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Abstract: In this article, a variable step size strategy is adopted in formulating a new variable step
hybrid block method (VSHBM) for the solution of the Kepler problem, which is known to be a rigid
and stiff differential equation. To derive the VSHBM, the step size ratio r is left the same, halved, or
doubled in order to optimize the total number of steps, minimize the number of formulae stored in
the code, and ensure that the method is zero-stable. The method is formulated by integrating the
Lagrange polynomial with limits of integration selected at special points. The article further analyzed
the stability, order, consistency, and convergence properties of the VSHBM. The stability regions of
the VSHBM at different values of the step size ratios were also plotted and plots showed that the
method is fit for solving the Kepler problem. The results generated were then compared with some
existing methods, including the MATLAB inbuilt stiff solver (ode 15 s), with respect to total number
of failure steps, total number of steps, total function calls, maximum error, and computation time.
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1. Introduction

Step size selection is an important criterion required in solving stiff differential equa-
tions using the integration method, [1]. It is however important to state that too small or
too large a step size affects the efficiency of any integration method. A variable step size
strategy is one approach that has been employed in choosing the correct step size required
for the integration of differential equations.

The Kepler equation first derived in 1609 by Johannes Kepler is an equation in me-
chanics that establishes the relationship among geometric properties of orbits with respect
to central force. The equation plays a prominent role in mathematics and physics, most
especially in celestial mechanics. The Kepler equation has various forms, which largely
depends on the type of orbit.

The Kepler standard equation (which we shall consider in article) is employed for
elliptic orbits, (0 ≤ e < 1), where e is called the orbital eccentricity. This is a stiff second
order differential equation which can be transformed to the following system of first order
differential equations,

y′ = f (x, y), y(a) = τ, a ≤ x ≤ b (1)

where yT = (y1, y2, . . . , ym) and τT = (τ1, τ2, . . . , τm). We assume the functions y(x) and
f (x, y) are sufficiently smooth and also satisfy the existence and uniqueness theorem stated
in Theorem 1.

Other forms of the Kepler equation include the radial Kepler equation, which is
applied for radial or linear trajectories (e = 1), the Barker’s equation applied parabolic
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trajectories (e = 1), and the hyperbolic Kepler equation applied for hyperbolic trajectories
(e > 1). For e = 0, the orbit becomes circular. Equation (1) is assumed to satisfy Theorem 1,
which establishes the uniqueness and existence of a solution.

Theorem 1 ([2]). Let the functions f1(x, y1, y2, . . . , ym), f2(x, y1, y2, . . . , ym), . . . ,
fm(x, y1, y2, . . . , ym) and their corresponding partial derivatives ∂ f1

∂x1
, ∂ f2

∂x2
, . . . , ∂ fm

∂xm
be continuous

in a region R containing the points (x, y1, y2, . . . , ym). Then, the initial value problem

y1
′ = f1(x, y1, y2, . . . , ym), y1(x0) = t1

y2
′ = f2(x, y1, y2, . . . , ym), y2(x0) = t2

.

.

.
ym
′ = fm(x, y1, y2, . . . , ym), ym(x0) = tm


(2)

has a unique solution of the form,

y1 = ϕ1(x)
y2 = ϕ2(x)

.

.

.
ym = ϕm(x)


(3)

on the interval I containing x = x0.

Definition 1 ([3]). The general k-step linear multistep method (LMM) is defined as,

k

∑
j=1

αjyn+j = h
k

∑
j=1

β j fn+j (4)

where αj
′s and β j

′s are real constant coefficients and µ is the differential equation’s order. Equation (4)
is implicit if βk 6= 0 and explicit if βk = 0.

Definition 2 ([4]). A differential equation is stiff if it satisfies any or all of the following conditions:

(i) stability requirements in contrast to accuracy constrain the step length,
(ii) some solution components decay much more slowly or rapidly compared to others,
(iii) it has time scales that vary widely, and/or
(iv) all its eigenvalues have negative real parts with large stiffness ratio.

