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Abstract: This paper mainly studies the exponential stability of the highly nonlinear hybrid neutral
stochastic differential equations (NSDEs) with multiple unbounded time-dependent delays and
different structures. We prove the existence and uniqueness of the exact global solution of the
new stochastic system, and then give several criteria of the exponential stability, including the q1th
moment and almost surely exponential stability. Additionally, some numerical examples are given to
illustrate the main results. Such systems are widely applied in physics and other fields. For example,
a specific case is pantograph dynamics, in which the delay term is a proportional function. These
are widely used to determine the motion of a pantograph head on an electric locomotive collecting
current from an overhead trolley wire. Compared with the existing works, our results extend the
single constant delay of coefficients to multiple unbounded time-dependent delays, which is more
general and applicable.

Keywords: hybrid neutral stochastic delay systems; NSDEs with multiple unbounded delays and
different structures; highly nonlinear; exponential stability; M-matrix

1. Introduction

The neutral stochastic delay differential equations with Markov switching (the hybrid
NSDDEs) are widely used in many fields such as physics, engineering, biology and finance,
especially mechanics. The control theory, stability analysis and applications of NSDDEs,
not only integer-order differential equations but also fractional-order differential equations,
have attracted the attention of researchers recently. In the paper [1], the authors studied
the approximate controllability of a semi-linear stochastic control system with nonlocal
conditions in a Hilbert space. In the paper [2], the authors dealt with the complete con-
trollability of a semi-linear stochastic system with delay under the assumption that the
corresponding linear system is completely controllable. The paper [3] investigated the
approximate controllability of fractional stochastic Sobolev-type Volterra–Fredholm integro-
differential equation of order 1 < r < 2. The paper [4] studied the time fractional system
in the Caputo sense of fluid-conveying single-walled carbon nanotubes (SWCNT). In the
applications, the papers [5,6] proposed stochastic delay differential models to investigate
the dynamics of the transmission of COVID-19 and the prey–predator system with hunting
cooperation in predators, respectively. In the current collection systems for an electric
locomotive, there is a pantograph on the train roof collecting current from the overhead
trolley wire suspended by regularly spaced stiff springs. The pantograph has two masses
with a connecting spring and two velocity dampers. With the train moving at a constant
speed, a contact force is exerted on the wire, so that the displacement of the wire can
determine the motion of the pantograph head. The literature [7] modeled the above system

Fractal Fract. 2022, 6, 385. https://doi.org/10.3390/fractalfract6070385 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6070385
https://doi.org/10.3390/fractalfract6070385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-3130-4923
https://doi.org/10.3390/fractalfract6070385
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6070385?type=check_update&version=2


Fractal Fract. 2022, 6, 385 2 of 21

by a pantograph differential equation in which the delay function is unbounded. Further,
in [8], the authors discussed the exponential stability criteria of highly nonlinear neutral
stochastic pantograph differential equations (NPSDEs) as a specific case of the NSDDEs
with unbounded delay. Therefore, in this paper, it is of theoretical and practical significance
to consider a more general and applicable system: the highly nonlinear hybrid differently
structured NSDDE with unbounded delays. It will be introduced step by step below.

The hybrid NSDDEs are usually used to describe the stochastic systems depending on
not only the present state but also the past state with its changing rate, and may encounter
some abrupt changes. They are often modeled on Rd with the stochastic differential equation

d[x(t)−U(x(t− τ))] = F(x(t), x(t− τ), t, r(t))dt + G(x(t), x(t− τ), t, r(t))dW(t) (1)

with the initial

{x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−τ, 0];Rd), r(0) = i0 ∈ S, (2)

where {W(t)}t≥0 is an m-dimensional standard Brownian motion in a filtered complete
probability space (Ω, F , {Ft}t≥0,P). {r(t)}t≥0 is a right continuous homogeneous Marko-
vian chain with the finite state space S = {1, 2, · · · , N} and generator Γ = (γij)N×N .
Additionally, it is independent of {W(t)}t≥0. U(x) : Rd → Rd is the neutral term. τ is
the constant time delay. F : Rd ×Rd ×R+ × S → Rd and G : Rd ×Rd ×R+ × S → Rd×m

are drift and diffusion coefficients, respectively. R+ = [0, ∞). For the given τ ≥ 0,
C([−τ, 0];Rd) denotes the family of all continuous function ξ : [−τ, 0] → Rd with the
norm ‖ξ‖ = sup−τ≤θ≤0 |ξ(θ)|. Cb

