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Abstract: In this paper, we study the passive problem of uncertain fractional-order neural networks
(UFONNs) with time-varying delays. First, we give a sufficient condition for the asymptotic stability
of UFONNs with bounded time-varying delays by using the fractional-order Razumikhin theorem.
Secondly, according to the above stability criteria and some properties of fractional-order calculus, a
delay-dependent condition that can guarantee the passivity of UFONNs with time-varying delays is
given in the form of a linear matrix inequality (LMI) that can be reasonably solved in polynomial
time using the LMI Control Toolbox. These conditions are not only delay-dependent but also order-
dependent, and less conservative than some existing work. Finally, the rationality of the research
results is proved by simulation.
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1. Introduction

As neural networks (NNs) play an important role in the field of control engineering
and are used for applications such as association [1,2], pattern recognition [3,4], and signal
processing [5,6], fractional-order neural networks (FONNs) are becoming more and more
popular among scientists. Moreover, since two important properties of fractional-order
calculus are memorability and heritability, FONNs can more precisely describe the dynamic
behavior of neurons in NNs. Therefore, many problems related to FONNs have been
studied, such as finite-time stability [7–9], asymptotic stability [10–13], synchronization
analysis [14–17], and guaranteed cost control [18,19].

Passivity theory has been a major concern in the field of control engineering since the
1970s (see references [20–24]). As an effective tool for studying system stability, passivity
theory has been applied to a variety of areas, for example, fuzzy control, complexity, power
systems, and signal processing. Some researchers have also extended passivity theory to
NNs. The passive filtering of NNs with time-varying mixed delays using the Wirtinger
integral inequality was studied in [25]. Other research on the passivity of dynamic NNs can
be found in the literature [26–30]. Although there are many research results on the passivity
of NNs, the research on the passivity of NNs with time-varying delays has not been
fully explored. At present, the passivity of integer-order NNs with time-varying delays
has been studied using different methods. For example, in [31], Lyapunov–Krasovskii
functions were used to analyze the stability and passivity of NNs with time-varying delays.
The passivity of integer-order NNs with discrete and distributed time-varying delays
was studied in [32]. By means of stochastic analysis and linear matrix inequality (LMI)
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techniques, event-triggered passive synchronization for NNs with random gain changes
was addressed in [33]. More research on the passivity of neural networks with time delays
can be found in [34–36]. In the above-mentioned research results, we find that the methods
used to study passivity mainly used LMI techniques and Lyapunov–Krasovskii functions.
The passive analysis of an integer-order system can be simplified by taking the integer
derivative of a Lyapunov–Krasovskii function. However, constructing fractional-order
Lyapunov–Krasovskii functions for FONNs is challenging due to the limitation of integral
intervals. In other words, the method mentioned above cannot be extended to the study
of the passivity of FONNs with time-varying delays. The question of how to solve this
problem is interesting and challenging.

It is well known that fractional derivatives have weak singular kernels and are
nonlocal. Therefore, compared with integer-order NNs, the passive research of FONNs
is more challenging. Up to now, there have only been very few works that considered
passivity [37,38]. In [37], the authors studied the passive problem of FONNs by means of
an LMI technique and control theory; only the order-independent case was studied, and
time delays were not considered. However, time delays are very common in all kinds
of systems, and their existence can lead to system instability and transient responses.
When the delay is small, the delay-independent stability condition is less conservative.
Very recently, the passivity of FONNs with time-varying delays was studied using
an LMI technique and control theory in [38], where system uncertainties were not
considered. However, the connection weight of a neuron depends on its capacitance
and resistance values, including uncertainties, so it is very important to study the
passivity of uncertain fractional-order neural networks (UFONNs).

Based on the above analysis, in this article, our main task is to find a relatively simple
order-dependent and delay-dependent condition for the passive problem of UFONNs with
time-varying delays. The innovations of this article are as follows. (1) A relatively small
conservative order-dependent and delay-dependent stability criterion for UFONNs with
time-varying delays is presented using LMI techniques and the fractional-order Razumikhin
theorem. (2) Based on fractional-order calculus and existing stability criteria, we solve the
passive problem of UFONNs with time-varying delays. (3) Two sufficient conditions for
UFONNs with passive time-varying delays are shown using an LMI. Furthermore, these
conditions can be reasonably solved.

The rest of this article is divided into the following parts. In Section 2, we detail
some assumptions, definitions, and lemmas and describe the research object of this article.
In Section 3, the passive study of UFONNs with time-varying delays is presented. A
simulation example is used to prove the rationality of the theoretical results in Section 4.