The Kepler problem, which is stiff in nature, satisfies all the conditions stated in
Definition 2. Historically, the study of the motion of springs led to the discovery of stiff
differential equations. These equations occur frequently in science and engineering. A lot
of numerical techniques have been derived for approximating stiff differential equations
ranging from trigonometrically fitted methods, nonstandard finite difference methods, and
others. See the works of [5–13]. All these methods are constant step methods where the step
length is fixed. However, in this research article, emphasis shall be laid on variable step
method. Quite a number of researchers have developed different variable step techniques
for solving stiff differential equations including the Kepler equations. The authors in [1]
proposed variable step methods for solving some differential equations. The authors
went further to prove the efficacy of their methods by solving some standard problems,
e.g., the Kepler, Van der Pol, and Lokta–Volterra problems. Ref. [14] derived a two-point
variable step predictor-corrector block method for the solution of ordinary differential
equations. The method developed was in the form of Adams Bashforth-Moulton. The
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authors developed the method using the step size ratios r = 1, r = 2, and r = 1/2.
They went further to plot the stability regions of the method at different step ratios and
also applied the method on some ODEs. Ref. [15] also developed a variable step size
sixth order Adams block method for the solution of differential equations. The method
approximates the solution in each of the steps with the aid of three points simultaneously.
Ref. [16] also formulated a variable step, variable order method for solving stiff ODEs.
The idea employed in their work is the combination of divided difference and Newton’s
interpolation formulas as the basis function in the design of the method. Other authors that
derived variable step size methods include [17–29].

2. Formulation of the VSHBM

The formulation of the VSHBM is discussed in this section, where the interval [a, b]
is subdivided into blocks with interpolation points (xn−2, yn−2), (xn−1, yn−1), (xn, yn),
(xn+1, yn+1), (xn+3/2, yn+3/2) and (xn+2, yn+2); see Figure 1. The approximations yn+1,
yn+3/2, and yn+2 are concurrently determined using three previous values at xn−2, xn−1,
and xn of the previous two steps each with step size rh.
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In order to optimize the number of steps taken, ensure zero-stability, and reduce the
total number of formulae in the code, the step size ratio r is maintained (r = 1), halved
(r = 2), or doubled (r = 1/2). This approach is sometimes called the Milne device [30].
This strategy was first suggested by [31,32].

The VSHBM is formulated at the points xn+r, r = 1, 3
2 , and 2 by integrating Equation (1)

in the interval (xn, xn+r), ∫ xn+r

xn
y′dx =

∫ xn+r

xn
f (x, y)dx (5)

The function f (x, y) in (1) is approximated using Lagrange polynomial Pq(x) of
the form

Pq(x) =
k

∑
j=0

Lq,j(x) f
(
xn+2−j

)
(6)

where

Lq,j(x) =
k−1

∏
i=0
i 6=j

x− xn+2−i
xn+2−j − xn+2−i

, j = 0,
1
2

, 1, 2, . . . , k

The Lagrange polynomial at the points (xn−2, yn−2), (xn−1, yn−1), (xn, yn), (xn+1, yn+1),
(xn+3/2, yn+3/2), and (xn+2, yn+2) given by

P2(x) =
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+1)(x−xn+3/2)
(xn+2−xn−2)(xn+2−xn−1)(xn+2−xn)(xn+2−xn+1)(xn+2−xn+3/2)

]
f (xn+2)

+
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+1)(x−xn+2)
(xn+3/2−xn−2)(xn+3/2−xn−1)(xn+3/2−xn)(xn+3/2−xn+1)(xn+3/2−xn+2)

]
f (xn+3/2)

+
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+3/2)(x−xn+2)
(xn+1−xn−2)(xn+1−xn−1)(xn+1−xn)(xn+1−xn+3/2)(xn+1−xn+2)

]
f (xn+1)

+
[

(x−xn−2)(x−xn−1)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn−xn−2)(xn−xn−1)(xn−xn+1)(xn−xn+3/2)(xn−xn+2)

]
f (xn)

+
[

(x−xn−2)(x−xn)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn−1−xn−2)(xn−1−xn)(xn−1−xn+1)(xn−1−xn+3/2)(xn−1−xn+2)

]
f (xn−1)

+
[

(x−xn−1)(x−xn)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn−2−xn−1)(xn−2−xn)(xn−2−xn+1)(xn−2−xn+3/2)(xn−2−xn+2)

]
f (xn−2)

(7)
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is used in determining the corrector formulae for yn+1, yn+3/2, and yn+2.
The VSHBM for the corrector at yn+1, yn+3/2, and yn+2 are derived by integrating (1)

with respect to s, s = (x−xn+2)
h , substituting hds for dx and taking the limits of integration at

