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Abstract: This brief investigates the Mittag–Leffler formation bounded control problem for second-
order fractional multi-agent systems (FMASs), where the dynamical nodes of followers are modeled
to satisfy quadratic (QUAD) condition. Firstly, under the undirected communication topology,
for the considered second-order nonlinear FMASs, a distributed event-triggered control scheme
(ETCS) is designed to realize the global Mittag–Leffler bounded formation control goal. Secondly,
by introducing adaptive weights into triggering condition and control protocol, an adaptive event-
triggered formation protocol is presented to achieve the global Mittag–Leffler bounded formation.
Thirdly, a five-step algorithm is provided to describe protocol execution steps. Finally, two simulation
examples are given to verify the effectiveness of the proposed schemes.

Keywords: second-order fractional multi-agent systems; QUAD inherent dynamics; formation
control; adaptive event-triggered strategy

1. Introduction

In the past few decades, there has been increasingly attention for the cooperative
control of multi-agent systems (MASs) from various application fields, such as social
sciences, artificial intelligence, and military, and so on [1–6]. As an important component
of cooperative control, the formation control, which aims to motivate agents to achieve a
predefined configuration under the designed control protocols, has been widely applied in
many practical fields, for example, unmanned aerial vehicle [7], multi-robot systems [8],
and biological system [9].

Recently, a lot of scholars have paid their attention to the formation control of multi-
agent systems (MASs), and some significant works have been reported. Such as in [10], a
neuro-adaptive formation scheme for nonlinear MASs with time-delay was designed to
realize target tracking. In [11], under the directed communication graphs, by equipping
the event-triggered approach and applying complex Laplace transform, a distributed
control scheme was presented to achieve the time-invariant formation control (TIFC) for
networked MASs. In [12], the authors developed the design method of the TIFC protocol
for second-order MASs based on sampled data on a fixed directed communication topology.
In [13], the formation-containment target was achieved for general linear MASs under a
discontinuous protocol, where the dynamics of leader is influenced by unknown input.
In [14], by applying an adaptive output–feedback approach, Wang investigated the time-
variant formation control (TVFC) of nonlinear MASs with switching networks. In [15],
by using a sliding mode method, under the influence of random disturbances, a novel
ETCS was proposed to analyze the stability of error system for second-order MASs.

It is worth noting that, in the above mentioned literature [10–15], the obtained results
focus on the integer-order MASs. However, in practical applications, such as engineering,
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manufacturing, aerospace, and artificial intelligence, the fractional systems can give a
more accurate description for various processes with the characterization of hereditary
and memory properties [16], and many results have been derived [17–22]. Recently, some
achievements have emerged in regard to the formation control of fractional-order MASs.
For example, in [23], by applying a frequency-domain analytical method, the formation
problem was studied for double-integrator FMASs. Liu et al. in [24] designed an active
reconfigurable control scheme to address the distributed formation tracking control problem
for MASs with multiple leaders under actuator faults and constraints. In [25], Gong
proposed an observer-based protocol to address the TVFC problem for FMASs with general
linear dynamics, where the topology structure is selected as fixed and switched, respectively.
In [26], by using the sliding mode strategy, a distributed feedback control scheme was
designed to solve the problems of consensus and formation for FMASs.

On the one hand, in most traditional formation control strategies, such as a slid-
ing mode scheme, impulsive strategy, and periodic sampling scheme, agents are always
assumed to obtain continuous information from their neighbors, and information trans-
mission occurs in either continuous or cyclical time. However, in practical applications,
continuous exchange of information cannot be guaranteed because of the limitations of
communication bandwidth and energy supply, which brings a lot of inconvenience. In
addition, the continual monitoring of information might result in an enormous energy
and financial waste. Therefore, researchers proposed an event-triggered control strategy
(ETCS). Under this control mechanism, information communication proceeds after a pre-
determined event occurred, which can guarantee the expected performance and reduce
communication costs. Based on the above advantages, ETCS have been widely used in
the study of MASs in [27–31]. In [28], the authors applied stability theory of FMASs and
developed a differential inequality convex function to address the consensus problem for
discontinuous singularly perturbed MASs based on ETCS. In [29], under interplay between
control gains and parameters, by employing the discrete-time signals from neighbors and
co-design approach, two novel ETCS were presented to investigate the consensus issue
of general MASs with linear growth. In [31], under the periodic DoS attacks, the problem
of MASs formation was discussed via novel attack-resilient ETCS, and the generalized
Nyquist stability criterion was used to analyze the error systems.

It should be pointed out that, in literature [28,29,31], the design of control protocols is
related to some global or unknown knowledge, such as the Laplacian matrix eigenvalue
information, and the knowledge of the unknown nonlinear dynamics. To overcome this
drawback, the distributed adaptive updating law is proposed. Recently, some scholars
have combined the advantages of ETCS and adaptive control to design the adaptive event-
triggered control. In addition, some admirable results were obtained [32–35]. For example,
in [34], the TVFC issue of linear MASs was considered under the proposed adaptive ETCS
with adjustable time-variant parameters. In [35], the authors developed an adaptive ETCS
and a novel Lyapunov function to handle the asymptotic tracking problem for uncertain
nonlinear systems with unknown virtual control coefficients.

It should be pointed out that most of works in [27–35] are concerned with the formation
control of first-order integer system, which can not accurately characterize some complex
dynamic behaviors in practical application. To the best of our knowledge, a few results
are concerned with the formation control problem of second-order FMASs. Particularly,
the distributed event-triggered control protocol and adaptive event-triggered mechanism
are adopted to address the formation problem of second-order FMASs.

Motivated by the above discussion, in this paper, our objective is to address the
global Mittag–Leffler bounded formation control issue for second-order FMASs with
QUAD inherent dynamics under the designed event-triggered and adaptive event-triggered
control mechanisms. Compared with the previous results, the significant innovations are
demonstrated as follows:

• This paper extends the formation control problem for MASs to the case of fractional
order. In the existing works [36,37], the results mainly focus on the integer order
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MASs, which can be regarded as special cases of this paper. Therefore, the results in
this paper are more general.

• The system model is modeled to second-order MASs, which is not only related to po-
sition information but also to velocity information. Compared with literature [34,38],
where the system model only considers position information, the established system
model is more realistic.