Notations: In this article, Rn is defined as an n-dimensional Euclidean space, and
I is an appropriately dimensional identity matrix. Rm×n is defined as the set of m × n
matrices, NT stands for the transpose of the matrix N, and diag{· · · } represents the block-
diagonal matrix. C1[0, T] is defined as the whole function on the interval [0, T], in which
the first-order derivative of any function exists and is continuous. L2[0, ∞) is a space of all
2-integrable functions on [0, ∞). ζt = {ζ(t + ω) : ω ∈ [−ς0, 0]} is a segment of trajectory
ζ(t). For convenience, we use ∗ to replace the symmetric term in the symmetric matrix.

2. Preliminaries

The β-th Caputo fractional-order integral is given as:

Iβ
t f (t) =

1
Γ(β)

∫ t

0
(t− ε)β−1 f (ε)dε, (1)

where Γ(β) =
∫ +∞

0 tβ−1e−tdt.
The β-th Caputo fractional differential is given as:

Dβ
t f (t) =

1
Γ(n− β)

∫ t

0
(t− ε)n−β−1 f (n)(ε)dε, (2)

where n− 1 ≤ β < n. In addition, for the sake of convenience, we only consider 0 < β ≤ 1.
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That yields the following UFONNs:
Dβ

t η(t) = −(B1 + ∆B1(t))η(t) + (B2 + ∆B2(t))g(η(t))

+ (B3 + ∆B3(t))g(η(t− ς(t))) + u(t),

ζ(t) = Gη(t),

η(t) = ϕ(t), t ∈ [−ς0, 0],

(3)

where η(t) = [η1(t), · · · , ηn(t)]T ∈ Rn is the neuron state vector, B1 = diag(b11, b22, · · · , bnn)
is a positive diagonal matrix, B2,B3 ∈ Rn×n are interconnection weight matrices, 0 ≤ ς(t) ≤
ς0 is the time delay, and G ∈ Rn×n is a known constant matrix. u(t) is the input vector;
∆B1(t), ∆B2(t), and ∆B3(t) are unknown matrices representing the uncertainties of time-
varying parameters; g(η(t)) = [g1(η1(t)), · · · , gn(ηn(t))]T represents the neural activation
function; and ζ(t) is output vector. ϕ(t) is the initial vector value function.

Remark 1. In engineering applications and real-world systems, parameters often fluctuate within
certain ranges, which can lead to divergence or instability. Thus, it makes sense to introduce param-
eter uncertainty into fractional-order neural networks; doing so can reveal more realistic dynamic
properties of fractional-order neural networks. The passive theory can maintain the internal stability
of the system, which plays an important role in network control theory. It also has a wide range of ap-
plications in robotic systems, electromechanical systems, power systems, internal combustion engine
engineering, and chemical processes. Therefore, studying the passivity of uncertain fractional-order
neural networks provides an important theoretical basis for engineering applications.

The following are the relevant lemmas, definitions, and assumptions.

Assumption 1. The activation function gi(·) satisfies for any d, e ∈ R, d 6= e:

κ−i (d− e) ≤ gi(d)− gi(e) ≤ κ+i (d− e), gi(0) = 0(i = 1, · · · , n), (4)

where κ+i , κ−i are known constants.

Remark 2. Note that κ−i and κ+i can be any real number, and that is a much broader set of
conditions than the Lipschitz-type activation functions.

Assumption 2. ∆B1(t), ∆B2(t), ∆B3(t) are defined by:

∆B1(t) = HF(t)E, ∆B2(t) = H1F1(t)E1, ∆B3(t) = H2F2(t)E2, (5)

where F(t), F1(t), and F2(t) are unknown time-varying matrices, and H, E, H1, E1, H2, and E2 are
known constant matrices with appropriate dimensions and satisfy:

FT(t)F(t) ≤ I, FT
1 (t)F1(t) ≤ I, FT

2 (t)F2(t) ≤ I. (6)

Lemma 1 ([39]). If g(t) ∈ C1[0, T] for some T > 0, then for 0 < β ≤ 1, we have:

Iβ
t Dβ

t g(t) = g(t)− g(0), (7)

and:
Dβ

t Iβ
t g(t) = g(t). (8)

Lemma 2 ([40]). If g(t) is a continuous function, then:

Iβ1
t (Iβ2

t g(t)) = Iβ1+β2
t (g(t)), ∀t ≥ t0. (9)
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Lemma 3 ([40]). Caputo’s fractional-order calculus satisfies:

Dβ
t (λh1(t) + µh2(t)) = λDβ

t h1(t) + µDβ
t h2(t), (10)

where λ , µ ∈ R.