(−2, −1), (−2, −1/2), and (−2, 0) respectively. This gives,

yn+1 = yn +
[(

h
240r2

)(
31r+13

8r3+18r2+13r+3

)]
fn−2 −

[(
h

60r2

)(
62r+13

2r3+9r2+13r+6

)]
fn−1

+
[(

h
720r2

)(
240r2 + 93r + 13

)]
fn

+
[(

h
60

)(
140r2+117r+26

2r2+3r+1

)]
fn+1 −

[(
8h
45

)(
30r2+21r+4
8r2+18r+9

)]
fn+ 3

2
+
[(

h
240

)(
40r2+27r+5

r2+3r+2

)]
fn+2

(8)

yn+ 3
2
= yn +

[(
9h

1280r2

)(
17r+6

8r3+18r2+13r+3

)]
fn−2 −

[(
9h

160r2

)(
17r+3

2r3+9r2+13r+6

)]
fn−1

+
[(

3h
1280r2

)(
140r2 + 51r + 6

)]
fn

+
[(

9h
320

)(
100r2+99r+27

2r2+3r+1

)]
fn+1 +

[(
3h
20

)(
−20r2+6r+9
8r2+18r+9

)]
fn+ 3

2
+
[(

9h
1280r2

)(
20r+9

r2+3r+2

)]
fn+2

(9)

yn+2 = yn +
[(

h
15r2

)(
1

4r2+7r+3

)]
fn−2 −

[(
4h

15r2

)(
4r+1

2r3+9r2+13r+6

)]
fn−1

+
[(

h
45r2

)(
15r2 + 6r + 1

)]
fn

+
[(

4h
15

)( 5r+2
r+1

)]
fn+1 +

[(
128h

45

)(
3r+2

8r2+18r+9

)]
fn+ 3

2
+
[(

h
15

)(
5r2+9r+5
r2+3r+2

)]
fn+2

(10)

On the substitution of r = 1, r = 2, and r = 1/2, Equations (8)–(10) give the VSHBM
presented in Table 1.

Table 1. VSHBM Formulae at different step size ratios.

Step-Size Ratio Formulae

r = 1

yn+1 = yn + h
(

11
2520 fn−2 − 1

24 fn−1 +
173
360 fn + 283

360 fn+1 − 88
315 fn+ 3

2
+ 1

20 fn+2

)
yn+ 3

2
= yn + h

(
69

17920 fn−2 − 3
80 fn−1 +

591
1280 fn + 339

320 fn+1 − 3
140 fn+ 3

2
+ 87

2560 fn+2

)
yn+2 = yn + h

(
1

210 fn−2 − 2
45 fn−1 +

22
45 fn + 14

15 fn+1 +
128
315 fn+ 3

2
+ 19

90 fn+2

)

r = 2

yn+1 = yn + h
(

1
2112 fn−2 − 137

20160 fn−1 +
1159
2880 fn + 41

45 fn+1 − 1328
3465 fn+ 3

2
+ 73

960 fn+2

)
yn+ 3

2
= yn + h

(
3

7040 fn−2 − 111
17920 fn−1 +

501
1280 fn + 75

64 fn+1 − 177
1540 fn+ 3

2
+ 147

2560 fn+2

)
yn+2 = yn + h

(
1

1980 fn−2 − 1
140 fn−1 +

73
180 fn + 16

15 fn+1 +
1024
3465 fn+ 3

2
+ 43

180 fn+2

)

r = 1
2

yn+1 = yn + h
(

19
600 fn−2 − 44

225 fn−1 +
239
360 fn + 239

360 fn+1 − 44
225 fn+ 3

2
+ 19

600 fn+2

)
yn+ 3

2
= yn + h

(
87

3200 fn−2 − 69
400 fn−1 +

399
640 fn + 609

640 fn+1 +
21
400 fn+ 3

2
+ 57

3200 fn+2

)
yn+2 = yn + h

(
8

225 fn−2 − 16
75 fn−1 +

31
45 fn + 4

5 fn+1 +
112
225 fn+ 3

2
+ 43

225 fn+2

)

Since the proposed VSHBM is a predictor-corrector method, the predictor formu-
lae were also formulated using the same procedure above at the interpolation points
(xn−2, yn−2), (xn−1, yn−1), and (xn, yn). This gives

yn+1 = yn +

[(
h

12

)(
3r + 2

r2

)]
fn−2 −

[(
h
3

)(
3r + 1

r2

)]
fn−1 +

[(
h

12

)(
12r2 + 9r + 2

r2

)]
fn (11)

yn+ 3
2
= yn +

[(
3h
16

)(
8r2 + 9r + 3

r2

)]
fn−2 −

[(
9h
8

)(
2r + 1

r2

)]
fn−1 +

[(
9h
16

)(
r + 1

r2

)]
fn (12)

yn+2 = yn +

[(
h
3

)(
3r + 4

r2

)]
fn−2 −

[(
4h
3

)(
3r + 2

r2

)]
fn−1 +

[(
h
3

)(
6r2 + 9r + 4

r2

)]
fn (13)
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At r = 1, r = 2, and r = 1/2, Equations (11)–(13) produce the predictor formulae for the
VSHBM as shown in Table 2.