F0
([−τ, 0];Rd) denotes the set of all bounded and F0-

measurable C([−τ, 0];Rd)-valued random variables. The authors in [9,10] studied the
exponential stability of the exact solution and numerical solution for NSDDEs. In [11],
the authors investigated the almost surely asymptotic stability of NSDDEs.

In many practical situations, the hybrid NSDDEs often have multiple delays. The delay
term “x(t − τ)” is replaced by “x(t − τ1), · · · , x(t − τn)”, where τ1, · · · , τn are positive
constants. The authors in [12,13] established the stability criteria of hybrid multiple-delay
NSDDEs. In [14], the authors studied the boundedness and mean square exponential
stability of the exact solution of highly nonlinear hybrid NSDDEs with multiple delays.

Additionally, the delay terms in NSDDEs may be bounded functions of time t. Such
as in [15], the exponential stability in p(p > 1)th-moment for NSDDEs with time-varying
delay was investigated. The authors in [16] studied the mean-square exponential stability
of uncertain neutral linear stochastic time-varying delay systems. In [17], the robust mixed
H2/H∞ globally linearized filter design problem was investigated for a nonlinear stochastic
time-varying delay system.

Furthermore, the delay functions in stochastic systems need to be generalized from the
bounded case to unbounded case in many application models whose evolutions depend on
all of the historical states. Thus, the systems become more complex and the unboundedness
of delay terms may make the systems no longer stable. The fractional-order stochastic
differential equations (FSDEs) are also used alternatively to model this kind of system
and have received increasing attention due to their wide applications in many disciplines.
Therefore, the theoretical analysis of stochastic systems with unbounded delay is necessary.
In the paper [18], the authors discussed existence for a class of fractional neutral stochastic
systems with infinite delay. The paper [19] investigated the approximate controllability
results of Atangana–Baleanu fractional neutral stochastic systems with infinite delay by
using the Bohnenblust–Karlin fixed-point theorem. The paper [20–22] studied the existence
and uniqueness of Caputo fractional SDEs, SDDES and NSDDES. Additionally, in [23,24],
the p-moment exponential stability of Caputo fractional differential equations with random
impulses was established by the application of Lyapunov functions. In [25], the authors
established existence and uniqueness theorem of neutral stochastic functional differential
equations with infinite delay and the almost certain robust stability. More research on
NSDDEs with unbounded delay can be found in [26,27].
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However, in most of the above studies, the coefficients F and G grow linearly. This con-
dition is too strict to be satisfied in many practical systems. In [28], the authors investigated
the stability of the highly nonlinear hybrid SDDEs under the Khasminskii-type conditions
instead of linear growth conditions. In [29,30], the stability of the highly nonlinear hybrid
NSDDEs and the approximate solutions are also discussed. More results can be found
in [31,32].

All the systems mentioned above have the same structures, only with different param-
eters in the switching spaces. For example, in two states, S(1) and S(2), the system is, re-
spectively, modeled as d[x(t)−U(x(t− τ))] = (ax(t)− bx(t− τ))dt+ cx(t− τ)dW(t) and
d[x(t)−U(x(t− τ))] = (ãx(t)− b̃x(t− τ))dt + c̃x(t− τ)dW(t), where a, b, c, ã, b̃, c̃ are con-
stants with a 6= ã, b 6= b̃, c 6= c̃. When the equation in S(2) becomes d[x(t)−U(x(t− τ))] =
(âx(t) − b̂x3(t) − ĉx(t − τ))dt + d̂x2(t − τ)dW(t), we can see that the system has quite
different structures in two states. There are a few articles investigating such systems.
In [33], the authors studied the robust stability of SDDEs whose structures are different
in subsystems. The authors in [34] studied the exponential stability of the corresponding
neutral versions. The authors in [35] further studied the highly nonlinear stochastic systems
with different structures and multiple constant-bounded delays. As far as we know, there
is no study on the highly nonlinear hybrid differently structured NSDDEs with multiple
unbounded delays yet. Motivated by the above mentioned research, the current work
focuses on filling this gap.

