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Abstract: In this article, we will prove some new diamond alpha Hilbert-type dynamic inequalities
on time scales which are defined as a linear combination of the nabla and delta integrals. These
inequalities extend some known dynamic inequalities on time scales, and unify and extend some
continuous inequalities and their corresponding discrete analogues. Our results will be proven by
using some algebraic inequalities, diamond alpha Holder inequality, and diamond alpha Jensen’s
inequality on time scales.

Keywords: Hilbert’s inequality; dynamic inequality; time scale; diamond-« calculus

1. Introduction

Over the past decade, a great number of dynamic Hilbert-type inequalities on time
scales has been established by many researchers who were motivated by various applica-
tions; see the papers [1-4].

For example, Pachpatte [5] proved that if {a,, }, {b,} are two non-negative sequences of
real numbers defined form =1,...,k,andn =1,...,r withag = by = 0, and {pm}, {qn}, are
two positive sequences of real numbers defined for m =1,...,kandn =1,...,r wherek, r
are natural numbers. Further P, = 2 psand Q, = Z gt, and ® and ¥ are two real-valued

s=1
non-negative, convex, and submultiplicative funchons defmed on [0,00), then

cutn £ (32
(£ moofen(2)))
(8 () (5 ()

Additionally, in the same paper [5], Pachpatte proved that if F € C![[0,9],RT],
¢ € CY[0,¢], RT] with F (0) = ¢(0) = 0 and p(&), q(&) are two positive functions defined

koo @(am)¥(bn)
Z Z m-+n

m=1n=1

)

where

M(k,r) =
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for ¢ € [0,9) and T € [0,¢), fo &)d¢ and Q(¢ fO T)dt for s € [0,9) and
t € [0,g) where 9, ¢ are posmve real numbers; thus

F(?Fg(g( ) dsds < L(9, ¢ <f0 ( ><D</p'((ss))>2ds>%
<(Jste=9 (a0 (55

o3[ (S0)') (52 0)'

Under the same conditions as seen above, with few modifications, Handley et al. [6]
extended (1) and (2) as follows:

Jy

where

n
kl ky l—I CD/ (af,mg) n k{ va % e
= Cmy \ T
y -} “—VgM(kl,._.,kn) < Y (kg—mé+1)<p[,méq>g< mé> > , 3)
mi=1 mp=1 L / (=1 my=1 pg,lﬂg
X vy
(=1
1 /
NLEARLTANYA 10 A
M(klr ,kn): v < Z ( IE ,m))w) ,
()7 i my=1 £my
and
n
IT ®o(F (s¢))

¢ Oy
[ s,
0 0 n i
(£e)

L(®,... 1_[1 (/ (8 —s¢) (Pe(sz)fpe <F/(S€))ylgdse) W, )

L () )

wherey; € (0.1), 7 =1—7,7= '21 Yi,and v =n — 1.
1=

L(dy,...,0

In [7], Pachpatte established the following Hilbert-type integral inequalities under
the following conditions: If # > 1,1 > 1, and f(§) > 0, g(&) > 0, for ¢ € ( ¢) and
€ (0,¢), where ¢ and ¢ are positive real numbers and define F (s fo £)d¢ and

:fog T)dt, fors € (0,8) and t € (0,¢), then
1
¢ s OGO s < (o)} -1 as)’
Jo o VIR sd ()2 fo F'(s)F (s) ) ds

x (ﬁf(g -3 (c“g@))zd%) g

©)
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and
<(Jste=9 (a2 (35]) ) #9)
where
o= L[ (TR a7 (YUY g5
and
I (@)d;(ﬂ@)‘F(G(%))dsd% < 1(s3)} (foﬁ(ﬂ ) <p(s)q>(F(s) )st>; ”
<(fite-) (s (g(%)))iz%) 7
TT 4 (F o(50,30))
L [ e 21 Tds1dSy ... ds,dS,
7 £ Leen) ®
> L(0161,- -+, OnGn) . )
X glil1 ( oI5 (0 —s0) (50— S0) (Pe(szr %)%(ngﬁjﬁj} ))ﬁ[dszd%/z) "
where

1
O 160 (®y(Py(se, )\ 7
wab“qmglz (/ / (gx%25”> %m%&

A time scale T is an arbltrary, non-empty, closed subset of the set of real numbers R.
Throughout the article, we assume that T has the topology that it inherits from the standard
topology on R. We define the forward jump operator ¢ : T — T for any ¢ € T by

o) :=inf{seT:s>(},
and the backward jump operator p : T — T for any ¢ € T by

() :==sup{seT:s <}

In the preceding two definitions, we set inf@ = sup T (i.e., if { is the maximum of T,
then 0({) = ¢) and sup @ = inf T (i.e., if { is the minimum of T, then p({) = {), where @
denotes the empty set.

