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Abstract: Viscoelasticity and variable mass are common phenomena in Micro-Electro-Mechanical
Systems (MEMS), and could be described by a fractional derivative damping and a stochastic process,
respectively. To study the dynamic influence cased by the viscoelasticity and variable mass, station-
ary response of a kind of nonlinear stochastic systems with stochastic variable-mass and fractional
derivative, damping is investigated in this paper. Firstly, an approximately equivalent system of
the studied nonlinear stochastic system is presented according to the Taylor expansion technique.
Then, based on stochastic averaging of energy envelope, the corresponding Fokker–Plank–Kolmogorov
(FPK) equation is deduced, which gives an approximated analytical solution of stationary response.
Finally, a nonlinear oscillator with variable mass and fractional derivative damping is proposed
in numerical simulations. The approximated analytical solution is compared with Monte Carlo
numerical solution, which could verify the effectiveness of the obtained results.

Keywords: variable mass; fractional derivative damping; stationary response; white Gaussian noise

1. Introduction

As the rapid development of Micro-Electro-Mechanical Systems (MEMS) in recent
years, the size of micro-devices is declining to micron, even nanometer, scale. In nanometer
scale, some particular microscopic phenomena always occurs, such as viscoelastic damp-
ing and variable mass. For example, in materials like plastics and nano-wires, the most
adequate kind of damping is viscoelastic, which is usually described by the fractional
derivative damping [1–4]. Thus, the dynamics of the micro-system with fractional deriva-
tive damping have attracted amount of attention, such as the stability, stochastic response,
bifurcation analysis, and so on [5–7]. However, except for fractional derivative damping,
variable mass is another common phenomenon in MEMS of nanometer scale, which will
be considered altogether. According to the MEMS application, the stationary response of
nonlinear stochastic systems with a variable mass and a fractional derivative damping is
studied in this paper.

Variable mass phenomenon commonly occurs in physics and engineering fields,
such as comet, jet planes, and rockets, which are all missing mass in their motions [8].
Within these applications, the variable mass was always modeled by continuous functions
in deterministic systems, whose dynamics researches were developed in the last decades [9].
All the above variable mass phenomena are described by deterministic functions according
to their inherent regularity. However, in the micro world, variable mass phenomenon is
always characterized as a stochastic one. When the size of micro-devices is declining to
micron, even nanometer, scale, the random adsorption and desorption of the particles
around the micro-devices could significantly increase or decrease its quality, resulting in
the variable mass phenomenon [10,11]. It is able to change the dynamical characteristics
of the micro-devices and cause the damage or even failure of the device performance.
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For example, the variable mass of atomic force microscope probe can affect its detection
accuracy [12]. Thus, the stochastic dynamics of nonlinear systems with variable mass have
also attracted the attention of scholars.

The first step to study nonlinear stochastic systems with variable mass is to construct
a model of variable mass. Since the size and mass of MEMS itself are very tiny, the ran-
dom adsorption and desorption of surrounding particles would significantly change the
system’s mass. Thus, this variable mass phenomenon should be described as a stochastic
process. The initial models of random variable mass oscillator were always simplified by
dichotomous or trichotomous noise [13–17]. However, the variable mass modeling method
based on dichotomous or trichotomous noise limits the mass change within two or three
states, which can not fully show the randomness of the variable mass of micro-devices. In
order to better simulate the randomness of the variable mass, many scholars used Gaussian
white noise to model the mass disturbance. Wang et al. [18] utilized Gaussian white noise to
describe the random mass disturbance and proposed the stochastic averaging technique of
the variable mass system based on Hamilton theory, which provided a method to analyze
the random responses of stochastic systems with Gaussian-white-noise-based variable
mass. Then, Qiao et al. [19,20] presented a group of stochastic stability conditions of the
variable mass system under the Gaussian white noise excitation by using the stochastic
averaging method and the maximum Lyapunov exponent method. Li [21] analyzed the
stochastic response of a vibro-impact system with variable mass under the Gaussian white
noise excitation, as well as its stochastic P-bifurcation characteristics.