In this article, we discuss the following highly nonlinear hybrid differently structured
NSDDEs with multiple unbounded time-dependent delays:

d[x(t)−U(x(t− δ1(t)), t)] =F(x(t), x(t− δ1(t)), · · · , x(t− δn(t)), t, r(t))dt

+ G(x(t), x(t− δ1(t)), · · · , x(t− δn(t)), t, r(t))dW(t).
(3)

The system (3) has the initial value

{x(θ) : −δ(0) ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−δ(0), 0];Rd); r(0) = i0 ∈ S, (4)

where

F : Rd ×Rd × · · · ×Rd ×R+ × S→ Rd(the number of Rd in the domain is n + 1),

G : Rd ×Rd × · · · ×Rd ×R+ × S→ Rd×m(the number of Rd in the domain is n + 1),

U : Rd ×R+ → Rd(the neutral term),

δl : R+ → R+, l = 1, · · · , n(the delay functions)

are all Borel-measurable. For a fixed t ≥ 0, set δ(t) = max1≤l≤n δl(t). We also assume that
F(0, · · · , 0, t, i) = 0, G(0, · · · , 0, t, i) = 0, U(0, t) = 0. Other notations are the same as that
in Equation (1).

This paper studies the existence, uniqueness, q1th moment asymptotical boundedness
of the global solution of the system (3) and investigates the criteria of the q1th moment
and almost surely exponential stability of the system (3). Based on this motivation [34],
the main contribution of this work is generalizing the corresponding stability results of
the highly nonlinear hybrid differently structured NSDDEs from one constant delay to
multiple unbounded time-varying delay situation. The unboundedness of the delay func-
tions δl(t)(l = 1, 2, · · · , n) makes our model more applicable and meaningful, but it also
improves the difficulty of theoretical analysis. The results of this paper were obtained
mainly by the Lyapunov function method, M-matrix method, Generalized Itô formula
and other mathematical tools. In particular, we used the factor e−ζδ(t) to overcome the
main problem caused by the unbounded delays effectively. Here, ζ is a positive constant.
As in [28] and other existing researche, Khasminskii’s condition needs to be given when
studying the stability of highly nonlinear stochastic systems. However, when the systems
are generalized to the unbounded delay situation, the stability may be broken by the un-



Fractal Fract. 2022, 6, 385 4 of 21

boundedness. So, we added the factor e−ζδ(t) in the corresponding Khasminskii condition
in this paper to control the growth of unbounded delay functions. It is worth mentioning
that when we take n = 1 and unbounded function δ(t) = θt(0 < θ < 1), the system (3)
becomes a stochastic pantograph system.

The rest of this article is arranged as follows: the preliminaries and assumptions
are presented in Section 2. Section 3 shows the main results of this article, including the
existence, uniqueness and boundedness of the exact solution and the exponential stability
of the new system. Three numerical examples are presented in Section 4 to illustrate the
results. The conclusions are presented in Section 5.

2. Preliminaries and Assumptions

The notations in the above section are working throughout this paper without specifi-
cation. Additionally, denote the Euclidean norm for any y ∈ Rd by |y|. For the matrix B,
|B|2 = trace(BT B) denotes the trace norm of B, and BT is the transpose. The nonsingular
M-matrix A = (aij)H×H means it is a square matrix that can be described as A = rI − T
with all elements of T being non-negative and r > ρ(T), where ρ(T) is the spectral radius
of T and I is the identity matrix. More details of the M-matrix can be seen in [36].