A point { € TwithinfT < { < sup T is said to be right-scattered if ¢({) > ¢, right-
dense if 0({) = (, left-scattered if p({) < ¢, and left-dense if p({) = {. Points that are
simultaneously right-dense and left-dense are said to be dense points, whereas points that
are simultaneously right-scattered and left-scattered are said to be isolated points.

The forward graininess function y : T — [0, ) is defined for any { € T by u(() :=
o) - ¢.

If £ : T — Ris a function, then the function F7 : T — R is defined by F7({) =
F(0(0)),¥C € T, thatis F” = F ooc. Similarly, the function F? : T — R is defined by
FP(T) =g(p(C)),¥C € T; thatis, FP = F op.

The sets T*, Ty and T are introduced as follows: if T has a left-scattered maximum
{1, then T* = T — {1}, otherwise T* = T. If T has a right-scattered minimum ¢, then
T* = T — {2}, otherwise T, = T. Finally, we have T% = T* N T,.
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The interval [4, b] in T is defined by
[a,b]r ={Ce€T:a<{<b}.

We define the open intervals and half-closed intervals similarly.

Assume f : T — Ris a function and { € T*. Then f 2(Z) € R is said to be the delta
derivative of /- at  if for any € > 0 there exists a neighborhood U of { such that, for every
s € U, we have

[F(0(2)) = F ()] = FAQ)[e(2) —s]| < elo(C) — s

Moreover, | is said to be delta differentiable on T* if it is delta differentiable at every
et~

Similarly, we say that f V() € R is the nabla derivative of f at { if, for any ¢ > 0,
there is a neighborhood V of {, such that for all s € V

F((8)) = F ()] = FY(D)[p(§) —s| < elp(Z) —sl- ©)

Furthermore, [ is said to be nabla differentiable on Ty if it is nabla differentiable at
each ¢ € Ty.

A function f : T — R is said to be right-dense continuous (rd-continuous) if f is
continuous at all right-dense points in T and its left-sided limits exist at all left-dense points
inT.

In a similar manner, a function F : T — R is said to be left-dense continuous (Id-
continuous) if / is continuous at all left-dense points in T and its right-sided limits exist at
all right-dense points in T.

The delta integration by parts on time scales is given by the following formula

b b
[ 8@ @7 = g0)F ()~ g@)r (@) = [ 5"©F (@)L, (10
whereas the nabla integration by parts on time scales is given by
b b
[ 7@ @VE =s®)r () -g@)r @) - [ g@r @)Ve. an

The following relations will be used.
(i) IfT=R,then

(12)
[r@ne= [ rove= ["rea
(i) U T = Z,then
Q) =C+1 pQ)=0-1, wu@) =v(@)=1,
FAQ) =AF(Q), FY(Q) =VF(Q), )

b b—1 b b
[ros-rro. [rovi- ¥ e,

where A and V are the forward and backward difference operators, respectively.

Now we will introduce the diamond-a calculus on time scales, and we refer the
interested reader to [8,9] for further details on the definitions of nabla and delta integrals
and derivatives.
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If T is a time scale, and F is a function that is delta and nabla differentiable on T,
then, for any ¢ € T, the diamond-« dynamic derivative of /- at {, denoted by /- Oa (0),1is
defined by

FOQ) =ar®@+(1-a)rvE), 0<a<l. (14)

We conclude from the last relation that a function F is diamond-« differentiable if and
only if it is both delta and nabla differentiable. For « = 1, the diamond-« derivative boils
down to a delta derivative, and for & = 0 it boils down to a nabla derivative.

Assume [, g : T — R are diamond-« differentiable functions at { € T, and let
k € R. Then

M (F+8)%(0) = F9(5) +£%(0);
(i) (kf)©+(5) = kf+(©);
(ii)) (fg)*(2) = F O (2)8(2) +ar 7(2)8*(2) + (1= ) FP(D)8V (2)-
Let / : T — R be a continuous function. Then the definite diamond-« integral of F is
defined by

b b b
[ r@od=a [ r@ac+a-o [ r@©ve  0<a<i abeT. (5

Leta,b,c € T,k € R. Then,
O J) 1@ +8Q@Q]0d = f; F @0+ [} $0)0ul
i) [y KF(Q)0ul =k [} F(2)0al
(i) [, F(©)0E = J7r @ Od+ﬁf@mﬁ
() [y F©)0ul =~ fi'F
© [} F(Q)0al=0;
(vi) 1fF()>Oon[abT,thean 0)$al > 0;
wmﬁF<> (wabmmmﬁF (D)0ul > [, 8(0)0at
O|0ul.
Let F be a diamond — w differentiable function on [4,b]y. Then F is increasing if
F9«(Z) > 0, non-decreasing if f ¥= () > 0, decreasing if f ¥*({) < 0, and non-increasing

if F2(Z) < 0on [a,b]p.
Next, we write Holder’s inequality and Jensen’s inequality on time scales.