Motivated by the above discussion, fractional derivative damping and variable mass
are both considered in this paper. In this case, the stationary response of a kind of non-
linear stochastic system with fractional derivative damping and variable mass is studied.
Based on the Taylor expansion technique, an approximately equivalent equation of the
nonlinear stochastic system is given. Then, the corresponding stochastic averaging method
is provided by following the diffusion approach to energy envelope. By constructing the
corresponding Fokker–Plank–Kolmogorov (FPK) equation, an approach to calculate its ap-
proximate analytical solution of a stationary response is proposed. Besides, the effectiveness
of the obtained results is verified by simulation of the Monte Carlo numerical solution.

The rest of this paper is organized as follows: in Section 2, some preliminaries are intro-
duced including the fractional derivative and problem statement; then, the approximately
equivalent system is proposed in Section 3; a stochastic averaging method is proposed
in Section 4; an example is listed to verify the obtained results in Section 5; and, finally,
the conclusions are given in Section 6.

2. Preliminaries
2.1. Fractional Derivative

A fractional derivative is a generalization of the integer-order derivatives, which have
been widely applied in different fields, such as dynamics, engineering, computer science,
etc. [22–28]. Fractional derivative damping is usually utilized to describe the viscoelastic
damping model. Fractional derivative owns three common definitions, named Grunwald–
Letnikov (G-L), Riemann–Liouville (R-L) and Caputo definitions [29,30]. These definitions
are introduced in the following.

Definition 1 ([31]). The R-L fractional derivative of a continuous function x : (0, + ∞) −→ R
with order q > 0 is defined as:

R
0 Dq

t x(t) =
1

Γ(k− q)
dk

dtk

∫ t

0

x(s)

(t− s)q−k+1 ds, (1)

where k is a positive integer and k− 1 ≤ q ≤ k, and Γ(·) is the gamma function, i.e.,

Γ(a) =
∫ +∞

0
sa−1e−sds.
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The G-L definition is a discrete form of fractional derivative, which is equivalent to
the discretized R-L definition and is introduced as follows.

Definition 2 ([32]). The G-L fractional derivative of function x : (0, + ∞) −→ R with order
q > 0 is denoted by

G
0 Dq

t x(t) =
1
hq

n

∑
i=0

(−1)i
(

q
i

)
x(t− ih), h→ 0+. (2)

In addition, the Caputo definition of a fractional derivative is introduced in the
following Definition 3.

Definition 3 ([33]). The Caputo fractional derivative of a continuous function x : (0, +∞) −→ R
with order q > 0 is defined as:

C
0 Dq

t x(t) =
1

Γ(k− q)

∫ t

0

x(k)(s)

(t− s)q−k+1 ds, (3)

where k is an positive integer and k− 1 ≤ q ≤ k.

The Caputo definition owns the practical physical meaning in the initial values and
has more advantages than R-L or G-L definition. Thus, Caputo fractional derivative is
employed to describe the fractional derivative damping (viscoelastic damping) in this paper.

Moreover, the Laplace transformation of the Caputo fractional derivative is given as,

L
{

C
0 Dq

t x(t)
}
= sqX(s)−

k−1

∑
i=0

sq−i−1x(i)(0), (4)

where L{ ·} is a Laplace transform operator with satisfying X(s) = L{x(t)}, and k is an
positive integer with k− 1 ≤ q ≤ k. Especially, with null initial conditions, the Laplace
transformation of the Caputo fractional derivative is obtained as

L
{

C
0 Dq

t x(t)
}
= sqX(s). (5)

2.2. Problem Statement

Consider the following single-degree-of-freedom nonlinear stochastic system [19] with
a variable mass and a fractional derivative damping,

mẍ + ζ C
0 Dq

t x + g(x) = ε f (x)ξ f (t), (6)

where differentiable g(x) is the nonlinear restoring force with g(0) = 0 and g′(0) > 0, ε
is a small constant, f (x, ẋ) is an amplitude of the stochastic excitation, ξ f (t) represents

Gaussian white noise and satisfies E
[
ξ f (t)ξ f (t + τ)