Lemma 4 ([39]). If function η(t) ∈ Rn is differentiable, then there is a symmetric positive definite
matrix P ∈ Rn×n such that:

Dβ
t (η

T(t)Pη(t)) ≤ 2ηT(t)PDβ
t η(t), ∀t ≥ t0. (11)

Lemma 5 ([41]). If there are three positive constants k1, k2, and k3 and a quadratic Lyapunov
function V(t, η(t)) that satisfies:

(1) k1‖η(t)‖2 ≤ V(t, η(t)) ≤ k2‖η(t)‖2, η ∈ Rn,

(2) Dβ
t V(t, η(t)) ≤ −k3‖η(t)‖2 whenever V(t + ω, η(t + ω)) < $V(t, η(t)), and ∀ω ∈

[−s, 0] for some $ > 1, then the zero solution of system Dβ
t η(t) = g(t, ηt) is asymptotically

stable.

Definition 1 ([42]). System (3) is passive if it satisfies the following conditions:

(1) System (3) is asymptotically stable when both the output vector and the external input vector
of the system are zero.

(2) When the initial condition is ϕ(t) = 0, and ∀t ∈ [−ς0, 0] for System (3), then there exists a
constant ρ > 0 such that:

2
∫ tp

0
ζT(t)u(t)dt ≥ −ρ

∫ tp

0
uT(t)u(t)dt, ∀tp ≥ 0, (12)

where u(t) ∈ L2[0, ∞) is external input of the system, and ζ(t) is the output of the system.

Remark 3. In fact, there is a connection between passivity and stability. If the system is passive,
then we find that the system is asymptotically stable with zero output vectors and zero external
input vectors, as can be seen in [30]. In addition, our Definition 1 is equivalent to an expansion of
the definition in [42]. If the system satisfies both (1) and (2) in Definition 1, then the system must
be passive. ζ(t) and u(t) in Definition 1 are consistent with those given by System (3).

3. Main Results
3.1. Stability Study of the System

In this part, the stability of System (3) with ζ(t) = 0 and u(t) = 0 is analyzed.
First, let us emphasize that for the sake of our calculations, in Theorems 1 and 2,
the following substitutions are made: ζ to represent ζ(t), u to represent u(t), η =
[η1, · · · , ηn]T to represent η(t) = [η1(t), · · · , ηn(t)]T , g(η) = [g1(η1), · · · , gn(ηn)]T means
g(η(t)) = [g1(η1(t)), · · · , gn(ηn(t))]T , and g(η(ς)) = [g1(η1(ς)), · · · , gn(ηn(ς))]T repre-
sents g(η(t− ς(t))) = [g1(η1(t− ς(t))), · · · , gn(ηn(t− ς(t)))]T .

Theorem 1. Assuming that Assumptions 1 and 2 are true, System (3) with ζ = 0 and u = 0
is asymptotically stable if there exist symmetric positive definite matrices P and Q ∈ Rn×n,
a symmetric semi-positive definite matrix W ∈ R8n×8n, and three positive diagonal matrices
Θj = diag{µj1, µj2, · · · , µjn} ∈ Rn×n(j = 1, 2, 3) such that:

Φ = ς
β
0 β−1W + Λ < 0, (13)