(viii)

Lemma 1 (Dynamic Holder’s Inequality [3]). Suppose u, v € T with u < v. Assume F*,
¢* € CCY([u,v] x [u,v],R) be integrable functions and % + % = 1with p > 1 then

g (', 91| Oar" 0a " < L&L[|F P Our* 0uS }é
{f [ 187, S 10ar™ Ou C‘*] .

This inequality is reversed if 0 < p < land if p < 0or g < 0.

(16)

.

Lemma 2 (Dynamic Jensen’s inequality [3]). Let r*, S* € R and —co < m*,n* < oo. If
F* € CCYR, (m*,n*)) and ® : (m*,n*) — R is convex then

(P(f f F * (\* <>1X1 *Oa20*> f f 4) * * (\*))Oal *<>a2%*
fu fw <>zx17’ <>1X2C\* h f f <>o¢17’ Qazo* .

(17)

This inequality is reversed if ¢ € C((c,d),R) is concave.
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Definition 1. @ is called a supermultiplicative function on [0, 00) if

toa
will

D(dg) = ®(8)D(g), forall 8,¢ > 0. (18)

In this paper, we extend some generalizations of the integral Hardy-Hilbert inequality
general time scale using diamond alpha calculus. As special cases of our results, we
recover some dynamic integral and discrete inequalities known in the literature.
Now we are ready to state and prove our main results.

2. Main Results

(S1)

9)

First, we enlist the following assumptions for the proof of our main results:

T be time scales with o, 9,67, 80, Sy €T, (L =1,...,n).

F ¢(sy, ) are non-negative, diamond-Alpha integrable functions defined on [, &)1 ¥
[go,gg)'ﬂ* (f = 1, A ,Tl).

F ¢(s¢, S¢) have partial {,-derivatives F?“l (s¢, ) and F?” (s¢, S¢) with respect sy
and 3y, respectively.

All functions used in this section are integrable according to {, sense.

F (s, S0) € C*([So,90)t X [So,60)1,[0,00)) (£=1,...,n).

pe(&y, Ty) are n positive diamond-Alpha integrable functions defined for §, € (S, s¢)T,
7 € (So, Se)T-

pe(&y) and q¢(Ty) are positive diamond-Alpha integrable functions defined for ¢, €
(So,50)1, T € (S0, o)1

®) (¢ =1,...,n) are n real-valued non-negative concave and supermultiplicative
functions defmed on (0, c0).

¥y and ¢ are positive real numbers.

)80 € [So,0¢)T and Iy € [So,6¢)
JFo(S0,Se) = F(se,30) =0, (L =1,...,n).
)F?alow (s¢, 3/) F<>oc2<>al (50, 3¢).
) Pe(se,Se) = [g J3, pe(C)ae(Te) OaleQate
)Fe(se,S0) f ‘V o F (8o ) QarOaTe
) Pe(s¢, Se) f‘sf pe(Ges T )QulrCaTy

Fo(s0,30) ) oo, ) F (8o, ) QalrOuTe
)V Fo(se, S Qéff (o T)F o(80, T0)0aled
)ve € (1,00), 7 =1— wm:[;w,andv’ :Elvz =n—v{=1...n).
)0 < ‘Bg <1
Yhe = 2.

O |
FERS
Yy > 1.
) Fe(&e) € CY[So, 81, (€ =1,...,n).
)0y is positive real number.
VFo(s0) =[5, Fe(80)0ade-
)se € [\90, 196)
) pg(@g) are n positive functions.
) Pu(se) =[5, Pe Ce Oale-
)H(Sf) = iy 3y PEOF (C0)0uls-
) F¢(So) =0.

Now, we are ready to state and prove the main results that extend several results in

the literature.