]
= 2D f δ(τ), and D f is the intensity of

the noise ξ f (t). Besides, m represents a variable mass described by

m = m̄ + σξm(t), (7)

where m̄ is a positive parameter, ξm(t) denotes Gaussian white noise with satisfying
E[ξm(t)ξm(t + τ)] = 2Dmδ(τ) and Dm is the intensity of the noise ξm(t). In this paper,
it is assumed that both stochastic processes ξ f (t) and ξm(t) are independent with each
other. In addition, ẍ represents the second derivative, and ζC

0 Dq
t x denotes the fractional

derivative damping force with 0 < q < 2 and ζ > 0, which satisfies the Caputo definition
in Definition 3.
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To study the stationary response of System (6), the corresponding stochastic averaging
method is studied. Due to the variable mass and fractional derivative damping, the
classical stochastic averaging method could not be applied directly. Thus, the studied
System (6) should be transformed into an approximately equivalent system, such that the
equivalent form satisfies an improved stochastic averaging method. In the next section,
the approximately equivalent form of System (6) is investigated.

3. Approximately Equivalent System
3.1. Approximately Equivalent Equation of the Fractional Derivative Damping

According to the above section, the conventional stochastic averaging method is not
available for System (6). Thus, the approximately equivalent form of System (6) is studied
in this section. First, an approximately equivalent method of the fractional derivative
damping C

0 Dq
t x is proposed as follows.

Theorem 1. The fractional derivative damping C
0 Dq

t x in System (6) can be approximately rewritten by

C
0 Dq

t x ≈
(

1− 3q
2

+
q2

2

)
Re
(

rq
∗
)

x +
[
q(2− q)Re

(
rq−1
∗
)]

ẋ +
q(q− 1)Re

(
rq−2
∗
)

2
ẍ. (8)

where r∗ is the characteristic root with the largest real part of the following characteristic equation,

m̄s2 + ζsq + g′(0) = 0. (9)

Proof of Theorem 1. The restoring force g(x) is differentiable and satisfies g(0) = 0, g′(0) >
0. Thus, the linearized homogeneous equation of System (6) in the neighborhood of the
origin becomes

m̄ẍ + ζC
0 Dq

t x + g′(0)x = 0. (10)

Then, according to the Laplace transformation in Equation (5), the characteristic
equation of System (10) can be obtained as Equation (9).

Due to m, ζ, g′(0) > 0, the real parts of characteristic roots in characteristic Equation (9)
must be negative. Suppose that Ω is the set of the characteristic roots in characteristic
Equation (9), and r∗ is the characteristic root with the largest real part, i.e., r∗ = argmax

r∈Ω
Re(r).

In dynamic analysis, r∗ is a critical index especially for stability analysis.
Thus, the approximately equivalent equation of the fractional derivative damping sq can be
obtained based on the Taylor expansion technique around the characteristic root r∗, i.e.,

sq = rq
∗ + qrq−1

∗ (s− r∗) +
q(q− 1)rq−2

∗
2

(s− r∗)
2 + o

(
(s− r∗)

2
)

. (11)

Omitting the higher term of (s− r∗)
2 in System (11), it is approximately equivalent to

sq ≈ rq
∗ + qrq−1

∗ (s− r∗) +
q(q− 1)rq−2

∗
2

(s− r∗)
2. (12)

Denote r̄∗ as the conjugate of r∗. Then, r̄∗ is also a characteristic root and satisfies Equa-
tion (12). Because r∗ and r̄∗ both satisfy Equation (12), it gives the following equation, i.e.,

sq ≈ rq
∗+r̄q

∗
2 + q rq−1

∗ +r̄q−1
∗

2 s− q rq
∗+r̄q

∗
2 + q(q−1)

2

[
rq−2
∗ +r̄q−2

∗
2 s2 + rq

∗+r̄q
∗

2 −
(

rq−1
∗ + r̄q−1

∗
)

s
]

=
(

1− 3q
2 + q2

2

)
Re
(

rq
∗
)
+
[(

2q− q2)Re
(

rq−1
∗
)]

s +
q(q−1)Re

(
rq−2
∗
)

2 s2.
(13)
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According to the inverse Laplace transformation of System (13), it obtains Equation (8)
as follows,

C
0 Dq

t x ≈
(

1− 3q
2

+
q2

2

)
Re
(

rq
∗
)

x +
[
q(2− q)Re

(
rq−1
∗
)]

ẋ +
q(q− 1)Re

(
rq−2
∗
)

2
ẍ.