where:
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Λ =



Λ11 Λ12 Λ13 Λ14 −QH QH1 QH2 Λ18
∗ Λ22 −Ξ2Θ3 − Ξ1Θ3 Λ24 0 0 0 0
∗ ∗ Λ33 2Θ3 0 0 0 BT

2 Q
∗ ∗ ∗ Λ44 0 0 0 BT

3 Q
∗ ∗ ∗ ∗ −mI 0 0 −HTQ
∗ ∗ ∗ ∗ ∗ −m1 I 0 HT

1 Q
∗ ∗ ∗ ∗ ∗ ∗ −m2 I HT

2 Q
∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Q


,

Λ11 = −QB1 − BT
1 Q− 2Ξ1Θ1Ξ2 − 2Ξ1Θ3Ξ2 + mET E + P,

Λ12 = Ξ1Θ3Ξ2 + Ξ2Θ3Ξ1,
Λ13 = QB2 + Ξ2Θ1 + Ξ1Θ1 + Ξ2Θ3 + Ξ1Θ3,
Λ14 = QB3 − Ξ2Θ3 − Ξ1Θ3,
Λ18 = P−Q− BT

1 Q,
Λ22 = −2Ξ1Θ2Ξ2 − 2Ξ1Θ3Ξ2 − P,
Λ24 = Ξ2Θ2 + Ξ1Θ2 + Ξ2Θ3 + Ξ1Θ3,
Λ33 = −2Θ1 − 2Θ3 + m1ET

1 E1,
Λ44 = −2Θ2 − 2Θ3 + m2ET

2 E2,
Ξ1 = diag{κ−1 , · · · , κ−n }, Ξ2 = diag{κ+1 , · · · , κ+n }.

Proof. Let us choose the Lyapunov function:

V(t, η) = ηTPη, (14)

and it satisfies:
λmin(P)‖η‖2 ≤ V(t, η) ≤ λmax(P)‖η‖2. (15)

Therefore, condition (1) of Lemma 5 is satisfied. Then, by taking the β-th fractional
derivative of the above V(t, η(t)), we have:

Dβ
t V(t, η) ≤ 2ηTPDβ

t η. (16)

For any symmetric positive definite matrix Q ∈ Rn×n and any symmetric semi-positive
definite matrix W ∈ R8n×8n, the following formulae can be obtained:

[2ηT + 2(Dβ
t η)T ]Q[−Dβ

t η− (B1 + ∆B1(t))η+ (B2 + ∆B2(t))g(η)

+ (B3 + ∆B3(t))g(η(ς))] = 0,
(17)

and:

ς
β
0 β−1εT(t)Wε(t)−

∫ t

t−ς(t)
(t−ω)β−1εT(t)Wε(t)dω

= ς
β
0 β−1εT(t)Wε(t)− ςβ(t)β−1εT(t)Wε(t)

≥ 0,

(18)

where ε(t) = [ηT , ηT(ς), gT(η), gT(η(ς)), (F(t)Eη
)T ,
(

F1(t)E1g(η)
)T ,
(

F2(t)E2g(η(ς))
)T ,(

Dβ
t η
)T

]T .
For Assumption 1, we know that for any µji > 0(i = 1, · · · , n; j = 1, 2, 3), we obtain:

2
(

gi(ηi)− κ−i ηi
)
µ1i
(
κ+i ηi − gi(ηi)

)
≥ 0,

2
(

gi(ηi(ς))− κ−i ηi(ς)
)
µ2i
(
κ+i ηi(ς)− gi(ηi(ς))

)
≥ 0,

2
(

gi(ηi)− gi(ηi(ς))− κ−i (ηi − ηi(ς))
)
µ3i
(
κ+i (ηi − ηi(ς))− (gi(ηi)− gi(ηi(ς)))

)
≥ 0.

(19)

It is equivalent to:

2
(

g(η)− Ξ1η
)T

Θ1
(
Ξ2η− g(η)

)
≥ 0,

2
(

g(η(ς))− Ξ1η(ς)
)T

Θ2
(
Ξ2η(ς)− g(η(ς))

)
≥ 0,

2
(

g(η)− g(η(ς))− Ξ1(η− η(ς))
)T

Θ3
(
Ξ2(η− η(ς))− (g(η)− g(η(ς)))

)
≥ 0.

(20)



Fractal Fract. 2022, 6, 375 6 of 13

For Assumption 2, we derive that for any m > 0, m1 > 0, m2 > 0, one obtains:

mηT ET Eη−m
(

F(t)Eη
)T(F(t)Eη

)
≥ 0,

m1gT(η)ET
1 E1g(η)−m1

(
F1(t)E1g(η)

)T(F1(t)E1g(η)
)
≥ 0,

m2gT(η(ς))ET
2 E2g(η(ς))−m2

(
F2(t)E2g(η(ς))

)T(F2(t)E2g(η(ς))
)
≥ 0.