Theorem 1. Let Sq, S4, S5, S14, S¢, S15, and Sg be satisfied. Then for S1g, S1g and Syg we find that
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S0 Y50 S0 Y50

9 9. (=1 ’
fol Shee fon S T Qus10aST -+ - QasnQaSn
n v

=1 (19)
L(ﬁlgll e /ﬁngn)

n . ﬁ( ‘3i
< T (S8 1530000 =30 tpten) = 30 (putsr 3@ (54284 ) ) 0usiasy )

(=1

where

1
D) (Py(sy, S e 7
L(ﬂIGlr---/ﬂnGn = (/ / < ZP[ESKZ\SZ)Z))) <>a5€<>a%€>

Proof. From the hypotheses of Theorem 1, S14, 515, and Sg, it is easy to observe that

P ’ , fTé N N
Dy(Folse, Se)) = q’é( (51 30) J5, Jaq Po(6e ) (GERR) QutrOu

fo f P/ (8o, T0) QaGraTy (20)

pe(&ete)

f Pe (Co, ) QulrOaTe

F oS, T/
> qDZ(Pz(Se/%é))CDK( il Pf(gé' 0 Gt )O“Q%Tz)

By using inverse Jensen dynamic inequality, we obtain that

Dy(Pyr(se,Se)) \fﬁ

Dy(Fo(50,30)) = / J\: pe(Ze, )Py <Fz(€sze)> QulrOaty- (21)

pe(8e, )

Applying inverse Holder’s inequality on the right hand side of (21) with indices v,
and By, it is easy to observe that

Py(ss,3y)

P o Dy (Py(se,Se)) SV, ] (&0, 0) Pe B
Do(F (50,S¢)) = %[(Se — S0) (8¢ — So) | </ / (Pi S0 T q’/(r)f(ngZ))) <>a§z<>ﬂe> . (22)

1

By using the following inequality on the term [(s; — So)(Sy — So)] ¢,

n 1 noq %
[T > (73 oom) @3)
=1 =1
we get that
n ~
I Dy (F (50,30))
— 1
u 1 L) (S [ v
TE 77 (50 = S0) (8¢ = o) (24)

1
" 3, Pe
> 11 24RO (1o 130 (poteomon (4829 )) " <>a§/<>m> .

Integrating both sides of (24) over s, S/ from S to ¥y, ¢ (¢ =1,...,n), we obtain that
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n ~
[T Po(F ¢(se,S0))
f(lfl Shee fgn S =l T Qus10aS1 - - - QaSnaSn

S0 Y80 S0 Y80 " 3
<’Y()El 7 (50— S0) (S — S0)) (25)

n R s Be é
lef géW( 30 13, <W(€/rT/)®/(';£((§j'g)))> <>a€€<>ocT€) QusrPaSy-

Applying inverse Holder’s inequality on the right hand side of (25) with indices -,
and B/, it is easy to observe that

n

[T ®(F ¢(s0,3))

191 61 /=1 o~ o~
1 Qas10aS1 - - CasnPuSn
SO o g\fo S Ry ;

(’Y zé 7 (50— S0) (S — 90))

gn </ / ( Pszgé)[)))wQaWOan);[ o
UL L o) oaenposos)’.

Using Fubini’s theorem, we observe that

n
D, (Fi(sy, S
%1 61 O [Gn 51;[1 o(Fo(se,30)) R N
/\ /\ /\ /\ T Quas10aS1 -+ - CasnCaS
So /o So IS0 no NN N 1
<,)/221 W(Sf - \90)(\3[ — \So)>

L(ﬂIGlI---/ﬂnGn)
n o Be =
Fo Se&e))) )f‘f
X (% —s -3 0, )@y | 25 OuspdaS )
g(/ / 0 —50)(6y €)<P€(£ ¢) é(m 50,50 wSr0aSy

By using the fact ¢, > p(9;), and ¢y > p(g¢), we get that

Dy(F ¢(50,30))

/ / / / %Qasloa%y..(%csn@,x%n

(vi %(w - %0)(3 %))

/=1
L(l91g1,.. '/191’1(;11)
IS Be L/
(/ / p(8¢) —s¢) P(Qe)—35)(P£(Sz10z)‘1’e<w>> %Se%%)ﬁ-
3 pe(se, )

This completes the proof. [

Remark 1. In Theorem 1, if T = R, & = 1 we get the result due to Zhao et al. ([10], Theorem 2).

As a special case of Theorem 1, when T = Z, « = 1 we have p(n) = n — 1, we get the
following result.
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Corollary 1. Let {a,,g,, mg, ms, } and {psé s, my, b, (¢ =1,...,n) be n sequences of non-

negative numbers defined for msl =1,...,ks, and T’I’Igé =1,..., kg[, and define
ms[/ Sy
Asfﬁe,msé,mm r L sy, Mg, My,
MQ mW
(27)
mb[ \X[
PSz,gf,msk, =X L Psi, Sy, g, My, *
mgé mW
Then
n
ksl k\sl ks 3 [l:[ q)f (ASé \Y[, msé \,[)
Z Z - Z - T
sy Mg, Msyy My, 1 v
(=1
2 C(k ’ksnk n)
kb‘[ k%

