ubiquitiformal modeling method has a small error
regarding the measured surface.

Based on the above analysis, the relative error of each roughness parameter decreases
gradually with the decrease in δmin. When δmin = 10−8 m, the relative error of each roughness
tends to be stable. Combined with the analysis of the resolution for the surface-measuring
instrument, improving the resolution of the measuring instrument will undoubtedly increase
the cost of surface topography measurement. Therefore, combined with the rough surface
modeling accuracy and measurement cost, the δmin value for modeling the grinding surface is
determined to be 10−8 m. When δmin = 10−8 m, the maximum relative errors of Sa, Sq, Ssk,
and Sku of the four surfaces are 5.98%, 6.06%, 5.77%, and 4.53%, respectively.

5.2. Different Modeling Methods

In order to verify the accuracy of the method in this paper, the relative errors of
roughness under different modeling methods are compared and analyzed. The compared
modeling methods are the fractal modeling method and the ubiquitiformal modeling
method. The following is a comparison and analysis of the relative errors of roughness pa-
rameters under different modeling methods. The initial values for simulation are as follows:
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γ = 1.5; L = 3 × 10−3 m; Ls = 1 × 10−6 m; ϕm,n = π/6; δmin = 10−8 m. Meanwhile, the values
of other characteristic parameters are selected according to Table 1. The relative errors of
roughness parameters under different modeling methods are shown in Figure 8. Moreover,
the relative error value can be found in Tables S5–S8 in the supplementary information.
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From the overall presentation of Figure 8, the relative error of each roughness parameter
of the ubiquitiformal surfaces is smaller than those of the fractal surfaces, especially the rough-
ness parameter Ssk. The following is the separate analysis for the four roughness parameters.

The first is the relative error of the roughness parameter Sa. The relative errors of Sa
under the ubiquitiformal surfaces are 5.36%, 2.26%, 0.50%, and 0.30%, respectively. The rela-
tive error of Sa decreases gradually with the increase in surface roughness. With the increase
in surface roughness, the size of the abrasive particles on the grinding wheel increases
gradually. Combined with the analysis of the measured grinding surface characteristics in
Section 2, the measured surface topography is more in line with the ubiquitiformal surface,
resulting in the relative error of Sa gradually decreasing with the increase in surface rough-
ness. In obvious contrast with the ubiquitiformal surfaces, the relative errors of Sa under
the fractal surfaces are 23.21%, 12.03%, 0.50%, and 0.30%, respectively. Overall, the relative
errors of Sa under the fractal modeling method and ubiquitiformal modeling method are
quite different. More importantly, the simulated surfaces based on the ubiquitiform theory
are closer to the measured surfaces.

The second is the relative error of the roughness parameter Sq. The relative errors of Sa
under the ubiquitiformal surfaces are 6.06%, 5.21%, 3.63%, and 3.41%, respectively. Similar
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to the variation trend of the relative error of Sa, the relative error of Sq decreases gradually
with the increase in surface roughness. The reason for this phenomenon is the same as
the parameter Sa. Correspondingly, the relative errors of Sq under the fractal surfaces are
6.82%, 5.90%, 7.03%, and 6.96%, respectively. Overall, the relative errors of Sq under two
modeling methods are small.

The third is the relative error of the roughness parameter Ssk. This parameter is also
the one with the largest difference. The relative errors of Ssk under the ubiquitiformal
surfaces are 4.23%, 2.33%, 5.84%, and 5.19%, respectively. For different rough surfaces, the
relative error of Ssk has no obvious change rule. In obvious contrast with the ubiquitiformal
surface, the relative errors of Ssk under the fractal surfaces are 83.10%, 81.40%, 82.48%, and
82.22%, respectively. The relative error of this parameter is undoubtedly huge. The relative
error of this parameter is undoubtedly huge. The Ssk is the skewness characteristic of the
height distribution of the rough surface. Due to the self-similarity of the fractal surface, the
relative errors of Ssk on the fractal surface are far from the measured surfaces.

The last is the relative error of the roughness parameter Sku. The relative errors of
Sku under the ubiquitiformal surfaces are 0.64%, 4.53%, 3.72%, and 4.12%, respectively.
For different rough surfaces, the relative error of Sku has no obvious change rule. Corre-
spondingly, the relative errors of Sku under the fractal surfaces are 1.72%, 7.25%, 6.68%,
and 7.11%, respectively. Overall, the relative errors of Sku under two modeling methods
are small.

Based on the analysis of the above results, the relative error of the roughness parame-
ters under the ubiquitiformal modeling method is smaller than those of the fractal modeling
method, especially the roughness parameter Ssk. The comparison results show that the
maximum relative errors of Sa, Sq, Ssk, and Sku under the ubiquitiformal modeling method
are 5.36%, 6.06%, 5.84%, and 4.53%, respectively. In contrast, the maximum relative errors
under the fractal modeling method are 23.21%, 7.03%, 83.10%, and 7.25%, respectively. The
comparison results verify the accuracy of the method in this paper.

6. Conclusions

The modeling method of the surface micro-topography under the grinding machining
model is studied in this paper. Based on the ubiquitiform theory, a novel modeling method
is proposed. The implementation process of this novel method is introduced in detail in
this paper. The comparison results show that δmin directly affects the modeling accuracy.
Combined with the rough surface modeling accuracy and measurement cost, δmin for
modeling the grinding surface is determined to be 10−8 m. Compared with the existing
fractal modeling methods, the presented method is more accurate. The research in this
paper provides a novel modeling method for the grinding surface, and also provides
a model basis for the subsequent analysis of the contact characteristic for the grinding
joint surface.

However, the presented method in this paper has higher accuracy for modeling the
grinding surface. Whether this method can be applied to surface modeling under other
machining modes remains to be further studied. The broad applicability of this method
will be explored in future work.

Supplementary Materials: The following supplementary information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fractalfract6060341/s1, Figure S1: The calculation flow chart of
2D power spectral density; Table S1: The relative errors of roughness parameters under different
δmin—Surface 1; Table S2: The relative errors of roughness parameters under different δmin—Surface 2;
Table S3: The relative errors of roughness parameters under different δmin—Surface 3; Table S4: The
relative errors of roughness parameters under different δmin—Surface 4; Table S5: The relative errors
of roughness parameters under different modeling methods—Surface 1; Table S6: The relative errors
of roughness parameters under different modeling methods—Surface 2; Table S7: The relative errors
of roughness parameters under different modeling methods—Surface 3; Table S8: The relative errors
of roughness parameters under different modeling methods—Surface 4.
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