(21)

For Lemma 5, we assume that $ > 1 yields:

V(t + ω, η(t + ω)) < $V(t, η), ∀ω ∈ [−ς0, 0], (22)

which implies:
$ηTPη− ηT(ς)Pη(ς) > 0. (23)

Because $ > 1 is any parameter that is greater than 1, we take $ → 1+ for (23), and
we have: ηTPη− ηT(ς)Pη(ς) ≥ 0. (24)

From (16)–(18), (20), (21), and (24), we obtain:

Dβ
t V(t, η) ≤ 2ηTPDβ

t η+
[
2ηT + 2(Dβ

t η)T]Q[− Dβ
t η− (B1 + ∆B1(t))η

+ (B2 + ∆B2(t))g(η) + (B3 + ∆B3(t))g(η(ς))
]
+ ς

β
0 β−1εT(t)Wε(t)

−
∫ t

t−ς(t)
(t−ω)β−1εT(t)Wε(t)dω + 2

(
g(η)− Ξ1η

)T
Θ1
(
Ξ2η− g(η)

)
+ 2
(

g(η(ς))− Ξ1η(ς)
)T

Θ2
(
Ξ2η(ς)− g(η(ς))

)
+ 2
(

g(η)− g(η(ς))

− Ξ1(η− η(ς))
)T

Θ3
(
Ξ2(η− η(ς))− (g(η)− g(η(ς)))

)
+ mηT ET Eη−m

(
F(t)Eη

)T(F(t)Eη
)
+ m1gT(η)ET

1 E1g(η)

−m1
(

F1(t)E1g(η)
)T(F1(t)E1g(η)

)
+ m2gT(η(ς))ET

2 E2g(η(ς))

−m2
(

F2(t)E2g(η(ς))
)T(F2(t)E2g(η(ς))

)
+ ηTPη− ηT(ς)Pη(ς).

(25)

So (25) is equivalent to:

Dβ
t V(t, η) ≤ς

β
0 β−1εT(t)Wε(t)−

∫ t

t−ς(t)
(t−ω)β−1εT(t)Wε(t)dω

+ ηT[−QB1 − BT
1 Q− 2Ξ1Θ1Ξ2 − 2Ξ1Θ3Ξ2 + mET E + P

]
η

+ ηT[2Ξ1Θ3Ξ2 + 2Ξ2Θ3Ξ1
]
η(ς) + ηT[2QB2 + 2Ξ2Θ1 + 2Ξ1Θ1

+ 2Ξ2Θ3 + 2Ξ1Θ3
]
g(η) + ηT[2QB3 − 2Ξ2Θ3 − 2Ξ1Θ3

]
g(η(ς))

+ ηT[− 2QH
](

F(t)Eη
)
+ ηT[2QH1

](
F1(t)E1g(η)

)
+ ηT[2QH2

](
F2(t)E2g(η(ς))

)
+ ηT[2P− 2Q− 2BT

1 Q
]
Dβ

t η

+ ηT(ς)
[
− 2Ξ1Θ2Ξ2 − 2Ξ1Θ3Ξ2 − P

]
η(ς) (26)

+ ηT(ς)
[
− 2Ξ2Θ3 − 2Ξ1Θ3

]
g(η) + ηT(ς)

[
2Ξ2Θ2 + 2Ξ1Θ2

+ 2Ξ2Θ3 + 2Ξ1Θ3
]
g(η(ς)) + gT(η)

[
− 2Θ1 − 2Θ3

+ m1ET
1 E1

]
g(η) + gT(η)

[
4Θ3

]
g(η(ς)) + gT(η)

[
2BT

2 Q
]
Dβ

t η

+ gT(η(ς))
[
− 2Θ2 − 2Θ3 + m2ET

2 E2
]
g(η(ς)) + gT(η(ς))

×
[
2BT

3 Q
]
Dβ

t η−m
(

F(t)Eη
)T(F(t)Eη

)
+
(

F(t)Eη
)T

×
[
− 2HT Q

]
Dβ

t η−m1
(

F1(t)E1g(η)
)T(F1(t)E1g(η)

)
+
(

F1(t)E1g(η)
)T[2HT

1 Q
]
Dβ

t η−m2
(

F2(t)E2g(η(ς))
)T

×
(

F2(t)E2g(η(ς))
)
+
(

F2(t)E2g(η(ς))
)T[2HT

2 Q
]
Dβ

t η

+ (Dβ
t η)T[− 2Q

]
Dβ

t η

≤ ς
β
0 β−1εT(t)Wε(t) + εT(t)Λε(t)−

∫ t

t−ς(t)
(t−ω)β−1εT(t)Wε(t)dω.
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Since
∫ t

t−ς(t)(t−ω)β−1εT(t)Wε(t)dω ≥ 0, we obtain:

Dβ
t V(t, η) ≤ εT(t)Φε(t), (27)

where Φ = ς
β
0 β−1W + Λ.