The family of continuous non-negative functions V(x, t, i) : Rd × R+ × S → R+,
ensuring that for each i ∈ S, they are continuously twice differentiable in x and once in t, is
denoted by C2,1(Rd×R+× S;R+). For a given function V(x, t, i) ∈ C2,1(Rd×R+× S;R+),
the operator LV : Rd ×Rd × · · · ×Rd ×R+ × S→ R is defined as (see, e.g., [36]):

LV(x−U(y1, t), y1, · · · , yn, t, i)

= Vt(x−U(y1, t), t, i) + Vx(x−U(y1, t), t, i)F(x, y1, · · · , yn, t, i)

+
1
2

trace[GT(x, y1, · · · , yn, t, i)Vxx(x−U(y1, t), t, i)G(x, y1, · · · , yn, t, i)]

+
N

∑
j=1

γijV(x−U(y1, t), t, j),

(5)

where

Vt(x, t, i) =
∂V(x, t, i)

∂t
, Vx(x, t, i) =

(
∂V(x, t, i)

∂x1
, · · · ,

∂V(x, t, i)
∂xd

)
, Vxx(x, t, i) =

(
∂2V(x, t, i)

∂xj∂xk

)
d×d

.

The following assumptions are necessary to obtain the main results of this work.

Assumption 1 (A1A1A1). For any x, y1, · · · , yn, x̂, ŷ1, · · · , ŷn ∈ Rd and each integer h > 0 with
|x| ∨ |y1| ∨ · · · ∨ |yn| ∨ |x̂| ∨ |ŷ1| ∨ · · · ∨ |ŷn| ≤ h, and all t ≥ 0, i ∈ S, there exists a constant
Kh > 0, such that

|F(x, y1, · · · , yn, t, i)− F(x̂, ŷ1, · · · , ŷn, t, i)|2 ∨ |G(x, y1, · · · , yn, t, i)− G(x̂, ŷ1, · · · , ŷn, t, i)|2

≤ Kh(|x− x̂|2 + ∑
1≤l≤n

|yl − ŷl |2). (6)

The assumption (A1A1A1) is the local Lipschitz condition. It is one of the important
conditions to ensure the uniqueness and existence of the solution of the system (3), which
can be seen, for example, in [36].

Assumption 2 (A2A2A2). For l = 1, · · · , n, the delay function δl : R+ → R+ is differentiable,
and there exists a constant δ̄ > 0 such that

δ
′
l(t) ≤ δ̄ < 1.

For t ∈ R+, let δ∗l (t) = t− δl(t), noticing that δ∗
′

l (t) ≥ 1− δ̄ > 0, so δ∗l (t) is an increasing
function of t, and then t− δl(t) ≥ −δl(0) ≥ −δ(0).
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Assumption 3 (A3A3A3). (Khasminskii’s condition) For convenience, we divide the state space
S = {1, · · · , N} into S1 = {1, 2, · · · , N1} and S2 = {N1 + 1, · · · , N}, where 1 ≤ N1 < N.
The system (3) has different structures in S1 and S2.

For two given constants q1 and q2 with q2 > q1 ≥ 2, and for any i ∈ S1, there exist constants
ζ > 0, αi1, αi2, αi3l ∈ R+, l = 1, · · · , n, such that for x, y1, · · · , yn ∈ Rd, and t ≥ 0,

(x−U(y1, t))T F(x, y1, · · · , yn, t, i) +
q2 − 1

2
|G(x, y1, · · · , yn, t, i)|2

≤αi1 − αi2|x−U(y1, t)|2 + e−ζδ(t)
n

∑
l=1

αi3l |yl |2,
(7)

and for i ∈ S2, there exist additional constants αi4, αi5l ∈ R+, l = 1, · · · , n, satisfying that for
x, y1, · · · , yn ∈ Rd, and t ≥ 0,

(x−U(y1, t))T F(x, y1, · · · , yn, t, i) +
q1 − 1

2
|G(x, y1, · · · , yn, t, i)|2

≤αi1 − αi2|x−U(y1, t)|2 + e−ζδ(t)
n

∑
l=1

αi3l |yl |2

− αi4|x−U(y1, t)|q2−q1+2 + e−ζδ(t)
n

∑
l=1

αi5l |yl |q2−q1+2.