This completes the proof.

Remark 1. The approximately equivalent equation of the fractional derivative damping C
0 Dq

t x in
Theorem 1 is accurate in the neighborhood of the characteristic root r∗. Thus, the approximately
equivalent Equation (8) is much more effective when the difference of real parts of characteristic
roots in characteristic Equation (9) is relatively small.

3.2. Approximately Equivalent Equation of the Nonlinear Stochastic System

According to the approximately equivalent Equation (8) of the fractional derivative
damping, the approximately equivalent equation of the nonlinear stochastic System (6)
could be obtained in this subsection.

Substituting the approximately equivalent Equation (8) into System (6), it obtains the
following updated system,

(me + σξm(t))ẍ + ζe ẋ + ge(x) = ε f (x)ξ f (t), (14)

where the corresponding parameters can be obtained based on Equations (6) and (8), and
are listed as follows, 

me = m̄ +
ζq(q−1)Re

(
rq−2
∗
)

2 ,
ζe = ζ

[
q(2− q)Re

(
rq−1
∗
)]

,

ge(x) = g(x) + ζ
(

1− 3q
2 + q2

2

)
Re
(

rq
∗
)

x,
r∗ = argmax

r∈Ω
Re(r).

(15)

Referring to System (14), y1(t) = x(t) and y2(t) = me ẋ(t) are denoted as the general-
ized displacement and momentum respectively. Then it gives{

ẏ1 = y2
me+σξm(t) ,

ẏ2 = −ζe
y2

me+σξm(t) − ge(y1) + ε f (y1)ξ f (t).
(16)

Due to the mass disturbance σξm(t), stochastic averaging method can not be employed
in System (16). However, if the mass disturbance σξm(t) is small enough, the following
approximated equation is obtained based on the Taylor expansion technique,

1
me + σξm(t)

=
1

me
− σξm(t)

me2 + o(σξm(t)). (17)

According to Equation (17), by omitting the higher term of the σ term in System (16),
it gives the approximately equivalent equation of the nonlinear stochastic System (6), i.e.,{

ẏ1 = y2
me
− y2σξm(t)

me2 ,

ẏ2 = − ζe
me

y2 − ge(y1) + ε f (y1)ξ f (t).
(18)

The approximately equivalent Equation (18) is close to the traditional form of second-
order stochastic systems. Thus, the corresponding stochastic averaging method is available,
which is presented in the next section.
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4. Stochastic Averaging of a Nonlinear Stochastic System with Variable Mass and
Fractional Derivative Damping

In this section, a stochastic averaging of a nonlinear stochastic system with variable
mass and fractional derivative damping is proposed based on the diffusion approach to
the energy envelope. Then, according to the obtained stochastic averaging, the stationary
response of such a nonlinear stochastic system is discussed.

According to the approximately equivalent Equation (18), the corresponding
Stratonovich stochastic differential equation can be obtained [18], dy1 = y2

me
dt− y2σ

√
2Dm

me2 ◦ dBm(t),

ẏ2 =
[
− ζe

me
y2 − ge(y1)

]
dt + ε

√
2D f f (y1) ◦ dB f (t),

(19)

where Bm(t) and B f (t) are independent standard Wiener processes. Because y1, y2 in the
above Stratonovich stochastic differential equation are independent of Bm(t), B f (t), no
Wong-–Zakai correction term exists. Then, the corresponding Itô stochastic differential
equations of System (18) is given, dy1 = y2

me
dt− y2σ

√
2Dm

me2 dBm(t),

dy2 =
[
− ζe

me
y2 − ge(y1)

]
dt + ε

√
2D f f (y1)dB f (t).

(20)

Define a quasi Hamiltonian of System (20) as,

H =
y2

2
2me

+
∫ y1

0
ge(t)dt. (21)

Then, System (20) can be rewritten as the following form, dy1 = ∂H
∂y2

dt− σ
√

2Dm
me

∂H
∂y2

dBm(t),

dy2 =
[
−ζe

∂H
∂y2
− ∂H

∂y1

]
dt + ε

√
2D f f (y1)dB f (t).