• An adaptive event-triggered control protocol is developed, where the global informa-
tion of Laplacian matrix is not required. Different from the proposed state-dependent
triggering conditions in [27–31], a constant is introduced into triggering conditions
in this paper to address the formation control issue and avoid the occurrence of
Zeno behavior.

The remainder of this brief is organized as follows: in Section 2, some preliminary
knowledge and the problem formulation are introduced. The main results are proposed in
Section 3. The executive flow algorithm in regard to protocol is presented in Section 4. Two
numerical simulations are given in Section 5. Finally, the conclusions are listed in Section 6.

Notation: see Table 1.

Table 1. Notations.

Symbol Stand for

R,N+ Set of real numbers and positive integers
Rm m-dimensional Euclidean space

Rm×n m× n real matrices
Im m-dimensional identify matrix
0m m-dimensional zero matrix

diag{· · · } a block-diagonal matrix
A > 0 (A < 0) Positive (negative) definite matrix

‖x‖
√

∑n
i=1 x2

i is the vector norm of x
⊗ Kronecker product

AT(A−1) Transpose(inverse) of matrix A
λmax(A)(λmin(A)) Maximal (Minimal) eigenvalue of A

2. Preliminaries and Problem Formulation
2.1. Basic Graph Theory

The topology between follower agents ṽ1, ṽ2, . . . , ṽN−1 and ṽN can be described by
an undirected graph G = (Ṽ ,E,A), where Ṽ = {ṽ1, ṽ2, . . . , ṽN} denotes the set of N
followers in G; E ⊆ Ṽ × Ṽ intends the set of edge (ṽi, ṽj) in G, where edge (ṽi, ṽj) shows
the information communication between ṽi and ṽj; A = [aij] ∈ RN×N is the weighted
adjacency matrix of G. For an undirected graph, the elements of adjacency A satisfy that
aij 6= 0 if and only if (ṽi, ṽj) ∈ E, and aij = 0, otherwise. Moreover, we suppose there is no
self-loops, i.e., aii = 0 in G for all i ∈ {1, 2, . . . , N}. The adjacency matrix for the leader is
defined E = diag{a10, a20, . . . , aN0}, ai0 represents connected weight between the leader
and the follower i. The neighbor set of ṽi is denoted Ni = {ṽj ∈ Ṽ , (ṽj, ṽi) ∈ E}. The in-
degree degin of ṽi is defined as degin(ṽi) = ∑N

j=1 |aij|. The Laplacian matrix corresponding
to G is L = D−A ∈ RN×N , where D = diag{degin(ṽ1), degin(ṽ2), . . . , degin(ṽN)}. There
is a path from ṽi to ṽj if there exists a finite ordered edge belongs to the edge set such
that {(ṽi, ṽk1), (ṽk1 , ṽk2), ..., (ṽkw−1 , ṽkw), (ṽkw , ṽj)} ⊆ E holds. If there exists at least a path
between any two nodes, the undirected graph is said to be connected. In this paper,
the graph G is assumed undirected.

Lemma 1 ([39]). For any ζ, ψ ∈ Rn, and W > 0, the following inequality holds:

2ζTψ ≤ ζTWζ + ψTW−1ψ.
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Lemma 2 ([28]). Let α1, α2, . . . , αn ≥ 0, 0 < q ≤ 1, and p ≥ 1. The following inequalities hold:

n1−q

(
n

∑
i=1

αi

)q

≥
n

∑
i=1

α
q
i ≥

(
n

∑
i=1

αi

)q

.

n1−p

(
n

∑
i=1

αi

)p

≤
n

∑
i=1

α
p
i ≤

(
n

∑
i=1

αi

)p

.

Definition 1 ([40]). (QUAD condition) The function f (·) is QUAD, if for any ζ ∈ Rm and
ψ ∈ Rm, there exists P ∈ Rm×m, H ∈ Rm×m, and β > 0 such that

(ζ − ψ)T p[ f (ζ)− f (ψ)]− (ζ − ψ)T H(ζ − ψ) ≤ −β(ζ − ψ)T(ζ − ψ).

2.2. Fractional Calculus

Definition 2 ([16]). For an integrable function f : [0,+∞]→ R, the Riemann–Liouville fractional
integral of order v > 0 is defined by:

c
t Iv

0 f (t) =
1

Γ(v)

∫ t

0

f (θ)
(t− θ)1−v

dθ,

where Γ(z) =
∫ ∞

0 e−ttz−1dt is Gamma function.

Definition 3 ([16]). The Caputo’s fractional derivative of order v > 0 for f ∈ Cn ([0,+∞),R) is
defined by

c
t Dv

0 f (t) =
1

Γ(n−v)

∫ t

0

f (n)(θ)
(t− θ)v−n+1 dθ,

where n ∈ N+ and v ∈ (n− 1, n). Particularly, v ∈ (0, 1), c
t Dv

0 f (t) = 1
Γ(1−v)

∫ t
0

f
′
(θ)

(t−θ)v dθ.
In the following, Dv f (t) represents c

t Dv
0 f (t).

Property 1. Let C̃, c0, and c1 be any constants. Then,

(i) DvC̃ = 0; (ii) Dv(c0 f (t)± c1g(t)) = c0 Dv f (t)± c1 Dvg(t).

Lemma 3 ([39]). Let x : [0,+∞) → Rn be a continuously differentiable function, and H ∈
Rn×n > 0, then

Dv
(

xT(t)Hx(t)
)
≤ 2xT(t)H Dvx(t).

Lemma 4 ([39]). If functions ϕ : R→ R, ξ : [0,+∞)→ R are continuously differentiable, and ϕ
is convex on R. Then, for any t ≥ 0, we obtain

Dv ϕ(ξ(t)) ≤ dϕ

dξ
Dvξ(t).