Table 2. Predictor formulae for the VSHBM at different step size ratios.

Step-Size Ratio Formulae

r = 1

yp
n+1 = yn + h

(
5

12 fn−2 − 4
3 fn−1 +

23
12 fn

)
yp

n+ 3
2
= yn + h

(
9
8 fn−2 − 27

8 fn−1 +
15
4 fn

)
yp

n+2 = yn + h
(

7
3 fn−2 − 20

3 fn−1 +
19
3 fn

)

r = 2

yp
n+1 = yn + h

(
1
6 fn−2 − 7

12 fn−1 +
17
12 fn

)
yp

n+ 3
2
= yn + h

(
27
64 fn−2 − 45

32 fn−1 +
159
64 fn

)
yp

n+2 = yn + h
(

5
6 fn−2 − 8

3 fn−1 +
23
6 fn

)

r = 1
2

yp
n+1 = yn + h

(
7
6 fn−2 − 10

3 fn−1 +
19
6 fn

)
yp

n+ 3
2
= yn + h

(
27
8 fn−2 − 9 fn−1 +

57
8 fn

)
yp

n+2 = yn + h
(

22
3 fn−2 − 56

3 fn−1 +
40
3 fn

)
3. Order, Stability, Consistency and Convergence Analysis of the VSHBM

The order, stability, consistence, and convergence analysis of the VSHBM shall be
carried out in this section.

3.1. Order of the VSHBM

Definition 3 ([3]). The LMM (4) and its associated difference operator L given by

L{y(x); h} =
k

∑
j=0

[
αjy(x + jh)− hβ jy′(x + jh)

]
(14)

are called order p if c0 = c1 = c2 = . . . = cp = 0, cp+1 6= 0.
The component cp+1 6= 0 is the method’s error constant. The general form for the

constant cp is

c0 =
k
∑

j=0
αj

c1 =
k
∑

j=0

(
jαj − β j

)
.
.
.

cp =
k
∑

j=0

[
1
p! jpαj − 1

(p−1)! jp−1β j

]
, p = 2, 3, . . . , q + 1



(15)

The application of Equation (15) on the VSHBM at r = 1 gives

c0 = c1 = c2 = c3 = c4 = c5 = c6 = [0 0 0]T (16)

while

c7 =

[
−151

120960
−151

143360
−11
7560

]T
(17)
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Therefore, the VSHBM is of the uniform sixth order with its error constant given by
Equation (17). The same procedure is applied for the VSHBM at r = 2 and r = 1/2.

3.2. Stability of the VSHBM
3.2.1. Zero-Stability of the VSHBM

Definition 4 ([4]). If no root of the characteristic polynomial has a modulus greater than one and
every root with modulus one is simple, then such a method is called zero-stable.

The scalar test to ascertain the zero-stability of a method was first proposed by [33].
Therefore, substituting

y′ = f = λy (18)

into the VSHBM at r = 1 gives

yn+1 = yn + h
(

11
2520 λyn−2 − 1

24 λyn−1 +
173
360 λyn +

283
360 λyn+1 − 88

315 λyn+ 3
2
+ 1

20 λyn+2

)
yn+ 3

2
= yn + h

(
69

17920 λyn−2 − 3
80 λyn−1 +

591
1280 λyn +

339
320 λyn+1 − 3

140 λyn+ 3
2
+ 87

2560 λyn+2

)
yn+2 = yn + h

(
1

210 λyn−2 − 2
45 λyn−1 +

22
45 λyn +

14
15 λyn+1 +

128
315 λyn+ 3

2
+ 19

90 λyn+2

)
 (19)

Equation (19) is compactly written in matrix form as

 1− 283
360 hλ 88

315 hλ − 1
20 hλ

−339
320 hλ 1 + 3

140 hλ −87
2560 hλ

−14
15 hλ −128

315 hλ 1− 19
90 hλ




yn+1

yn+ 3
2

yn+2

 =

 0 0 1
0 0 1
0 0 1

 yn−2
yn−1

yn



+h

 11
2520 λ −1

24 λ 173
360 λ

69
17920 λ −3

80 λ 591
1280 λ

1
210 λ −2

45 λ 22
45 λ




yn−2

yn−1

yn


(20)