(22)

According to the Itô differential rule and Systems (21) and (22), the Itô equation of the
quasi Hamiltonian H can be obtained,

dH =

[
−ζe

(
∂H
∂y2

)2
+ ε2D f f 2(y1)

∂2 H
∂y2

2 +
Dmσ2

me2

(
∂H
∂y2

)2
∂2 H
∂y1

2

]
dt

+ε
√

2D f f (y1)
∂H
∂y2

dB f (t)− σ
√

2Dm
me

∂H
∂y1

∂H
∂y2

dBm(t).
(23)

It is noted that H is a slowly varying process and y1 is a rapidly varying process. Based
on the Khasminskii’s theorem [34], the slowly varying process H weakly converges to a
Markov process. Then, the Itô equation of the approximate Markov process (20) can be
obtained by the time averaging of Equation (23), i.e.,

dH = mH(H)dt + σH
1 (H)dB1(t) + σH

2 (H)dB2(t). (24)

In Equation (24), mH and σH
1 , σH

2 are respectively drift and diffusion coefficients, which
are introduced in [18] and described by

mH(H) =
1

T(H)

∫
Θ

[
−ζe

(
∂H
∂y2

)2
+ ε2D f f 2(y1)

∂2H
∂y22 +

Dmσ2

me2

(
∂H
∂y2

)2 ∂2H
∂y1

2

](
∂H
∂y2

)−1
dy1, (25)

and

[
σH

1 (H)
]2

+
[
σH

2 (H)
]2

=
1

T(H)

∫
Θ

[
ε22D f f 2(y1)

∂2H
∂y22 +

2Dmσ2

me2

(
∂H
∂y2

)2 ∂2H
∂y1

2

](
∂H
∂y2

)−1
dy1, (26)
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where the region of integration Θ is denoted by

Θ =

{
y1 : H(y1, y2 = 0) =

∫ y1

0
ge(t)dt ≤ H

}
, (27)

and

T(H) =
∫

Θ

(
∂H
∂y2

)−1
dy1. (28)

The stationary probability density solution p(H) of Equation (24) can be obtained by
solving the FPK equation as follows,

∂

∂t
p(H) = − ∂

∂H

[
mH(H)p(H)

]
+

1
2

∂2

∂H2

{[(
σH

1 (H)
)2

+
(

σH
2 (H)

)2
]

p(H)

}
. (29)

Substituting in ∂
∂t p(H) = 0, the solution p(H) is given by

p(H) = C exp

−
∫ H

0

−2mH(s) + d
ds

[(
σH

1 (s)
)2

+
(
σH

2 (s)
)2
]

(
σH

1 (s)
)2

+
(
σH

2 (s)
)2 ds

, (30)

where C is a normalization constant defined by

C =


∫ +∞

0
exp

−
∫ H

0

−2mH(s) + d
ds

[(
σH

1 (H)
)2

+
(
σH

2 (H)
)2
]

(
σH

1 (H)
)2

+
(
σH

2 (H)
)2 ds

dH


−1

. (31)

Then, the joint probability density of generalized displacement and momentum is

p(y1, y2) =
p(H)

T(H)

∣∣∣∣
H=H(y1,y2)

. (32)

In addition, the marginal probability densities of the generalized displacement and
momentum can be calculated by the following integrations,

pY1(y1) =
∫ +∞

−∞
p(y1, y2)dy2, pY2(y2) =

∫ +∞

−∞
p(y1, y2)dy1. (33)

5. Numerical Examples

In this section, an example is given to show the effectiveness of the proposed results.
Consider the following nonlinear oscillator with variable mass and fractional derivative
damping,

(m̄ + σξm(t))ẍ + ζ C
0 Dq

t x + k1x + k2x3 = ε f (x)ξ f (t). (34)

The corresponding parameters are initially determined as

m̄ = 1, σ = 0.1, Dm = 0.05, ζ = 0.1, q = 0.5, k1 = 1, k2 = 2, ε f (x) = 0.2, D f = 0.1.