Lemma 5 ([17]). Let v ∈ R be a continuously differentiable function on [ 0,+∞], v ∈ (0, 1),
µ > 0 and d ≥ 0. If, for any t ≥ 0, Dvv(t) ≤ −µv(t) + d holds, then

v(t) ≤ v(0)Ev(−µtv) +
dψ

µ
, t ≥ 0,

where ψ = max{1, C} is constant, C is defined as in [28], and Ev(z) is the Mittag–Leffler function,

Ev(z) =
∞
∑

k=0

zk

Γ(v,k+1) , v > 0 is constant, and z is a complex variable.
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Definition 4. Let v ∈ (0, 1), if there exist constants ε > 0, µ > 0, γ > 0 ,and k∗>0, such that

‖y(t)‖ ≤ ε
(
Ev(−µtv)

)γ
+ k∗, t ≥ 0,

then y(t) is said to be Mittag–Leffler convergent to k∗.

Lemma 6. Let v ∈ (0, 1). If y(t) : [0,+∞) → Rm is continuously differentiable on any
compact interval of [0,+∞), V(y(t)) is C-regular and v(t) = V(y(t)). If there exist constants
ε > 0, µ > 0, γ > 0, and d ≥ 0, for any t ≥ 0 satisfying

(i) 0 ≤ ε‖y(t)‖γ ≤ v(t); (ii) Dvv(t) ≤ −µv(t) + d,

then y(t) is said to be Mittag–Leffler convergent to k∗, where k∗ =
(

ϕ
V(y(0))d

εµ

) 1
γ .

Proof. On the basis of condition (ii) and Lemma 6, it yields that

v(t) ≤ v(0)Ev(−µtv) +
dψ

µ
, t ≥ 0.

Combined with condition (i) and the above-mentioned inequality, we obtain

‖y(t)‖ ≤
(

V(y(0))
ε

) 1
γ
(

Ev(−µtv) +
dψ

µ

) 1
γ

, t ≥ 0.

Applying Lemma 2, we have

‖y(t)‖ ≤
(

V(y(0))
ε

) 1
γ

ϕ
(
Ev(−µtv)

) 1
γ + k∗, t ≥ 0,

where ϕ = max{1, 2
1−γ

γ }. Definition 4 shows y(t) is Mittag–Leffler convergent to k∗. The
proof is completed.

2.3. Problem Formulation

Consider the MASs consisting of one leader and N followers. The dynamics of each
follower i can be described by the following second-order differential equations:{

Dv pi(t) = vi(t),
Dvvi(t) = f (vi(t)) + ui(t),

(1)

where v ∈ (0, 1), for i = 1, 2, . . . , N, pi(t) = (pi1(t), . . . , pim(t))T ∈ Rm and vi(t) =
(vi1(t), . . . , vim(t))T ∈ Rm denote the position and velocity of ith-follow at time t, re-
spectively; ui(t) = (ui1(t), . . . , uim(t))T ∈ Rm represents the control input; the nonlinear
mapping f (vi(t)) : Rm → Rm depicts the inherent dynamics of follower i.

The dynamics of the leader is formulated as{
Dv p0(t) = v0(t),
Dvv0(t) = f (v0(t)),

(2)

where p0(t) = (p01(t), . . . , p0m(t))T ∈ Rm and v0(t) = (v01(t), . . . , v0m(t))T ∈ Rm are the
position and velocity of ith-leader at time t; f (v0(t)) : Rm → Rm depicts the inherent
dynamics of leader.

In order to obtain the main results, we made the assumptions as follows:

Assumption 1. The undirected network topology of G is connected.

Assumption 2. f (·) is QUAD.
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For systems (1) and (2), a desired geometric formation tracking vector is specified
by h̄ = (h̄1, h̄2, . . . , h̄N)

T . To achieve the desired formation between follows and leader,
define error state as ξi(t) = xi(t) − x0(t) − h̄i, where xi(t) = [pi(t), vi(t)]T , x0(t) =
[p0(t), v0(t)]T , h̄i = [hi, 0]T ; furthermore, we obtain

Dvξi(t) = Aξi(t) + Bui(t) + B f (ṽi(t)), (3)

where f (ṽi(t)) = f (vi(t))− f (v0(t)), and A =

(
0m Im
0m 0m

)
, B =

(
0m Im

)T .

Definition 5. Given a desired geometric formation, h̄i = [hi, 0]T . Under control protocol ui(t),
if for i = 1, 2, . . . , N, {

limt→∞ ‖pi(t)− p0(t)− hi‖ = 0,
limt→∞ ‖vi(t)− v0(t)‖ = 0,

holds, then systems (1) and (2) are said to realize the desired formation.

Remark 1. In Definition 5, h̄i stands for the relative offset vector between xi(t) and x0(t), if h̄i = 0,
then systems (1) and (2) are said to realize the consensus tracking.

Definition 6. Under control protocol ui(t), i = 1, 2, . . . , N, if there exist constants ε > 0, µ >
0, γ > 0 and k∗ > 0, such that

‖xi(t)− x0(t)− h̄i‖ ≤ ε
(
Ev(−µtv)

)γ
+ k∗, t ≥ 0,

then systems (1) and (2) are called to realize the global Mittag–Leffler bounded formation.

3. Main Results

In this section, we presented two distributed protocols based on event-triggered
mechanism to achieve desired formation. In addition, Zeno behavior is excluded for
designed event-triggered control scheme. Moreover, the executive algorithm in regard to
protocol is proposed.

Denote a triggering instants sequence of agent i as {ti
0, ti

1, . . . , ti
k, ti

k+1, . . .}, which is
determined by the triggering function. Let state information p̂i(t) = pi(ti

k), v̂i(t) = vi(ti
k),

where t ∈ [ti
k, ti

k+1). Denote x̂i(t) = [ p̂i(t), v̂i(t)]T , and ξ̂i(t) = [ p̂i(t)− p̂0(t)− h̄i, v̂i(t)−
v̂0(t)]T .

Denote the state measurement errors of follower and leader, respectively,

ei(t) = x̂i(t)− xi(t) = [ p̂i(t)− pi(t), v̂i(t)− vi(t)]T ,

e0(t) = x̂0(t)− x0(t) = [ p̂0(t)− p0(t), v̂0(t)− v0(t)]T .