E Z ! —(m 1
n ﬂsk,%é,ms M, .Bé E
’ ( (kS[ ( ! 1)) (k%[ ( Se 1)) ( Sg,{‘s{,msé,m%é CD[ (1[) ) )
(=1 : P

s, M, sl,%g,mst,mgz

where
ks y

n St Dy s[\ygmsfm\‘() be ﬁl7
Clks ks, .- - ks ks,) =H(ZZ( )) )

(=1 \ms, mg Sg S Msy, Mg,

Remark 2. Let F ¢(Gr, ), pe(Ge, o), Po(Ze,To), and F o8y, T) changeto F (o), pe(Ce), Pe(se)
and [ ;(sy), respectively; with suitable changes, we have the following new corollary:

Corollary 2. Let Spp, So3, Soa, Sae, So7 and Sg be satisfied. Then for S1g, Soo and Sps we have that

T ®(F o(s0))
e for = T Oust - usn
<’Y Y (80— Jo)) ! (28)

(=1

L*(®,...,0,) = ﬁ (/:f (W)WOWSZ)%-

=1

> 0t f1 (o000 50 (0w (52)) )

where

Corollary 3. In Corollary 2, if we take n = 2, B, = 1 then the inequality (28) changes to

f\yof D, Fl(sl))cDZ(FZ(Sz))2<>a51<>a82>L** (91, 9) (fo (9) _Sl)<P1<Sl)qD<F1( )> %Sl)é

* ((s1 = S0) + (52— S0)) nis (29)

X (fﬁZ(P(ﬁz) —52) (Pz(SZ)‘P<l;zz((:22)))>2<>asz>§

where

<o [ (B0 o) ([ (B0) )
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Remark 3. In Corollary 3, if we take T = R, then the inequality (29) changes to
. F 2
foﬁl foﬁl q>1(Fl (Sl))(DZ(_F2(SZ)) dSldSQ 2 5% (191,192) ( foﬁl (191 o Sl) <p1 (S])CD (Fl(sl) )) dSl)

(Sl +Sz) 2 pl(sl)

2
X ( foﬂz(ﬂz —52) <p2(52)‘Y <lpzz((:§)) ) > dsz)
where

This is an inverse of the inequality (6) which was proved by Pachpatte [7].

N—

(30)

N—=

Corollary 4. In Corollary 2, if we take By = ”T_l the inequality (28) becomes
n ~
[T Pu(F ¢(s¢))

% O o
— <>0651...<>a5n
So So n 1
(ZZ (s¢ — So))

=1
Floan=o(mm (56)) " o)

. L % CDK(PE (SE)) ) = > %
B1,...,0) = ni- T Pi(se) ' '
L*(1,...,00) =1 =1 </‘\‘so < Py(se) v

Theorem 2. Let S1, Sy, Ss, S¢, So, S15, and Sy be satisfied. Then for Syg, S1g and Sag we have that

e T

=1

where

1P Pe(s0,S0) Do (F (50, 3¢))

Sy ISy Sy 15— T 0us1 031 - Qusna S
n v
v Z 5 (50— 30) (3¢ — o) (31)
1
n B
> /T_Il [(19[ —S0)(6¢ — So } (f p(0¢) —s0)(p(5e) — o) (pe(se, )P (F o(se, Sz)))ﬁloaSan%O '
Proof. From the hypotheses of Theorem 2, and by using inverse Jensen dynamic inequality,
we have
Dy(F o(s0,30)) = (p[ G050 s f " pe(Ce ) F o(Ge, Tz)<>a§e<>ﬂe>
(32)

> piisy S Jar pe(or TP (F oG 1)) Oalrate

Applying inverse Holder’s inequality on the right hand side of (32) with indices 7y,
and By, it is easy to observe that

D(F 4(50,3y)) = 5 ! ) [(se — S0)(S ] (/ /? (Pe(@z/Tz)q)z(Fz(éerfe)))moaﬁz%fz> "

ACIAY

1
By using the inequality (23), on the term [(s; — So)(Sy — So)] ¢ we get that
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K8

PK(Sﬂ/gf)q)Z(ﬁf(S(/ %[)) . > (/ / Pé (:KlTi q)[(F/(gZ/TZ)))ﬁ£<>ﬂc§£<>uﬂ-£> . (33)
(v £ =303 —30))

=1

Integrating both sides of (33) over sy, Sy from 3y to ¥y, ¢, (¢ =1,...,n), we get that
T Qus10aST -+ - QasnaSn

Oy
/ / / / ( Z (50— S0)(S zJo))7

T 1/\ /g[ (/ / (Pe(Ge ) q’ﬁ(ﬂ(ﬁ//Tﬁ)))ﬁgoawoaﬁ)ﬁl[.