According to the characteristic Equation (9), the characteristic roots are approximately
calculated as −0.035± 1.035. The highest differential order of System (34) is 2, which is
equal to the number of the corresponding characteristic roots. The characteristic roots of
System (34) are approximately −0.035± 1.035, who own the same real parts. In this case,
the proposed approximate method is accurate. Then, based on Equation (8) and Theorem 1,
it has the approximately equivalent equation rewritten by

(1.0088 + 0.1ξm(t))ẍ + 0.0713ẋ + 1.0826x + 2x3 = 0.2ξ f (t). (35)
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which means me = 1.0088, ζe = 0.0713, ge(x) = 1.0826x + 2x3 referring to System (14). Due
to Equation (21), the quasi Hamiltonian is constructed as

H =
y2

2
2.0176

+ 0.5413y2
1 + 0.5y4

1. (36)

Then, according to Equations (21)–(28), it gives,

T(H) =
∫ A

−A

2.0176√
2.0176H − 2.0176

(
0.5413y2

1 + 0.5y4
1
)dy1, (37)

and

F(H) =
2

T(H)

∫ d(H)

−d(H)

√
2.0176H − 2.0176

(
0.5413y2

1 + 0.5y4
1
)
dy1, (38)

where

d(H) =

√[
(1.08262 + 8H)

1/2 − 1.0826
]
/2. (39)

The drift and diffusion coefficients are obtained by

mH(H) = 0.22×0.1
1.0088 −

0.0713
1.0088 F(H) + 2×0.12×0.05

1.00883T(H)
× . . .∫ d(H)

−d(H)

(
1.0826 + 6y2

1
)√

2.0176H − 2.0176
(
0.5413y2

1 + 0.5y4
1
)
dy1,

(40)

and [
σH

1 (H)
]2

+
[
σH

2 (H)
]2

= 2×0.22×0.1
1.0088 F(H) + 4×0.12×0.05

1.00883T(H)
× . . .∫ d(H)

−d(H)

(
1.0826y1 + 2y3

1
)2
√

2.0176H − 2.0176
(
0.5413y2

1 + 0.5y4
1
)
dy1.

(41)

According to Equation (30), the stationary probability density solution p(H) of quasi
Hamiltonian (36) can be obtained, which is shown in Figure 1. In Figure 1, the solid
curve is the analytical solution of p(H) in quasi Hamiltonian (36) based on the proposed
stochastic averaging method. The ’∗’ is the numerical solution of the stationary prob-
ability density solution p(H) according to the Monte Carlo simulations. In addition,
Figures 2 and 3 show the stationary probability densities of y1 and y2 in Equation (33),
respectively. Similarly, the solid curve and the ’∗’ represent the corresponding analytical
solution and numerical solution, respectively. In Section 3, the approximately equivalent
equations of the fractional derivative damping and the mass disturbance are given to
deduce the corresponding stochastic averaging method. Multiple approximation methods
may have an influence in the accuracy of the obtained method. According to Figures 1–3,
the numerical solutions agree well with the analytical solutions, which could verify the
effectiveness of the proposed approximate analytical method of the stochastic averaging.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 1. Stationary probability density of H in Equation (30).
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Figure 2. Stationary probability density of y1 in Equation (33).
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Figure 3. Stationary probability density of y2 in Equation (33) .

6. Conclusions

In this paper, a class of nonlinear stochastic systems with variable mass and fractional
derivative damping is studied in order to reveal the dynamic properties related to vis-
coelasticity and variable mass. Especially, the stationary response of the studied model is
analyzed based on a group of approximately equivalent systems and stochastic averag-
ing. Firstly, an approximately equivalent equation of the fractional derivative damping
is proposed based on the Taylor expansion technique, such that the fractional derivative
damping could be transformed into an approximate second-order system. Besides, the ap-
proximately equivalent equation of the nonlinear stochastic system is provided with the
first-order Taylor approximation of the mass disturbance. Then, according to the obtained
approximately equivalent equation, the corresponding stochastic averaging method is
given based on the diffusion approach to energy envelope. In this case, the analytic method
of the stationary probability density solution is proposed by solving the obtained FPK
equation. At last, an example of nonlinear oscillator with variable mass and fractional
derivative damping is given to illustrate the effectiveness of the obtained results.
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