Furthermore, we denote

Πi(t) =(x̂i(t)− x̂0(t)− h̄i)− (xi(t)− x0(t)− h̄i)

=ξ̂i(t)− ξi(t) = ei(t)− e0(t).
(4)

3.1. Global Mittag–Leffler Formation with Event-Triggered Protocol

In this subsection, the global Mittag–Leffler bounded formation of systems (1) and (2)
is discussed under the proposed control protocol based on predefined ETCS, and the for-
mation condition is derived in terms of linear matrix inequalities (LMIs). In addition, Zeno
behavior is excluded.
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The distributed ETCS for ith agent is designed as

ui(t) = −K1

[
∑

j∈Ni

aij(ξ̂i(t)− ξ̂ j(t)) + bi ξ̂i(t)

]
, (5)

where K1 ∈ Rm×2m is the feedback gain matrices to be determined later, and the triggering
instant sequence ti

k of the ith agent will be determined by the following event-triggered
condition

ti
k+1 = in f {t : t > ti

k, ‖Πi(t)‖ − γ‖ξi(t)‖ − εi > 0}, (6)

where γ > 0 is a threshold parameter, and εi > 0. Figure 1 shows a schematic of the
designed ETCS protocol.

Figure 1. Schematic of ETCSl.

Using (4)–(6), we obtain

Dvξi(t) =Aξi(t) + B f (ṽi(t))− BK1

[
∑

j∈Ni

aij(ξ̂i(t)− ξ̂ j(t)) + bi ξ̂i(t)

]

=Aξi(t) + B f (ṽi(t))− BK1

[
∑

j∈Ni

aij(Πi(t) + ξi(t))− (Πj(t) + ξ j(t)) + bi(Πi(t) + ξi(t))

]

=Aξi(t) + B f (ṽi(t))− BK1

[
∑

j∈Ni

aij(ξi(t)− ξ j(t)) + biξi(t)

]

− BK1

[
∑

j∈Ni

aij(Πi(t)−Πj(t)) + biΠi(t)

]
.

(7)

Set ξ(t) = (ξT
1 (t), ξT

2 (t), . . . , ξT
N(t))

T , Π(t) = (ΠT
1 (t), ΠT

2 (t), . . . , ΠT
N(t))

T , f (ṽ(t)) =
( f T(ṽ1(t)), f T(ṽ2(t)), . . . , f T(ṽN(t)))T . Furthermore, the error system (7) can be written as

Dvξ(t) = (IN ⊗ A)ξ(t) + (IN ⊗ B) f (ṽ(t))− (H ⊗ BK1)ξ(t)− (H ⊗ BK1)Π(t). (8)
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Theorem 1. Suppose that Assumptions 1 and 2 hold, and v ∈ (0, 1). If there exist scalars α > 0,
β > 0 and γ > 0, matrices Q1 > 0, W1 and K1, such that

Ξ =IN ⊗
(

Q1 A + ATQ1

2
+ W1 − βIm

)
+

γ2

2α
I2Nm

+ H ⊗
(

Q1BK1 + KT
1 BTQ1 + αQ1BK1KT

1 BTQ1

2

)
< 0

(9)

holds, then FMASs (1) and (2) can realize the global Mittag–Leffler bounded formation under
designed protocol (5) with (6).

Proof. Consider the following candidate Lyapunov function:

V(t) =
1
2

ξT(t)(IN ⊗Q1)ξ(t). (10)

For t ∈ [tk, tk+1), according to Lemma 3, the Caputo’s fractional derivative of V(t)
along of the trajectories of error system (8) is calculated as

DvV(t) ≤ξT(t)
(

IN ⊗
Q1 A + ATQ1

2

)
ξ(t)− ξT(t)

(
H ⊗

Q1BK1 + KT
1 BTQ1

2

)
ξ(t)

+ ξT(t)(IN ⊗Q1B) f (ṽ(t))− ξT(t)(H ⊗Q1BK1)Π(t).

(11)

According to the Assumption 2 that f (·) is QUAD, we obtain

ξT(t)(IN ⊗Q1B) f (ṽ(t)) ≤ ξT(t)(IN ⊗ (W1 − βI2m))ξ(t) (12)

By Lemma 1, we obtain

−ξT(t)(H ⊗Q1BK1)Π(t) ≤ α

2
ξT(t)(H ⊗Q1BK1KT

1 BTQ1)ξ(t) +
1

2α
Π(t)TΠ(t). (13)

Substituting (6), and (10) to (13), it yields that

DvV(t) ≤ξT(t)

[
IN ⊗

(
Q1 A + ATQ1

2
+ W1 − βI2m

)
+

1
2α

ΠT(t)Π(t)

+ H ⊗
(

Q1BK1 + KT
1 BTQ1 + αQ1BK1KT

1 BTQ1

2

)]
ξ(t) ≤ −µV(t) + $,

where µ = − 2λmin(Ξ)
λmax(Q1)

, and $ = max1≤i≤N{ εi
2α}. By utilizing Lemma 6, it can derive

‖ξ(t)‖ ≤
(

2V(0)
λmin(Q1)

) 1
2 (

Ev(−µtv)
) 1

2 +
2V(0)$

λmin(Q1)µ
, (14)

where V(0) = 1
2 ξT(0)(IN ⊗ Q1)ξ(0). According to Definition 6, it shows that the global

Mittag–Leffler bounded formation of FMASs (1) and (2) is realized. The proof is com-
pleted.

As is known to all, “Zeno behavior” means that the limitless number of event-
triggering times is proceeded in finite time, it causes the ETCS protocol to be invalid.
Consequently, the following theorem is to verify that the intervals between any two event-
triggering instants are lower-bound.

Theorem 2. For FMASs (1) and (2), under the scheme (5), the Zeno behavior can be excluded.
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Proof. According to Theorem 1, we can obtain that ‖Dvξi(t)‖ is bounded. Hence, for t ∈
[ti

k, ti
k+1), there is a positive scalar π, such that ‖Dvξi(t)‖ ≤ π. Because of ξi(t) = xi(t)−

x0(t)− h̄i, and Πi(t) = ξ̂i(t)− ξi(t), we have Πi(tk) = 0 and DvΠ(t) = −Dvξ(t). Thus,
we also derive

‖Π(t)‖ = ‖Π(t)−Π(tk)‖ = ‖D−v
tk

Dv
t Π(t)‖ = ‖ 1

Γ(v)

∫ t

ti
k

(t− θ)v−1DvΠ(θ)dθ‖

= ‖ 1
Γ(v)

∫ t

ti
k

(t− θ)v−1Dvξ(θ)dθ‖ ≤ 1
Γ(v)

∫ t

ti
k

(t− θ)v−1‖Dvξ(θ)‖dθ ≤
π(t− ti

k)
v

Γ(v + 1)
.