(8)

Moreover, assume that

A := diag(q1α12, · · · , q1αN2)− Γ (9)

and
S := diag(q2α12, · · · , q2αN12)− (γij)i,j∈S1 (10)

are nonsingular M-matrices.

Equations (7) and (8) in assumption (A3A3A3) show that the structures of the system (3) are
quite different, and the coefficients of the system (3) are highly nonlinear.

Define
(θ1, · · · , θN)

T = A−1(1, · · · , 1)T (11)

and
(η1, · · · , ηN1)

T = S−1(ω · · · , ω)T , (12)

where ω is the positive constant that can be chosen to satisfy the assumption (A4A4A4) be-
low ([33] showed a selecting method of ω). By the assumption (A3A3A3) we know A and S are
nonsingular M-matrices(see, e.g., [36]), so that θi > 0, i ∈ S and ηj > 0, j ∈ S1.

Assumption 4 (A4A4A4). The following conditions are necessary and important for the stability of the
system (3).

δ := max
i∈S,1≤l≤n

(αi3lθi) <
(1− σ)q1(1− δ̄)

(1− δ̄)n(q1 − 2)(1− σ)q1 + 2n
, (13)

ω̂ :=( max
i∈S1,1≤l≤n

q2αi3lηi) ∨ ( max
i∈S2,1≤l≤n

q1αi5lθi) <
q2(1− σ)q2(1− δ̄)

n(q2 − q1 + 2) + (1− δ̄)n(q2 − 2)(1− σ)q2
ω, (14)

min
i∈S2

(q1αi4θi − ∑
j∈S1

γijηj) ≥ ω. (15)

The similar assumptions also can be seen in the Theorem 3.1 of [34].
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For convenience of derivation, denote by ω2 := q2−q1+2
q2

ω̂. From condition (14),
we have

ω− q2 − 2
q2

nω̂ >

(
1− (1− δ̄)(q2 − 2)(1− σ)q2

(q2 − q1 + 2) + (1− δ̄)(q2 − 2)(1− σ)q2

)
ω,

and

ω− q2 − 2
q2

nω̂− n
(1− δ̄)(1− σ)q2

ω2 = ω− (1− δ̄)(1− σ)q2(q2 − 2)n + (q2 − q1 + 2)n
q2(1− δ̄)(1− σ)q2

ω̂ > 0.

So, there exists 0 < (q2−q1+2)(1−σ)−q2 nω̂

(1−δ̄)(q2ω−(q2−2)nω̂)
< α0 < 1 such that

ω1 := α0(ω−
q2 − 2

q2
nω̂) >

n
(1− δ̄)(1− σ)q2

ω2. (16)

We also define two functions Fi : R+ → R, i = 1, 2, as follows:

F1(η) =ηc2(1 + σ)q2 +
nω2

1− δ̄
−ω1(1− σ)q2 ,

F2(η) =ηc2(1 + σ)q1 +
2nδ

1− δ̄
− (1− nδ(q1 − 2))(1− σ)q1 ,

(17)

where c2 = (maxi∈S θi) ∨ (maxi∈S1 ηi) is a constant. Notice that for i = 1, 2, Fi(η) is strictly
increasing in η, and limη→∞ Fi(η) = +∞. Based on (16) and (13), we know

F1(0) =
nω2

1− δ̄
−ω1(1− σ)q2 < 0,

F2(0) =
2nδ

1− δ̄
− (1− nδ(q1 − 2))(1− σ)q1 < 0. (18)

So, there is the unique positive root η∗i (i = 1, 2) of the equation Fi(η) = 0, and
Fi(ζ̂) < 0 for any ζ̂ < η∗i .

Assumption 5 (A5A5A5). For any y ∈ Rd, y∗ ∈ Rd, t ≥ 0, and the same ζ in the assumption (A3A3A3),
there is a constant σ̄ ∈ (0, 1− δ̄) such that

|U(y, t)−U(y∗, t)| ≤ σ̄e−ζδ(t)|y− y∗|. (19)

Recalling that U(0, t) = 0, (19) implies |U(y, t)| ≤ σ̄e−ζδ(t)|y|.