Applying inverse Holder’s inequality on the right hand side of (34) with indices -,
and By, it is easy to observe that

T1 Pl ) (F o(51,91))

n ~
, , 4U1 Py(se, S0)®y(F ¢(s50,3¢))
Jon S50 Jae J5n —— T 0as10aS1 -+ - QusnOu S

i\fo (\\YO So Y80 n 5
<7 Y (s e—%)(ge—%)) (34)

1

> In—[ {(19@ —So)(ge — %0)} " ( SO (Pf S0, 1)@ (F oG, Tz)))ﬁ[%@z@ﬂz@aw%%)

(=1

=

By using Fubini’s theorem, we observe that

n

0(50,30) Do (F (50,S0))

% o1 Gn I;[ o~ o~
/ / / / 1 Qus10aS1 -+ QCusnCaSnu
So /o S n ¥

(v £ A —20)(30-0)

> s {(19Z So)(cp — \so)] g (/W /.g[(l% —50) (60— S0) (pe(se, S0) Py (F o (se, %5)))}850“5@%%) é

=1 So /o

By using the fact ¢, > p(9;), and gy > p(g¢), we get that

(80, 30)@o(F ¢(50,S30))

% ra1 /=1
/ / / / 1 Qus10aS1 - - QuasnPuSn
(\‘SO S ¥

(7 Y 5 (se = S0)(3¢ — Do)

g n [(196 ~ Se)ee =50 } (/ / p(8¢) —s0)(p(ge) = So) (pelse, So)Pe(F ¢(se, %z)))ﬁ‘%swa%aﬁlg.

=1

This completes the proof. [

Remark 4. In Theorem 2, if T = R, a = 1 we get the result due to Zhao et al. ([10], Theorem 3).

As a special case of Theorem 2, when T = Z, « = 1 we have p(n) = n — 1, we get the

following result.
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Corollary 5. Let {a,,g,, mg, ms, } and {PSg,Jg,ms[,m b, (¢ =1,...,n) be n sequences of non-

negative numbers deﬁnedfor msl =1,...,ks, and T’I’Igé =1,.. .,kg[, and define
1 s, Mg,
A o = — Y Yua p
50, Mg, M, ~ sy,Syp,mg, ,m sy,Sp,mg, ,m
0S5 Ms ) M, Py, ms, mg na g, iy, 050 My PS030, My, !
(35)
msﬂ mq(
Ps/,(\?/;,msk,mg,.[ = Z Z Ps( \)/ MQ m;«,[
g Mél Wlw

Then

n

ksl ‘1 k \fn H ps@{‘s‘;,ms[,mg[ (Df(As[,%g,msé,mgl)
Yoy E 1
s Mg, Mg, Mg v
1 n n (,Y EZ e (ms/m\yé))
; ks, ks, BeN B
2 < Z Z Sp T mS[ - 1))(k%g - (m%g - 1)) <pS[ \Xg mhg m(\ q)f (”sl,%g,msg,mg[>> ) 4
le mSé \;( )

Remark 5. Let F (&, 77), pe(Eo, 1), Pe(&p, Tp) and
_ o se Sy
Fo(se,Sy) = P50 50 / Pe(Co, ) F (So, 1) QalrOaTe
{4 Sé, \ff
changes to F ¢(&¢), pe(Se), Pe(se), and

Fo(se) = % /;: pe(Co)F ¢(80)ale,

respectively, and with suitable changes, we have the following new corollary:

Corollary 6. Let Sy, So3, Sag, Say and Sog be satisfied. Then, for Sig, Sog and Sys, we have that

1 Po(s) @ (F ((sy)

Jab Jo = a1 - G
(7 ng (50— \Yo)) ' (36)

n 1 Be i/

> 41:11(1% —So) ™ <f§§ (0(8¢) —s¢) (Pé(%)@(F@(SD)) <>sz€) '

Corollary 7. In Corollary 6, if we take n = 2, B, = 1 then the inequality (28) changes to

O 0 Py(s1)Pa(s2)®1(F 1(51))P2(F ( 2)) Gus1Gus2 > 4[(81 — o) (81 — S0)] "
V0o ((s1—S0) + (s2 — \90))

(oo —s1>(msl)cbl(m(sl)))zoasl)%(f§g<pwz> -s2)(palso)n (m@))zom)z.

Remark 6. In Corollary 7, if we take T = R, then the inequality (37) changes to

(37)
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; 0191 P1(51)P2(sz)(q: f;z(;l)z)¢2(F2(sz))dsld52 = 4[191191]—1

X (fol91 (81 —s1) <P1(51)q’1 (Fl(sl))>2dsl> : (foﬁz(ﬂz —52) (Pz(sz)q’z <F2(52)>)2d52) %

This is an inverse of the inequality (7), which was proven by Pachpatte [7].