(15)

In line with event-triggered condition (6), when t = ti
k+1, it is easy to derive that

‖Πi(ti
k+1)‖ > γ‖ξi(ti

k+1)‖+ εi. Furthermore, it follows from (15) that γ‖ξi(ti
k+1)‖+ εi <

π(ti
k+1−ti

k)
v

Γ(v+1) . If ‖ξi(ti
k+1)‖ = 0, then 0 < ( Γ(v+1)εi

π )
1
v < ti

k+1 − ti
k. If ‖ξi(ti

k+1)‖ 6= 0, then

0 < (
Γ(v+1)(γ‖ξi(ti

k+1)‖+εi)

π )
1
v < ti

k+1 − ti
k. Therefore, we can draw the conclusion that Zeno

behavior is excluded . The proof is completed.

3.2. Global Mittag–Leffler Bounded Formation with Adaptive Event-Triggered Protocol

In this subsection, the global Mittag–Leffler bounded formation is discussed under an
adaptive protocol based on ETCS. In addition, Zeno behavior is excluded.

We consider the following adaptive ETCS formation protocol:

ui(t) = −K2

[
∑

j∈Ni

cij(t)aij
(
ξ̂i(t)− ξ̂ j(t)

)
+ ci(t)bi ξ̂i(t)

]
,

Dvcij(t) = aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ
(
ξ̂i(t)− ξ̂ j(t)

)
+ 1− cij(t),

Dvci(t) = bi ξ̂i(t)TΛξ̂i(t) + 1− ci(t),

(16)

where K2 ∈ Rm×2m and Λ ∈ R2m×2m are the feedback gain matrices, cij(t), ci(t) are the
adaptive coupling weights with cij(0) = cji(0) > 0, ci(0) > 0, k1, k2 are positives satisfying
that c1 < cij(0), c2 < ci(0).

The triggering instant sequence ti
k of the ith agent will be determined iteratively by

the following trigger function gi(·)

ti
k+1 = in f

{
t > ti

k : gi(Πi(t), ξ̂ij(t), ci(t), cij(t)
)
> 0

}
, (17)

where ξ̂ij(t) =
(
ξ̂i(t)− ξ̂ j(t)

)
. The triggering function in triggering mechanisms (17) is

designed as gi(·) = Φi −Ψi − εi, thereinto εi > 0, and

Φi =
N

∑
i=1

∑
j∈Ni

(
2c1aij + (2ci(t)− c2)bi

)
‖Λ‖ ‖Πi(t)‖2

+ 2
N

∑
i=1

∑
j∈Ni

(
cij(t)− c1

)
aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ Πi(t),

Ψi =
N

∑
i=1

∑
j∈Ni

cij(t)− c1

2
aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ
(
ξ̂i(t)− ξ̂ j(t)

)
.

Remark 2. It is worth noting that, if the adaptive coupling weight cij(t) and ci(t) in (16) and (17)
are constants, then determination of these scalar gains requires global information of the Laplacian
matrix. Hence, in this paper, cij(t) and ci(t) are introduced, which are adaptive rather than
being prefixed.
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For the ith follower, substituting the control protocol (17) into the error system (3), it yields that

Dvξi(t) =Aξi(t) + B f (ṽi(t))− BK2

[
∑

j∈Ni

cij(t)aij
(
ξ̂i(t)− ξ̂ j(t)

)
+ ci(t)bi ξ̂i(t)

]

=Aξi(t) + B f (ṽi(t))− BK2

[
∑

j∈Ni

cij(t)aij

(
(Πi(t) + ξi(t))

− (Πj(t) + ξ j(t))

)
+ ci(t)bi(Πi(t) + ξi(t))

]

=Aξi(t) + B f (ṽi(t))− BK2

[
ci(t)bi(Πi(t) + ξi(t))

]

− BK2

[
∑

j∈Ni

cij(t)aij(ξi(t)− ξ j(t) + Πi(t)−Πj(t))

]
.

(18)

Theorem 3. Suppose that Assumptions 1 and 2 hold, and v ∈ (0, 1). If there exist scalars c1, c2,
and β > 0, matrices Q2 > 0, W1, and K2, such that

Θ =
[

IN ⊗
(

Q2 A + ATQ2 + 2(W1 − βI2m)
)
− (c1L + c2D)⊗Λ

]
≤ 0,

holds, then FMASs (1) and (2) can realize the global Mittag–Leffler bounded formation under
designed adaptive protocol (16) with ETCS (17).

Proof. Consider the following candidate Lyapunov function:

V(t) =
N

∑
i=1

ξi(t)TQ2ξi(t) +
N

∑
i=1

∑
j∈Ni

(
cij(t)− c1

)2

4
+

N

∑
i=1

(
ci(t)− c2

)2

4
. (19)

For t ∈ [tk, tk+1), by employing Lemmas 3 and 4, the Caputo’s fractional derivative of
V(t) is listed as

DvV(t) ≤2
N

∑
i=1

ξi(t)TQ2Dvξi(t) +
N

∑
i=1

(ci(t)− c2)

2
Dvci(t) +

N

∑
i=1

∑
j∈Ni

(cij(t)− c1)

2
Dvcij(t). (20)

It follows from (23) that

2
N

∑
i=1

ξi(t)TQ2Dvξi(t) =
N

∑
i=1

ξT
i (t)

(
Q2 A + ATQ2

)
ξi(t) + 2

N

∑
i=1

ξT
i (t)(Q2B) f (ṽi(t))

−
N

∑
i=1

∑
j∈Ni

cij(t)aij(ξi(t)− ξ j(t))TΛ(ξi(t)− ξ j(t))

−
N

∑
i=1

∑
j∈Ni

cij(t)aij(ξi(t)− ξ j(t))TΛ(Πi(t)−Πj(t))

− 2
N

∑
i=1

ci(t)biξ
T
i (t)Λξi(t)− 2

N

∑
i=1

ci(t)biξ
T
i (t)ΛΠi(t),
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where Λ =
Q2BK2+KT

2 BT Q2
2 . Based on (16), it can be derived that

N

∑
i=1

∑
j∈Ni

(cij(t)− c1)

2
Dvcij(t) =

N

∑
i=1

∑
j∈Ni

(cij(t)− c1)

2
aij(ξi(t)− ξ j(t))TΛ(ξi(t)− ξ j(t))

+
N

∑
i=1

∑
j∈Ni

(cij(t)− c1)

2
aij(Πi(t)−Πj(t))TΛ(Πi(t)−Πj(t))

+
N

∑
i=1

∑
j∈Ni

(cij(t)− c1)aij(ξi(t)− ξ j(t))TΛ(Πi(t)−Πj(t))

−
N

∑
i=1

∑
j∈Ni

(cij(t)− c1)(cij(t)− 1)
2

.