Some classical inequalities used in this paper are listed as follows while their proofs
are omitted. The details of Lemma 1 can be found in, for example, [36,37].

Lemma 1. Classical inequalities.

1. For x, y, α, β ≥ 0,

xαyβ ≤ αxα+β + βyα+β

α + β
. (20)

2. For a, b ≥ 0, ν > 0, p ≥ 1,

(a + b)p ≤ (1 + ν)p−1ap + (1 + ν−1)p−1bp. (21)

3. For p ≥ 1, t ≥ 0,

(1− σ)p−1(|x|p − e−ζδ(t)(1− δ̄)σ|y|p) ≤ |x−U(y, t)|p;

|x−U(y, t))|p ≤ (1 + σ)p−1(|x|p + e−ζδ(t)(1− δ̄)σ|y|p).
(22)
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Let σ = σ̄/(1− δ̄) so that σ̄ < σ ∈ (0, 1). Based on the assumption (A5A5A5), we can obtain
the first inequality of (22) from (21) by taking ν = σ

1−σ , a = x −U(y, t) b = U(y, t); and
letting a = x, b = −U(y, t), and ν = σ, we obtain the second inequality in (22) .

3. Main Results

Two theorems are given in this section to discuss the exponential stability of system (3).
Theorem 1 establishes the existence, uniqueness and the q1th moment asymptotical bound-
edness of the exact global solution. Theorem 2 shows the q1th moment and almost sure
exponential stability of system (3).

Theorem 1. Let Assumptions (A1A1A1)–(A5A5A5) hold; then, system (3), with any initial condition (4), has
a unique global solution x(t) on R+ satisfying the following properties:

lim sup
t→∞

1
t

∫ t

0
E|x(s)|q2 ds ≤ K1, (23)

lim sup
t→∞

E|x(t)|q1 ≤ K2, (24)

where the constant K1 > 0 and K2 > 0 are only related with the initial data.

Proof. To investigate system (3) with different structures, We define the new Lyapunov
function V : Rd ×R+ × S→ R+ as:

V(x, t, i) =
{

θi|x|q1 + ηi|x|q2 , i ∈ S1
θi|x|q1 , i ∈ S2.

(25)

where θi and ηi are defined in (11) and (12). Then,

c1|x|q1 ≤ V(x, t, i) ≤ c2(|x|q1 + |x|q2), (26)

where c1 = mini∈S θi and c2 is the same as in (17).
Letting x̃t = x(t)−U(x(t− δ1(t)), t), and by the generalized Itô formula, we have

V(x̃t, t, r(t)) = V(x̃0, 0, r(0)) +
∫ t

0
LV(x̃s, x(s− δ1(s)), · · · , x(s− δn(s)), s, r(s))ds + M(t), (27)

where M(t) is a martingale with M(0) = 0.
Now, we estimate the operator LV. For i ∈ S1, t ≥ 0,

LV(x−U(y1, t), y1, · · · , yn, t, i)

=q1θi|x−U(y1, t)|q1−2(x−U(y1, t))T F(x, y1, · · · , yn, t, i)

+
1
2

q1(q1 − 2)θi|x−U(y1, t)|q1−4|(x−U(y1, t))TG(x, y1, · · · , yn, t, i)|2

+
1
2

q1θi|x−U(y1, t)|q1−2|G(x, y1, · · · , yn, t, i)|2

+ q2ηi|x−U(y1, t)|q2−2(x−U(y1, t))T F(x, y1, · · · , yn, t, i)

+
1
2

q2(q2 − 2)ηi|x−U(y1, t)|q2−4|(x−U(y1, t))TG(x, y1, · · · , yn, t, i)|2

+
1
2

q2ηi|x−U(y1, t)|q2−2|G(x, y1, · · · , yn, t, i)|2

+
N

∑
j=1

γijθj|x−U(y1, t)|q1 +
N1

∑
j=1

γijηj|x−U(y1, t)|q2 .