Therefore, when Φ < 0, it implies that Dβ
t V(t, η) < 0. So, this satisfies condition (2)

of Lemma 5. Finally, System (3) is asymptotically stable when both the output and the
external input are zero.

Remark 4. At present, the LMI technique is widely used to research the stability of various FONNs
with time-varying delays. Its greatest advantage is that we can use convex algorithms to solve it
reasonably in polynomial time.

3.2. Passivity Analysis of the System

In the following, the passivity of System (3) is analyzed.

Theorem 2. Assuming that Assumptions 1 and 2 are true, if there exist symmetric positive definite
matrices P and Q ∈ Rn×n, a symmetric semi-positive definite matrix D ∈ R9n×9n, three positive
diagonal matrices Θj = diag{µj1, µj2, · · · , µjn} ∈ Rn×n(j = 1, 2, 3), and ρ > 0 such that:

Ψ = ς
β
0 β−1D + Σ < 0, (28)

where

Σ =



Σ11 Σ12 Σ13 Σ14 −QH QH1 QH2 Σ18 Q−GT

∗ Σ22 −Ξ2Θ3 − Ξ1Θ3 Σ24 0 0 0 0 0
∗ ∗ Σ33 2Θ3 0 0 0 BT

2 Q 0
∗ ∗ ∗ Σ44 0 0 0 BT

3 Q 0
∗ ∗ ∗ ∗ −mI 0 0 −HTQ 0
∗ ∗ ∗ ∗ ∗ −m1 I 0 HT

1 Q 0
∗ ∗ ∗ ∗ ∗ ∗ −m2 I HT

2 Q 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −2Q Q
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρI


,

Σ11 = −QB1 − BT
1 Q− 2Ξ1Θ1Ξ2 − 2Ξ1Θ3Ξ2 + mETE + P,

Σ12 = Ξ1Θ3Ξ2 + Ξ2Θ3Ξ1,
Σ13 = QB2 + Ξ2Θ1 + Ξ1Θ1 + Ξ2Θ3 + Ξ1Θ3,
Σ14 = QB3 − Ξ2Θ3 − Ξ1Θ3,
Σ18 = P−Q− BT

1 Q,
Σ22 = −2Ξ1Θ2Ξ2 − 2Ξ1Θ3Ξ2 − P,
Σ24 = Ξ2Θ2 + Ξ1Θ2 + Ξ2Θ3 + Ξ1Θ3,
Σ33 = −2Θ1 − 2Θ3 + m1ET

1 E1,
Σ44 = −2Θ2 − 2Θ3 + m2ET

2 E2,
Ξ1 = diag{κ−1 , · · · , κ−n }, Ξ2 = diag{κ+1 , · · · , κ+n },
then System (3) is passive.

Proof. To facilitate the treatment of the passivity of System (3), we use V(t, η) in Theorem 1.
By using the same method that we used to prove Theorem 1, we obtain an estimate:

Dβ
t V(t)− 2ζTu− ρuTu ≤ ξT(t)Ψξ(t), (29)

in which ξ(t) = [ηT , ηT(ς), gT(η), gT(η(ς)), (F(t)Eη
)T ,
(

F1(t)E1g(η)
)T ,(

F2(t)E2g(η(ς))
)T ,
(

Dβ
t η
)T , uT ]T . From (28), we have:

Dβ
t V(t)− 2ζTu− ρuTu < 0. (30)



Fractal Fract. 2022, 6, 375 8 of 13

The integral of Inequality (30) is given as:

I1
tp Dβ

tp
V(tp)− 2

∫ tp

0
ζTudt− ρ

∫ tp

0
uTudt,

= I1−β
tp

Iβ
tp

Dβ
tp

V(tp)− 2
∫ tp

0
ζTudt− ρ

∫ tp

0
uTudt,

= I1−β
tp

(V(tp)−V(0))− 2
∫ tp

0
ζTudt− ρ

∫ tp

0
uTudt,

= I1−β
tp

V(tp)− I1−β
tp

V(0)− 2
∫ tp

0
ζTudt− ρ

∫ tp

0
uTudt,

= I1−β
tp

V(tp)− 2
∫ tp

0
ζTudt− ρ

∫ tp

0
uTudt,

< 0.

(31)

Because of I1−β
tp

V(tp) =
1

Γ(1−β)

∫ tp
0 (tp − t)−βηTPηdt ≥ 0, ∀tp ≥ 0, thus:

2
∫ tp

0
ζTudt > −ρ

∫ tp

0
uTudt. (32)

Therefore, System (3) is passive and can be obtained using Definition 1 and
Theorem 1.