In addition, by use of (16), we also obtain

N

∑
i=1

(ci(t)− c2)

2
Dvci(t) =

N

∑
i=1

(ci(t)− c2)

2
bi
(
ξi(t) + Πi(t)

)TΛ
(
ξi(t) + Πi(t)

)
−

N

∑
i=1

(ci(t)− c2)(ci(t)− 1)
2

≤
N

∑
i=1

(
ci(t)− c2

)
biξ

T
i (t)Λξi(t) +

N

∑
i=1

(
ci(t)− c2

)
biΠT

i (t)ΛΠi(t)

−
N

∑
i=1

(
ci(t)− c2

)(
ci(t)− 1

)
2

.

Based on Lemma 1, it yields that

−2
N

∑
i=1

ci(t)biξ
T
i (t)ΛΠi(t) ≤

N

∑
i=1

ci(t)biξ
T
i (t)Λξi(t) +

N

∑
i=1

ci(t)biΠT
i (t)ΛΠi(t). (21)

Form (12), we have

2
N

∑
i=1

ξT
i (t)(Q2B) f (ṽi(t)) ≤ 2

N

∑
i=1

ξT
i (t)(W1 − βI2m)ξi(t). (22)

Based on the above calculations, we obtain

DvV(t) ≤
N

∑
i=1

ξT
i (t)

(
Q2 A + ATQ2 + 2(W1 − βI2m)

)
ξi(t)

−
N

∑
i=1

∑
j∈Ni

cij(t) + c1

2
aij

(
ξi(t)− ξ j(t)

)T
Λ(ξi(t)− ξ j(t))

−
N

∑
i=1

∑
j∈Ni

c1aij(ξi(t)− ξ j(t))TΛ(Πi(t)−Πj(t))

+
N

∑
i=1

∑
j∈Ni

cij(t)− c1

2
aij(Πi(t)−Πj(t))TΛ(Πi(t)−Πj(t))

(23)
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+
N

∑
i=1

(2ci(t)− c2)biΠT
i (t)ΛΠi(t)−

N

∑
i=1

c2biξ
T
i (t)Λξi(t)

−
N

∑
i=1

∑
j∈Ni

(cij(t)− c1)(cij(t)− 1)
2

−
N

∑
i=1

(ci(t)− c2)(ci(t)− 1)
2

.

In light of Lemma 1, we can obtain

−
N

∑
i=1

∑
j∈Ni

c1aij(ξi(t)− ξ j(t))TΛ(Πi(t)−Πj(t))

≤
N

∑
i=1

∑
j∈Ni

c1

2
aij(ξi(t)− ξ j(t))TΛ(ξi(t)− ξ j(t)) +

N

∑
i=1

∑
j∈Ni

c1

2
aij(Πi(t)−Πj(t))TΛ(Πi(t)−Πj(t)).

(24)

According to expression (4), we have

N

∑
i=1

∑
j∈Ni

cij(t)− c1

2
aij(Πi(t)−Πj(t))TΛ(Πi(t)−Πj(t))

=−
N

∑
i=1

∑
j∈Ni

(
cij(t)−c1

2 aij
(
x̂i(t)− x̂j(t)− (h̄i − h̄j)

)T

Λ
(
x̂i(t)− x̂j(t)− (h̄i − h̄j)

) )

+
N

∑
i=1

∑
j∈Ni

(
(cij(t)− c1)aij(x̂i(t)− x̂j(t)− (h̄i − h̄j)

T

Λ(Πi(t)−Πj(t))

)

+
N

∑
i=1

∑
j∈Ni

cij(t)− c1

2
aij(ξi(t)− ξ j(t))TΛ(ξi(t)− ξ j(t)).

(25)

It is easy to obtain

−
(cij(t)− c1)(cij(t)− 1)

2
≤ −

(cij(t)− c1)
2

4
+

(c1 − 1)2

4
,

− (ci(t)− c1)(ci(t)− 1)
2

≤ − (ci(t)− c1)
2

4
+

(c2 − 1)2

4
.

(26)

Substituting (24) and (25) into (23), we can derive

DvV(t) ≤ξT(t)

[
IN ⊗

(
Q2 A + ATQ2 + 2(W1 − βI2m)− (c1L + c2D)⊗Λ

)]
ξ(t)

+
(c1 − 1)2

4
+

(c2 − 1)2

4
+

N

∑
i=1

∑
j∈Ni

(
2c1aij + (2ci(t)− c2)bi

)
Πi(t)TΛΠi(t)

+ 2
N

∑
i=1

∑
j∈Ni

(cij(t)− c1)aij
(
ξ̂i(t)− ξ̂ j(t)

)T
ΛΠi(t)

−
N

∑
i=1

∑
j∈Ni

cij(t)− c1

2
aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ
(
ξ̂i(t)− ξ̂ j(t)

)
≤− µV(t) + gi(Πi(t), Xij(t), ci(t), cij(t)) + k3 ≤ −µV(t) + k3,

where µ = min{− λmax(Θ)
λmin(Q2)

, 1}, k3 = (c1−1)2

4 + (c2−1)2

4 + σ, σ = max1≤i≤N{εi}. Apply
Lemma 5, we can obtain

‖ξ(t)‖ ≤
(

V(0)
λmin(Q2)

) 1
2
(

Ev(−µtv) +
k3ψ

µ

) 1
2
≤
(

V(0)
λmin(Q2)

) 1
2 (

Ev(−µtv)
) 1

2 +

(
k3ψ

µ

) 1
2
,
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where V(0) = ∑N
i=1 ξi(0)TQ2ξi(0) + ∑N

i=1 ∑j∈Ni

(cij(0)−c1)
2

4 + ∑N
i=1

(ci(0)−c2)
2

4 . According to
Definition 6, it implies that FMASs (1) and (2) can achieve the Mittag–Leffler bounded
formation under designed control protocol (16) with the ETCS (17). The proof is com-
pleted.