Equation (20) is rewritten as
AYm = (B + Ch)Ym−1 (21)

where

A =

 1− 283
360 hλ 88

315 hλ − 1
20 hλ

−339
320 hλ 1 + 3

140 hλ −87
2560 hλ

−14
15 hλ −128

315 hλ 1− 19
90 hλ

, B =

0 0 1
0 0 1
0 0 1

,C =

 11
2520 λ −1

24 λ 173
360 λ

69
17920 λ −3

80 λ 591
1280 λ

1
210 λ −2

45 λ 22
45 λ


Ym =

 yn+1
yn+ 3

2
yn+2

 and Ym−1 =

 yn−2
yn−1

yn


Let H = hλ. Then, the stability polynomial at r = 1 denoted by R1(t, H) is given by,

R1(t, H) = −t3
(

18667
302400 H3 − 172397

453600 H2 + 2459
2520 H − 1

)
− t2

(
15697

179200 H3 + 2915951
7257600 H2 + 1039

1008 H + 1
)

+t
(

3971
6451200 H3 + 31997

8294400 H2 + 11
1680 H

)
+ 1

19353600 H3 + 13
58060800 H2

(22)

Applying the same procedure above for the step size ratios r = 2 and r = 1/2, we
obtain the stability polynomials,

R2(t, H) = −t3
(

8471
54000 H3 − 106703

226800 H2 + 797
770 H − 1

)
− t2

(
3380029

53222400 H3 + 1084
30412800 H2 + 1713499

1774080 H + 1
)

+t
(

2699
38016000 H3 + 846649

1703116800 H2 + 1627
1774080 H

)
+ 1

1703116800 H3 + 13
5109350400 H2

(23)
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R 1
2
(t, H) = −t3

(
20399

432000 H3 − 419447
1296000 H2 + 363

400 H − 1
)
− t2

(
63881

432000 H3 + 198427
432000 H2 + 2033

1800 H + 1
)

+t
(

2039
43200 H3 + 10607

432000 H2 + 133
3600 H

)
+ 1

432000 H3 + 13
1296000 H2

(24)

The zero-stability for the VSHBM is determined by substituting H = 0 in Equations (22)–(24)
to obtain

R1(t, H) = R2(t, H) = R 1
2
(t, H) = t3 − t2 (25)

The zeros for the variable step sizes at r = 1, r = 2, and r = 1/2 are presented
in Table 3.

Table 3. Zeros for the VSHBM.

Step-Size Ratio Zeros

r = 1 t1 = t2 = 0, t3 = 1

r = 2 t1 = t2 = 0, t3 = 1

r = 1/2 t1 = t2 = 0, t3 = 1

Since all the zeros satisfy |t| ≤ 1 as described by Definition 4, it implies that the
VSHBM is zero-stable at the step size ratios r = 1, r = 2, and r = 1/2.

3.2.2. Stability Regions of the VSHBM

Definition 5 ([34]). If the stability region of a method contains the whole left half-plane Re(hλ) < 0,
such a method is referred to as A-stable.

The stability regions for the VSHBM are presented in Figure 2.
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Figure 2. Stability regions of the VSHBM.

The stability region of the VSHBM at r = 1 is the interior of the blue contour while that
of the VSHBM at r = 1

2 is the interior of the magenta contour. For the VSHBM at r = 2, the
stability region is the outer region of the green contour. Thus, in terms of size, the VSHBM
at r = 2 has the largest stability region followed by the VSHBM at r = 1, then the VSHBM
at r = 1/2.

3.3. Consistency of the VSHBM

Definition 6 ([3]). The LMM (4) is called consistent if it is of order p ≥ 1.

Since the VSHBM is of order 6, it is consistent.

3.4. Convergence of the VSHBM

Theorem 2 ([4]). The necessary and sufficient conditions for the LMM (4) to be convergent are that
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(i) it must be consistent, and
(ii) it must be zero-stable”.

See [35] for the proof.
Thus, the proposed VSHBM is convergent since it satisfies the conditions for consis-

tency and zero-stability.

4. Algorithm and Choice of Step Size for the VSHBM
4.1. Algorithm

The implementation algorithm for the VSHBM is presented in this subsection. The first
step is the determination of initial points of the method’s starting block. The step ratio r in
Figure 1 is taken as one. The truncated Taylor series method is used to determine the three
back values xn−2, xn−1 and xn since the values of h are small. The values of yn+1, yn+3/2,
and yn+2 are approximated using predictor-corrector methods. Suppose s is the number of
iterations required, the sequence of calculations at any point is (PE)(CE)1(CE)2 . . . (CE)s,
where P is the predictor formulae, C is the corrector formulae, and E represents the function
evaluation f of the problem. The corrector VSHBM is iterated to converge with the conver-
gence test employed as