Remark 5. It is well known that the time-delay dependent condition is less conservative than the time-
delay independent condition because it takes into account time delay information. In [43], the authors
derived a time-delay dependent stability criterion, but it is worth noting that this sufficient condition
considers systems with constant time delay. In [37], the authors obtained an order-independent
passive analysis criterion, whereas we obtained an order-dependent and delay-dependent passive
analysis criterion; thus, the results we obtained in Theorems 1 and 2 are less conservative than those
in [37,43,44].

Remark 6. From Definition 1, we can see that if we want to prove that System (3) is passive, then
first we need to show that System (3) is asymptotically stable with ζ(t) = 0 and u(t) = 0, then
prove that System (3) satisfies the definition of passivity with zero initial conditions. Therefore, from
Definition 1 combined with the proofs of Theorems 1 and 2 in this paper, we know that Theorem 2 is
based on the establishment of Theorem 1; thus, we see that matrix Λ in Theorem 1 is a submatrix of
matrix Σ in Theorem 2.

Remark 7. The passivity of NNs has been the focus of many research papers. For example, in [29],
the robust finite-time passivity of UFONNs was studied, but the passivity of the system when
time delays existed was not considered. In [38], the passivity of FONNs with time-varying delays
was studied, but the uncertainties were not considered. In [45], the passivity of FONNs with
time-varying parameter uncertainties was studied. However, the author used a sufficient condition
that guaranteed the system was passive, independent of the order of the system. As far as we know,
there exists no report on the passivity of UFONNs with time-varying delays. For this article, we
use the method of [38] to deduce the order-dependent and delay-dependent passivity conditions for
making the system passive by means of the definition of passivity and the Razumikhin theorem.
Compared with the method of constructing Lyapunov–Krasovskii functions used in the existing
literature, our method is simpler and less conservative.

4. Simulation Examples

Below, the correctness of the theoretical results is confirmed by simulation experiments.
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Example 1. Given the following UFONNs:
D0.95

t η(t) = −(B1 + ∆B1(t))η(t) + (B2 + ∆B2(t))g(η(t))

+ (B3 + ∆B3(t))g(η(t− ς(t))) + u(t),

ζ(t) = Gη(t),

(33)

where η(t) = [η1(t), η2(t)]T ∈ R2 is the state variable of the NNs, ζ(t) ∈ R2 is the output,

and u(t) ∈ R2 is the external input of System (33). The parameter matrices are B1 =

[
2 0
0 1

]
,

B2 =

[
−4 −0.1
0.13 −4

]
, B3 =

[
−1 0.1
0.15 −2

]
, and G =

[
−0.3 0.4
0.5 0.5

]
. Define the uncertainties as

follows: H =

[
0.2 0
0 0.1

]
, H1 = H2 =

[
0.1 0
0 0.1

]
, E = E1 = E2 =

[
0.2 0
0 0.2

]
, F(t) =[

sin t 0
0 sin t

]
, F1(t) =

[
cos t 0

0 cos t

]
, and F2(t) =

[
tanh t 0

0 tanh t

]
.

Obviously, these uncertainties satisfy Assumption 2. The time delay is ς(t) = 2 tanh2 t.
The activation function is g(η(t)) = (tanh η1(t), tanh η2(t))T . Based on Assumption 1, we
obtain Ξ1 = diag{−1,−1}, and Ξ2 = diag{1, 1}. Using Theorem 1, the feasible solutions for the

LMI (13) are P =

[
19.9153 −0.3176
−0.3176 13.0896

]
, Q =

[
14.3144 −0.3621
−0.3621 18.7749

]
, Θ1 =

[
6.6745 0

0 4.8305

]
,

Θ2 =

[
3.2573 0

0 2.5367

]
, Θ3 =

[
3.0676 0

0 1.9969

]
,

D =



D11 D12 D13 D14 D15 D16 D17 D18 D19
∗ D22 0 0 0 0 0 0 0
∗ ∗ D33 D34 D35 0 0 D38 D39
∗ ∗ ∗ D44 D45 0 0 D48 D49
∗ ∗ ∗ ∗ D55 0 0 D58 D59
∗ ∗ ∗ ∗ ∗ D66 0 D68 0
∗ ∗ ∗ ∗ ∗ ∗ D77 D78 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ D88 D89
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ D99