Theorem 4. For FMASs (1) and (2), under the control scheme (16), Zeno behavior is avoided.

Proof. According to Theorem 3, we obtain that ‖Dvξi(t)‖ is bounded. Hence, for t ∈
[ti

k, ti
k+1), there has positive scalar π, such that Dv‖ξi(t)‖1 ≤ ‖Dvξi(t)‖1 ≤ π, which

utilizes the fact that Dv | f (t)| ≤ sign( f (t))Dv f (t). According to Definition 2, we can

obtain ‖ξi(t)‖1 ≤
π(t−ti

k)
v

Γ(v)
.

In light of the the triggering function in triggering mechanisms (17), when t = ti
k+1,

we have

N

∑
i=1

∑
j∈Ni

(
2c1aij + (2ci(t)− c2)bi

)
‖Λ‖ ‖Πi(t)‖2 + 2

N

∑
i=1

∑
j∈Ni

(
cij(t)− c1

)
aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ Πi(t)

>
N

∑
i=1

∑
j∈Ni

cij(t)− c1

2
aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ
(
ξ̂i(t)− ξ̂ j(t)

)
+ εi > εi.

In addition,

N

∑
i=1

∑
j∈Ni

(
2c1aij + (2ci(t)− c2)bi

)
‖Λ‖ ‖Πi(t)‖2 + 2

N

∑
i=1

∑
j∈Ni

(
cij(t)− c1

)
aij
(
ξ̂i(t)− ξ̂ j(t)

)T
Λ Πi(t)

≤
N

∑
i=1

∑
j∈Ni

2
(
|2c1aij + (2ci(t)− c2)bi|

)
‖Λ‖ ‖ξi(t)‖2

1 + 8
N

∑
i=1

∑
j∈Ni

|
(
cij(t)− c1

)
aij| ‖ξi(t)‖4

1

(27)

Because the adaptive coupling weight ci(t) and cij(t) will have convergent constants,
then |2c1aij +(2ci(t)− c2)bi| and |(cij(t)− c1)aij| are constants. Let τ = max1≤i,j≤N{|2c1aij +
(2ci(t)− c2)bi|} and ϑ = max1≤i,j≤N{|(cij(t)− c1)aij|}. Furthermore, combining with

‖ξi(ti
k+1)‖1 ≤

π(ti
k+1−ti

k)
v

Γ(v)
and (3.24), we have εi < 2N‖Λ‖ π(ti

k+1−ti
k)

2v

Γ(v)
+ 8N‖Λ‖π(t−ti

k)
4v

Γ(v)
<

10N‖Λ‖π(ti
k+1−ti

k)
4v

Γ(v)
. Hence, it yields that ti

k+1 − ti
k > ( εiΓ(v)

10N‖Λ‖ )
1

4v > 0. This implies that
Zeno behavior is excluded in Theorem 3. The proof is completed.

Remark 3. In the designed control protocol (5), the control gain K1 and triggering condition
parameter γ > 0 are required to satisfy condition (9). Because the term W1 − βIm may be negative,
then K1 does not need to be large. In the designed control protocol (5), the control gains K2 and
Λ are applied to satisfy inequality condition in Theorem 3. It should be pointed out that adaptive
ETCS means that coupling weight is adaptively adjusted with error state ξ̂i. The gain K2 is still
determined from precisely known agent dynamics, which is not adaptive.

Remark 4. In the existing works [27–31], the triggering function is designed as state-dependent
that is h(·) = ‖Πi(t)‖ − γ‖ξi(t)‖. It is worth noting that this may lead to some limitations,
such as the requirement on continuous communication and occurrence of Zeno behavior. To
circumvent this drawback, some scholars proposed a state-independent triggering function [41], i.e.,
h(·) = ‖Πi(t)‖ − aie−bit − ci. However, the triggering function does not include the information
from the system states, which would lead to the change of the system performance. For the design
of the distributed event-triggered scheme, how to avoid Zeno behavior while ensuring control
performance is a challenge. In this paper, constants εi and εi are introduced into triggering
conditions (6) and (17) to address this problem, respectively.



Fractal Fract. 2022, 6, 380 14 of 21

4. Process of the Event-Triggered Scheme

In this section, we present the workflow description of the ETCS executive process.

Event-triggered protocol execution:

Step 1: For i = 1, 2, . . . , N, choose the desired information of formation h̄i.
Step 2: if bi > 0, apply the state information of leader p0(t) and v0(t).
Step 3: if function gi(·) ≥ 0, share its state information of position pi(ti

k+1)

and velocity vi(ti
k+1), moreover including triggered instant ti

k+1.
Step 4: update state information p̂i(t), v̂i(t) and control input signal.
Step 5: if updated state information p̂i(t) and v̂i(t) are received from their neighbors,
then update the state information p̂j(t), v̂j(t) and control input signal.

5. Numerical Simulations

In this section, to validate the correctness of the proposed results, two simulation
examples are given. The efficiency of distributed event-triggered protocol and adaptive
event-triggered scheme is illustrated in Examples 1 and 2, respectively.

Example 1. The second-order FMASs with QUAD inherent dynamics is employed to simulate a
traffic scenario in the rough sand, which consists of three followers labeled 1–3 and a leader labeled
0. Suppose that each agent denotes a robot, where leader is called as a guidance robot. Our objective
is that multiple autonomous robots finally shape a formation pattern of a triangle. Figure 2 shows
the corresponding topologly structure.

Moreover, let ei = pi(t)− p0(t)− hi and Ei = vi(t)− v0(t) are the position error and
velocity error between leader and followers i.

Figure 2. Interaction topology between agents.

According to Figure 2, the weighted adjacency matrix of this system is:

A =

 0 0.5 1
0.5 0 1
1 1 0

.