∣∣∣y(s+1)
n+2 − y(s)n+2

∣∣∣ < 0.1 ∗ TOL. The algorithm for the implementation
of the VSHBM in code is explicitly stated below:

Step 1: Set data input, such as tolerance level (TOL), initial condition x0, y0, and step
length h
Step 2: Set y′(x) = f (x, y(x))
Step 3: Set Taylor series yi = yi−1 + hy′i−1 +

h2

2! y′′i−1 +
h3

3! y′′′i−1
Step 4: Set the predictor equations

P : yp
n+1 =

2

∑
i=0

αn+i fn−i + αn+3/2 fn+3/2

yp
n+3/2 =

2

∑
i=0

βn+i fn−i + βn+3/2 fn+3/2

yp
n+2 =

2

∑
i=0

γn+i fn−i + γn+3/2 fn+3/2

E : f p
n+1 =

(
xn+1, yp

n+1

)
f p
n+3/2 =

(
xn+3/2, yp

n+3/2

)
f p
n+2 =

(
xn+2, yp

n+2

)
Step 5: Set the corrector equations

C : yc
n+1 =

4

∑
i=0

δn+i fn+2−i + δn+3/2 fn+3/2

yc
n+3/2 =

4

∑
i=0

εn+i fn+2−i + εn+3/2 fn+3/2

yc
n+2 =

4

∑
i=0

σn+i fn+2−i + σn+3/2 fn+3/2

E : f c
n+1 =

(
xn+1, yc

n+1
)

f c
n+3/2 =

(
xn+3/2, yc

n+3/2
)
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f c
n+2 =

(
xn+2, yc

n+2
)

Step 6: Compute the LTE, that is local truncation error
Step 7: If the LTE<TOL, then the solution is acceptable. Maintain (r = 1) or double
(r = 1/2) the previous step size and then proceed to Step 9.
Step 8: If LTE>TOL, halve the previous step size (r = 2) and then go back to Step 5.
Step 9: Stop

The flowchart for the VSHBM is shown in Figure 3.
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4.2. Choice of Step Size

The authors in [36–43] highlighted the importance of the selection of step size in
Adams methods for the integration of differential equations. When step size is properly
chosen, it minimizes the total number of iterations as well as computation time. The
values of approximations yn+1, yn+3/2, and yn+2 are acceptable if LTE < TOL. The LTE is
determined by,

LTE = y(p)
n+2 − y(p−1)

n+2 (26)

where y(p)
n+2 and y(p−1)

n+2 are the pth and (p− 1)th orders of the method. If, on the other hand,
LTE is greater than the tolerance level, then yn+1, yn+3/2, and yn+2 are rejected. This implies
that the step is carried out again by taking the step ratio r = 2. The step size increment
after a successful step (LTE < TOL) is given by

hnew = u ∗ hold ∗
(

TOL
LTE

) 1
p

(27)

where p is the method’s order, hold is the previous block’s step size, and hnew is the current
block’s step size. The parameter u, called the safety factor, ensures that the failure steps are
minimized to the barest minimum.

5. The Kepler Problem

The Kepler problem is a renowned two-body problem that describes planetary motion
in an orbit. The center of the coordinate system is represented by one of the bodies while
the position of the second body at time t is given by two coordinates k1(t) and k2(t). The
Kepler problem is given by,

k′′1 (t) = −
k1(t)

(k2
1(t)+k2

2(t))
3
2

, k1(0) = 1− e, k′1(0) = 0

k′′2 (t) = −
k2(t)

(k2
1(t)+k2

2(t))
3
2

, k2(0) = 0, k′2(0) =
√

1− e2

 (28)
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where e defined by the constraint 0 ≤ e < 1 is the orbital eccentricity. The exact solution of
the Kepler problem (28) is given by,

k1(t) = cos(t)− e
k2(t) =

√
1− e2 sin(t)

}
(29)

It is important to state that Equation (28) is equivalent to the Hamiltonian system

k′i = si, i = 1, 2

H(s1, s2, k1, k2) =
(s2

1+s2
2)

2 − 1√
k2

1+k2
2

 (30)

where H(s1, s2, k1, k2) denotes the Hamiltonian of the system in Equation (28). To effectively
apply the proposed VSHBM (which is in the form of LMM in Equation (4)) on the Kepler
problem, we transform (28) to its equivalent first order system of equations. This is
achieved by letting y1 = k1, y2 = k2, y3 = k′1, and y4 = k′2. Equation (28) is thus given by
the following system of equations

y′1 = y3, y1(0) = 1− e
y′2 = y4, y2(0) = 0
y′3 = − y1

(y2
1+y2

2)
3/2 , y3(0) = 0

y′4 = − y2

(y2
1+y2

2)
3/2 , y4(0) = 1− e

 (31)

where e is the orbital eccentricity.