(38)

Corollary 8. In Corollary 7, let p1(s1) = pa(s2) = 1, then Py(s1) = s1, Pa(s2) = sp. Therefore,
inequality (37) changes to

-1

fﬂl fl?z ch(ﬁl (Sl)) ('ﬁ ( )) — Sus10us2 = 4[(191 _ %0)(191 _ %0)]
+ (2= %)) , 1 (39)

Remark 7. In Corollary 8, if we take T = R, then inequality (39) changes to

/191 /191 d>1 F1 51 <I>2(Fz( ))dsldsz [191191]71
(s152) 71 (s1 +52)

X (/0191(191 —51) <¢1(F1(51)))2d51>% (_/0192(192 —82) (CDZ (F2(52)>>2d52> B

This is an inverse inequality of the following inequality which was proven by Pachpatte [10].
(G(3)) (QFRE:
dsdS < - |¥¢|?
/ / (s3) (s + Q) VS 3 %]

x (/019(19— 51) <<1>(F(s))>2ds) : </Og(g _ g (‘I’ (g(%)>>2di‘s> "

Corollary 9. In Corollary 6, if we take By = "1 (¢ = 1,...,n) the inequality (36)

H Py(s0)Do(F o(s0)

a1
/ / — Qust .- Qusdn
% n—1

< X (s — 0))

(=1

n—1 n

/W (0(8¢) —s¢) (Pz(sz)cbg(m(sé))> n<>a56> "T]_

So

>nnT || (8 —%o)”‘ll<

Theorem 3. Let 51, 54, 52, 89, 511, S7, 513, 53, 512, Sg and 517 be satisﬁed. Then, fOT S]O we
have that

[ QLS 6610031 GasnOaS o)
s <l i?( —S0) (S — So)

!
T =1

> G(0161,---,%nGn)
Qay Py . 1 y
(/ / p(80) —s¢)(p(ge) — 3@)(%(%)%(%)@(%%)) " QaSZOa%Z)’Y

where
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1 /
(0 s Pe(Pelse, Se)) \ K
ctter e = T [ [ (P20 ,0,)"
(Brea ) g( So /o Py(se, 3¢) et
Proof. From the hypotheses of Theorem 3, we obtain
<>D( <>ﬂ
o(s6,3¢) / 20 ) QaliQuTy (41)

From (41) and Sg, it is easy to observe that

Dy(F ((s0,30)) = Py

N .
(PE(SZ/%Z) st 3 s Pe(Go)ae( )(W)Oa@@aw)
f Pe ‘:Z W )%Q%Tz

Say (42)
/ (Com)
Pe@zqe )70&00
> (P30, Sy)) Dy (f f ST ARG )
s pe(@030(T) QalrOaTy
By using inverse Jensen’s dynamic inequality, we get that
. Quy
Do(Pe(se, Se)) \9/ St Fo27 (8o )
O(F (50, S))) = // : r,q>,(<> . 43
o(Fo(se,S0)) P05, o Pe(Ge)qe(Te) Py AN «GrQaTy (43)

Applying inverse Holder’s inequality on the right hand side of (43) with indices 1/,
and 1/, we obtain

Py (Py(se, S¢)) v
x > e\ (Cx, . Cx [
D(F ¢(s0,3¢)) = Py(s0,57) [(s¢ — S0) (8¢ — So) ]
Qay Qa 1
se S Fo 1(§z/T£)>) W w
X 1(Ce)qe(Te)Pp| ——~——— Sulrdd T{) . (44)
(/%‘o /% (W(Cﬁ)q[( Y /< pe(Ge)qe(Te) oo OuT
Using the following inequality on the term [(s; — S¢)(Sy — So) ] 7" where vy < 0and
Ap > 0.
n 'Y, 1 n , ’Vl
[TA"> (,( ZwM)) : (45)
=1 T3
We obtain that

/

- D (Pese, ) (1 & Y
Howriesn > 2R (3 £ it so-s0)

=1 (46)
FO“ (& e
><< f (Pe go)qe Tf)q)f(;w(@)tu(m)) <>a§z<>a7z> .
From (46), we have that
0 D(F ¢(s0,3))
(=1, n 7
(# £ it = 3003 —20) )
Oy n Ye
m @y (Py(sy,S F2 T @Gem)
> ZI}W( f (W Go)qe(T) @y <m(§z)tn(n Oa@anTz -

Integrating both sides of (47) over sy, Sy from Sy to ¥y, ¢, (¢ =1,...,n), we get that
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n Dp(F (50, S
fﬂl gl"'fﬂn éggn Z( K( & ﬁ)) ,)//<>IXSl<>IX%1”-<>DéSn<>IX%n
=1

S0 4S0 Iy .