The weight of communication between leaders and followers D = diag{1.5, 1.5, 0},
and parameter v = 0.98.

Select the dynamic function fi(vi) =

(
fi1(vi1)
fi2(vi2)

)
=

( 1
2 (|vi1 + 1| − |vi1 − 1|)
1
2 (|vi2 + 1| − |vi2 − 1|)

)
, it is

easy to check that Assumption 2 holds. Let scalars µ = 0.86, α = 0.25, β = 1.07, γ = 1.58,
ε1 = 2.04, ε2 = 1.879, and ε3 = 2.23. Set the predesigned formation compensation vector
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as: h1 = (h11, h12)
T = (1.90,−0.45)T , h2 = (h21, h22)

T = (1.20,−1.00)T , h3 = (h31, h32)
T =

(0.30,−0.40)T .

For protocol (5), select the control gain matrix K1 =

(
4.67 1.89 3.23 −8.78
−2.46 1.77 2.30 4.42

)
.

According to inequality (9), the following matrixes are derived:

Q1 =


4.29 1.98 3.34 4.65
3.33 7.47 2.16 −4.44
−3.56 2.11 1.98 4.65
−0.76 3.59 −1.87 3.56

, W1 =


3.98 1.96 1.55 −0.83
2.69 0.41 1.09 −2.55
2.78 −4.27 1.66 1.00
−0.12 2.54 1.83 5.21

.

The triggering interval of the three followers under the triggering function (6) is shown
in Figure 3; it can be seen that there is no Zeno behavior occurs. The trajectories of control
input are shown in Figure 4. Figure 5 shows the formation tracking errors of ξi1 and ξi2
within 6 s. From Figure 5, it can be found that errors ξi1 and ξi2 asymptotically approach 0.
Figure 6 shows the formation of leader and followers at different times, and they finally
perform and maintain an obtuse triangle formation. Thus, it can be verified that, under the
event-triggered strategy (6), the control protocol (5) for the shape of the desired formation
is effective.

Figure 3. The triggered instants of all followers in Example 1.

Figure 4. The trajectories of control input in Example 1.
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(a) (b)

Figure 5. Formation tracking errors in Example 1. (a) formation tracking errors of ξi1; (b) formation
tracking errors of ξi2.

(a) t = 1 s (b) t = 2 s

(c) t = 3 s (d) t = 4 s

Figure 6. States trajectory snapshots of agents at different times.

Example 2. Consider a second-order FMASs with QUAD inherent dynamics, which consists of
4 followers labeled 1–4 and a leader labeled 0. Figure 7 shows the corresponding topology. Moreover,
let ei = pi(t)− p0(t)− hi and Ei = vi(t)− v0(t) are the position error and velocity error between
leader and followers i.

Figure 7. Interaction topology between agents.

According to Figure 6, the weighted adjacency matrix of this system is

A =


0 1.5 0 0

1.5 0 1 0
0 1 0 1.5
0 0 1.5 0

.

The weight of communication between leaders and followers D = diag{1, 0, 0, 1},

and parameter v = 0.98. Select the dynamic function fi(vi) =

(
0 1
−1 1

)
vi +

(
0

sign(vi1)

)
=
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(
vi2

vi2 − vi1 + sign(vi1)

)
, it is easy to check that Assumption 2 holds. Let scalars c1 = 0.17,

c2 = −0.48, β = 1.33, ε1 = 1.79, ε2 = 1.58 and ε3 = 1.84. Set the predesigned formation
compensation vector as:

h1 = (h11, h12)
T = (2.5,−1.5)T , h2 = (h21, h22)

T = (1.5,−1.0)T ,
h3 = (h31, h32)

T = (2.1,−1.5)T , h4 = (h41, h42)
T = (1.0,−0.5)T .

For protocol (16), select the control gain matrixes

K2 =

(
−5.11 −2.01 31.89 −0.78
3.54 −7.88 4.87 −4.20

)
, Λ =


3.23 −1.88 1.36 0.79
6.21 5.36 −2.98 −0.65
4.54 2.08 −4.77 1.78
−3.01 3.66 −0.98 3.56

.

According to inequality condition, the following matrixes are derived:

Q2 =


3.20 4.98 1.44 5.10
−2.44 3.51 2.18 0.88
4.62 −1.52 5.02 3.16
0.41 2.50 1.31 2.89

, W2 =


0.34 0.98 1.20 −5.11
2.76 0.44 1.02 2.35
3.70 4.22 −3.64 −2.00
−2.12 3.26 2.66 2.12

.

The triggering interval of the four followers under the triggering function (17) is
shown in Figure 8, it can be seen that there is no Zeno behavior occurs. Figure 9 describes
the trajectories of control input (16), and the trajectories of adaptive coupling weight are
displayed in Figure 10. From Figure 10, we can find that the adaptive coupling weight
is convergent to constant. Figure 11 shows the formation tracking errors of ξi1 and ξi2
within 8 s, and we find errors ξi1 and ξi2 asymptotically approach 0. Figure 12 shows the
formation of leader and followers at different times, and they perform and maintain a
rectangle formation finally. Thus, it can be verified that, under the ETCS (17), the control
protocol (16) for the shape of the desired formation is efficient.

Figure 8. The triggered instants of all followers in Example 2.
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Figure 9. The trajectories of control input in Example 1.

(a) (b)

(c)

Figure 10. Formation tracking errors in Example 2. (a) formation tracking errors of ξi1; (b) formation
tracking errors of ξi2; (c) formation tracking errors of ξi2.

(a) (b)

Figure 11. Formation tracking errors in Example 2. (a) formation tracking errors of ξi1; (b) formation
tracking errors of ξi2
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(a) t = 1 s (b) t = 2 s

(c) t = 3 s (d) t = 4 s

Figure 12. States trajectory snapshots of agents at different times.

6. Conclusions

This paper has disscussed the global Mittag–Leffler formation for FMASs with QUAD
inherent dynamics. Two distributed control schemes based on event-triggered strategies
have been proposed by utilizing local information from the neighbors. The global Mittag–
Leffler (bounded) formation conditions have been obtained in the form of LMIs. Future
research interests is to focus on the time-varying formation in finite/fixed time for FMASs.
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