6. Results and Discussion

The newly derived VSHBM shall be applied on the Kepler problem to test its accuracy,
efficiency, and computational reliability in terms of parameters, such as the number of
steps, number of failure/rejected steps, number of function calls, maximum error, and
computation time.

Absolute error (AbsE) is defined as

AbsE = |y(x)− yn(x)|

Maximum error (MaxE) is defined as

MaxE = max
0≤n≤TS

|y(x)− yn(x)|

where y(x) is theoretical/exact solution while yn(x) is computed/approximate solution.
The proposed VSHBM was employed in approximating the Kepler problem. The

results obtained were compared with that of variable step predictor-corrector method
(2PVSPCM) developed by [14] at eccentricity 1− e = 0.0000001 and run time tε[0, 20].
From Table 4, it is obvious that the VSHBM performed better than that of [14] using different
indicators. The maximum error (MaxE) of the VSHBM is by far less than those of [14]. It
was also observed that fewer steps (TS) were taken in generating the results in contrast to
the method of [14]. This in turn translates to the faster generation of results (see the ComT
column) using the VSHBM. From Table 4, it is also obvious that no failure steps (FS) were
recorded. The total function call (FCN) column also showed that the proposed VSHBM has
more function calls than the variable step method developed by [14].
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Table 4. Performance of the VSHBM on Kepler problem with eccentricity 1− e = 0.0000001 and run
time tε[0, 20].

TOL Method TS FS MaxE FCN ComT

10−2 VSHBM 18 0 4.2456× 10−3 411 452

2PVSPCM 30 0 9.3294× 10−2 309 944

10−4 VSHBM 37 0 1.2477× 10−5 1021 1021

2PVSPCM 61 0 1.4804× 10−3 513 1322

10−6 VSHBM 93 0 3.1129× 10−8 2478 1892

2PVSPCM 137 0 1.9884× 10−5 1121 2904

10−8 VSHBM 242 0 6.7189× 10−9 4781 3622

2PVSPCM 322 0 2.0891× 10−7 2001 5742

10−10 VSHBM 502 0 4.3321× 10−11 6719 9876

2PVSPCM 781 0 2.2126× 10−9 4767 13906

In Figure 4, the efficiency curves of the Kepler problem were plotted in terms of time
versus maximum error, while in Figure 5 the efficiency curves were plotted with respect
to the number of steps versus the maximum error. From the two figures, it is clear that
the VSHBM performed better than the 2PVSPCM developed by [14] at the run time [0, 20].
This is because the VSHBM takes less time (Figure 4) and fewer steps (Figure 5) to generate
result than the 2PVSPCM developed by [14].

Fractal Fract. 2022, 6, x FOR PEER REVIEW 12 of 16 
 

 

10  VSHBM 93 0 3.1129 × 10  2478 1892 
 2PVSPCM 137 0 1.9884 × 10  1121 2904 10  VSHBM 242 0 6.7189 × 10  4781 3622  
 2PVSPCM 322 0 2.0891 × 10  2001 5742 10  VSHBM 502 0 4.3321 × 10  6719 9876 
 2PVSPCM 781 0 2.2126 × 10  4767 13906  

In Figure 4, the efficiency curves of the Kepler problem were plotted in terms of time 
versus maximum error, while in Figure 5 the efficiency curves were plotted with respect 
to the number of steps versus the maximum error. From the two figures, it is clear that the 
VSHBM performed better than the 2PVSPCM developed by [14] at the run time [0, 20]. 
This is because the VSHBM takes less time (Figure 4) and fewer steps (Figure 5) to generate 
result than the 2PVSPCM developed by [14]. 

 
Figure 4. Efficiency curves for Kepler problem in terms of time versus maximum error. 

 
Figure 5. Efficiency curves for Kepler problem in terms of number of steps versus maximum error. 

Table 5 clearly shows the performance of the VSHBM on the Kepler problem at dif-
ferent eccentricities 1 − 𝑒 = 0.1, 0.001 and 0.00001. Different tolerance levels were con-
sidered in the computation. The results generated show that no step failed (i.e., FS = 0) 
and the accuracy of the VSHBM increases as 1 − 𝑒 reduces or tends to zero. 
  