where

D11 =

[
5.1242 −0.2706
−0.2706 2.6972

]
, D12 =

[
3.0170 0

0 1.9639

]
,

D13 =

[
28.1408 −1.0046
−1.0046 36.9199

]
, D14 =

[
7.0577 −1.3339
−1.3339 18.4845

]
,

D15 =

[
1.4075 −0.0278
−0.0278 0.9233

]
, D16 =

[
−0.7039 0.0178
0.0178 −0.9233

]
,

D17 =

[
−0.7039 0.0178
0.0178 −0.9233

]
, D18 =

[
11.0972 −0.2670
−0.2670 11.8014

]
,

D19 =

[
−7.1789 0.4219
0.4219 −8.9944

]
, D22 =

[
1.9244 −0.1074
−0.1074 0.8257

]
,

D33 =

[
5.5778 −0.0044
−0.0044 3.5309

]
, D34 =

[
−3.1146 −0.0013
−0.0013 −2.0479

]
,

D35 =

[
−0.0033 0

0 −0.0031

]
, D38 =

[
28.1837 −0.8039
−0.8039 36.9411

]
,

D39 =

[
0.0481 0.0016
0.0016 0.0537

]
, D44 =

[
3.4042 −0.0002
−0.0002 2.1390

]
,

D45 =

[
−0.0007 0

0 −0.0007

]
, D48 =

[
7.0665 −1.2861
−1.2861 18.4899

]
,

D49 =

[
0.0143 0.0004
0.0004 0.0172

]
, D55 =

[
7.1468 0

0 7.1468

]
,
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D58 =

[
1.4078 −0.0262
−0.0262 0.9235

]
, D59 =

[
0.0004 0

0 0.0006

]
,

D66 =

[
7.2343 0

0 7.2343

]
, D68 =

[
−0.7039 0.0178
0.0178 −0.9233

]
,

D77 =

[
7.0593 0

0 7.0593

]
, D78 =

[
−0.7039 0.0178
0.0178 −0.9233

]
,

D88 =

[
9.6950 −0.2972
−0.2972 13.2748

]
, D89 =

[
−7.0432 0.1783
0.1783 −9.2395

]
,

D99 =

[
7.4195 −0.0004
−0.0004 7.4194

]
,

m = 21.8165, m1 = 22.0388, and m2 = 21.5946, which means that when u(t) = 0 and ζ(t) = 0,
the UFONNs with time-varying delays are asymptotically stable in the sense of Definition 1 and
Theorem 1. From Theorem 2, we find that ρ = 22.4761, so System (33) is passive. The passive
parameter ρ obtained in the simulation example is only the value when the order of System (33)
is 0.95. In addition, we take the different order β of System (33) to analyze its relationship with
the passive parameter ρ in Table 1.

Table 1. The relationship between the order of the system and the passive parameter in Theorem 2.

The Order β The Passive Parameter ρ

0.1 1.6504× 103

0.2 180.3959

0.3 248.7765

0.4 334.8487

0.5 357.8057

0.6 1.6010

0.7 20.5273

0.8 20.3400

0.9 22.4595

1 22.4947

In order to better observe the simulation effect, we set the initial value of System (33)
as ϕ(t) = [0.5,−0.1]T and ∀t ∈ [−2, 0]. The state dynamics of System (33) when u(t) =
[1 − sin t, 1.5 + cos t]T are presented in Figure 1. When u(t) = 0 and ζ(t) = 0, the state
variables of System (33) are asymptotically stable, which can be seen intuitively in Figure 2.

Figure 1. State dynamics of UFONNs with external input.
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Figure 2. State dynamics of UFONNs.

Remark 8. In the simulation example, the time delay of System (33) is constant (i.e., ς(t) = 2).
By conducting simulation experiments on it, we find that when ζ(t) = 0 and u(t) = 0, System
(33) is asymptotically stable. See Figure 3.

Figure 3. State dynamics of UFONNs.

5. Conclusions

In this paper, by means of knowledge of fractional-order calculus and the fractional-
order Razumikhin theorem, the passivity of UFONNs with time-varying delays was studied.
It was proved that UFONNs with time-varying delays are asymptotically stable when
both the output and the external input are zero, and when the delay-dependent and order-
dependent LMI is satisfied. In addition, based on the proof of asymptotic stability, UFONNs
with time-varying delays are passive when they contain a nonzero external input vector
and output vector. In the future, we will study the passive problem of UFONNs, including
unbounded time-varying time delays and multiple time delays.
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