1 / ) (S,

v Sp — 8 Sy — S

(7/ Elw( 0= S0)(S¢ — o) (48)
OayOaq

1 S se (S , e
> 118 5 2o (g 3 (reeomimen (i) ) <>a§e<>a’fe> Oxs0aSr
(=1

080 Prlse,Sy)

Applying inverse Holder’s inequality on the right hand side of (48) with indices 1/,
and 1/, we obtain

Lo [ RS 10081 s,
i <,§/ /Zl Yy(se — SB0) (S — So)
ST (e s
xé]ﬂ[l ([ ﬂ <[ /( <Pe Go)qe(Te)® (F}ia(zé,:;;f(i;w))71(<>a€4<>,m) Oasg%%e>w.

By using Fubini’s theorem, we observe that

Dp(Fp(sp, S
So f f [( Z( : 6)) 7 Qus10uS1 - - CusnaSn
n
<,}/ X 7p(se = S0) (S = o)
= (50)
2 G(ﬂlgl,. . .,ﬂngn)
<>A2<>a](

Ye
(fgé S0 (80 —s0) (60— S0) (W(W)W(\W)CDF (W)) %Sz%dz) :

By using the fact ¢, > p(9;), and gy > p(g¢), we get that

X
~
=t

/191 /gl. N /1911 /Qn ﬁ Py (F o(s0,30)) = $us10aS1 - - - QusnOaSh

%0 %0 %0 %0 /=1 n
(71/ Y (s — S0) (S — o)

(=1
2 G(ﬁlgl,. . 'rﬁngn)
<>a2<>a1(

(/ / p(0¢) —s0)( P(QZ)_%K)<P€(5£)W(%Z)¢Z<W)>71/<>a55<>a36>w-

This completes the proof. [

Remark 8. In Theorem 3, if T = 7, « = 1 we get the result due to Zhao et al. ([11], Theorem 1.5).

Remark 9. In Theorem 3, if we take T = R, a = 1 we get the result due to Zhao et al. ([11],
Theorem 1.6).

Remark 10. Let S1, Sy, So, S11, S7, S13, S3 and Sy be satisfied and let @, vy, ), v, and ' be as
Theorem 3. Similar to proof of Theorem 3, we have
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/191 /ﬁ. ; / / n q)Z(Fg(SK/ %é)) 7Q0as10aS1 -+ QusnaSu
So IS So (= 1 L / X ,  Cx !
¥ 11;1 Y50 — S0) (S — S0)

< G*(191g1,--.,19n‘5n)
<>DL2<>!K1(

where

1 /
O o @(Pf(sz,%f)))ﬂ >W
————= 2] "Ous & .

[50 Lo < Py(se, 3¢) Qase0aSy

This is an inverse form of the inequality (40).

* 1 .
G* (%161, .., 0uGn) = 7 H (

Corollary 10. Let Syy, Sos, Sos, Sa6, Sa7, S29, S17 and Sg be satisfied. Then we have that

f f 1 CDZ(FK (S£>) 7 Qust -+ Pasn

= (51)

where
0 = [T ( [ (P20 7o,0)

Remark 11. In Corollary 10, if we take T = Z, & = 1 we get an inverse form of inequality (3),
which was given by Handley et al.

Remark 12. In Corollary 10, if we take T = R, a = 1 we get an inverse form of inequality (4),
which was given by Handley et al.

Remark 13. In inequality (51) taking n = 2, 1 = 2 = 2, then 7y} = v, = —1, we have
@1 (F 1(s1))Pa(F 2(s2))

((51 — Qo) + (52 — %))
D(l91,l92)<f (o(81) —51)<p1(sl ( ,}O >> m) (52)
2

(120 _52>(p2<52>¢2(;(<s;>))%>a52>

<1>1<P1<s1>>>‘1 >1< o <<1>2(P2(52)))_1 )‘1
t,0) =4 / ( s / —— e s .

( 1 2) ( C\\yo P2(51) <>IJK 1 (\‘y‘o P2(52) <>IJK 2

Remark 14. If we take T = Z, & = 1 the inequality (52) is an inverse of inequality of (1), which
was given by Pachpatte.

0 0y 4
So IS fnl

) Qas1Qas2

where
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Remark 15. If we take T = R, « = 1 the inequality (52) is an inverse of inequality of (2), which
was given by Pachpatte.

3. Conclusions

In this work, by applying <, calculus, defined as a linear combination of the nabla
and delta integrals, we introduced some novel results of Hardy-Hilbert-type inequalities
on a general time-scale. Furthermore, we gave the multidimensional generalization for
these inequalities to time scales. We also applied our inequalities to discrete and continuous
calculus to obtain some new inequalities as special cases.
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