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

log (Time)

lo
g(

M
ax

 E
rro

r)

 

 
VSHBM
2PVSPCM

0 100 200 300 400 500 600 700 800
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Total Number of Steps

lo
g(

M
ax

 E
rro

r)

 

 
VSHBM
2PVSPCM

Figure 4. Efficiency curves for Kepler problem in terms of time versus maximum error.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 12 of 16 
 

 

10  VSHBM 93 0 3.1129 × 10  2478 1892 
 2PVSPCM 137 0 1.9884 × 10  1121 2904 10  VSHBM 242 0 6.7189 × 10  4781 3622  
 2PVSPCM 322 0 2.0891 × 10  2001 5742 10  VSHBM 502 0 4.3321 × 10  6719 9876 
 2PVSPCM 781 0 2.2126 × 10  4767 13906  

In Figure 4, the efficiency curves of the Kepler problem were plotted in terms of time 
versus maximum error, while in Figure 5 the efficiency curves were plotted with respect 
to the number of steps versus the maximum error. From the two figures, it is clear that the 
VSHBM performed better than the 2PVSPCM developed by [14] at the run time [0, 20]. 
This is because the VSHBM takes less time (Figure 4) and fewer steps (Figure 5) to generate 
result than the 2PVSPCM developed by [14]. 

 
Figure 4. Efficiency curves for Kepler problem in terms of time versus maximum error. 

 
Figure 5. Efficiency curves for Kepler problem in terms of number of steps versus maximum error. 

Table 5 clearly shows the performance of the VSHBM on the Kepler problem at dif-
ferent eccentricities 1 − 𝑒 = 0.1, 0.001 and 0.00001. Different tolerance levels were con-
sidered in the computation. The results generated show that no step failed (i.e., FS = 0) 
and the accuracy of the VSHBM increases as 1 − 𝑒 reduces or tends to zero. 
  

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

log (Time)

lo
g(

M
ax

 E
rro

r)

 

 
VSHBM
2PVSPCM

0 100 200 300 400 500 600 700 800
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Total Number of Steps

lo
g(

M
ax

 E
rro

r)

 

 
VSHBM
2PVSPCM

Figure 5. Efficiency curves for Kepler problem in terms of number of steps versus maximum error.

Table 5 clearly shows the performance of the VSHBM on the Kepler problem at
different eccentricities 1 − e = 0.1, 0.001 and 0.00001. Different tolerance levels were
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considered in the computation. The results generated show that no step failed (i.e., FS = 0)
and the accuracy of the VSHBM increases as 1− e reduces or tends to zero.

Table 5. Performance of the VSHBM on Kepler problem at different eccentricities and run time
t ∈

[
0, 108].

TOL TS FS Eccentricity MaxE

10−2 18
0 1− e = 0.1 6.6112× 10−2

0 1− e = 0.001 1.5571× 10−2

0 1− e = 0.00001 9.3294× 10−3

10−6 93
0 1− e = 0.1 8.4519× 10−5

0 1− e = 0.001 4.1562× 10−5

0 1− e = 0.00001 3.9945× 10−7

10−10 502
0 1− e = 0.1 5.1903× 10−6

0 1− e = 0.001 5.1984× 10−8

0 1− e = 0.00001 6.5527× 10−10

The Kepler problem (31) was also integrated using the new VSHBM at constant step in
the interval t ∈ [0, 20]. The VSHBM was used to calculate the stage value y1 and the results
obtained were compared with those of the Matlab inbuilt solver, ode 15 s. It is obvious that
at constant step size, h, the method performed slightly better than the inbuilt ode 15 s in
terms of computation time and maximum error; see Table 6 and Figures 6 and 7. However,
if variable step strategy was solely adopted in the generation of the results, the VSHBM
would have performed better, as clearly seen in Table 4.

Table 6. Computation time and maximum error of the VSHBM using constant step h and eccentricity
1− e = 0.0000001.

h 0.001 0.01 0.1

ComT (ode 15 s) 316.84 126.73 15.69

MaxE (ode 15 s) 0.79× 10−5 1.14× 10−3 10.41× 10−2

ComT (VSHBM) 212.48 73.41 12.23

MaxE (VSHBM) 0.59× 10−5 1.00× 10−3 9.89× 10−2
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A VSHBM was formulated for the approximation of the Kepler problem at different
eccentricities. From the numerical and graphical results generated, it is clear that the
method is computationally reliable. The order, zero-stability, consistence, and convergence
of the method were verified. The stability regions of the VSHBM at different values of
the step size ratios were also analysed. The results obtained show that the method is
convergent, consistent, and also exhibited zero stability. The results further showed that
the VSHBM performed better than some existing methods, including the inbuilt MATLAB
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