By |xT g|2 ≤ |x|2|g|2, and (7), we can derive
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LV(x−U(y1, t), y1, · · · , yn, t, i)

≤q1θi|x−U(y1, t)|q1−2
(
(x−U(y1, t))T F(x, y1, · · · , yn, t, i) +

q1 − 1
2
|G(x, y1, · · · , yn, t, i)|2

)
+ q2ηi|x−U(y1, t)|q2−2

(
(x−U(y1, t))T F(x, y1, · · · , yn, t, i) +

q2 − 1
2
|G(x, y1, · · · , yn, t, i)|2

)
+

N

∑
j=1

γijθj|x−U(y1, t)|q1 +
N1

∑
j=1

γijηj|x−U(y1, t)|q2

≤q1θi|x−U(y1, t)|q1−2

(
αi1 − αi2|x−U(y1, t)|2 + e−ζδ(t)

n

∑
l=1

αi3l |yl |2
)

+ q2ηi|x−U(y1, t)|q2−2

(
αi1 − αi2|x−U(y1, t)|2 + e−ζδ(t)

n

∑
l=1

αi3l |yl |2
)

+
N

∑
j=1

γijθj|x−U(y1, t)|q1 +
N1

∑
j=1

γijηj|x−U(y1, t)|q2 .

From (9)–(12), we have

− q1αi2θi +
N

∑
j=1

γijθj = −1, i ∈ S, (28)

and

− q2αi2ηi +
N1

∑
j=1

γijηj = −ω, i ∈ S1. (29)

From (20), (28) and (29), we have that for any i ∈ S1,

LV(x−U(y1, t), y1, · · · , yn, t, i)

≤q1θiαi1|x−U(y1, t)|q1−2 − |x−U(y1, t)|q1 + e−ζδ(t)q1θi

n

∑
l=1

αi3l(
q1 − 2

q1
|x−U(y1, t)|q1 +

2
q1
|yl |q1)

+ q2ηiαi1|x−U(y1, t)|q2−2 −ω|x−U(y1, t)|q2 + e−ζδ(t)q2ηi

n

∑
l=1

αi3l(
q2 − 2

q2
|x−U(y1, t)|q2 +

2
q2
|yl |q2)

≤q1θiαi1|x−U(y1, t)|q1−2 − (1−
n

∑
l=1

θiαi3l(q1 − 2))|x−U(y1, t)|q1 + e−ζδ(t)2θi

n

∑
l=1

αi3l |yl |q1

+ q2ηiαi1|x−U(y1, t)|q2−2 − (ω−
n

∑
l=1

ηiαi3l(q2 − 2))|x−U(y1, t)|q2 + e−ζδ(t)2ηi

n

∑
l=1

αi3l |yl |q2 .

(30)

Based on (8)–(12), (15) and (20), we can similarly find that for i ∈ S2,

LV(x−U(y1, t), y1, · · · , yn, t, i)

≤q1θiαi1|x−U(y1, t)|q1−2 − (1−
n

∑
l=1

θiαi3l(q1 − 2))|x−U(y1, t)|q1 + e−ζδ(t)2θi

n

∑
l=1

αi3l |yl |q1

− (ω− q1(q1 − 2)θi
q2

n

∑
l=1

αi5l)|x−U(y1, t)|q2 + e−ζδ(t) q1(q2 − q1 + 2)θi
q2

n

∑
l=1

αi5l |yl |q2 .

(31)



Fractal Fract. 2022, 6, 385 9 of 21

Letting c3 := (maxi∈S q1θiαi1) ∨ (maxi∈S1 q2ηiαi1), recalling conditions (13) and (14),
and combining with (30) and (31), we have that for all i ∈ S,

LV(x−U(y1, t), y1, · · · , yn, t, i)

≤c3(|x−U(y1, t)|q1−2 + |x−U(y1, t)|q2−2) + 2e−ζδ(t)δ
n

∑
l=1
|yl |q1 +

q2 − q1 + 2
q2

e−ζδ(t)ω̂
n

∑
l=1
|yl |q2

− (1− nδ(q1 − 2))|x−U(y1, t)|q1 − (ω− q2 − 2
q2

nω̂)|x−U(y1, t)|q2 .

(32)

Substituting (16) into (32), it follows that

LV(x−U(y1, t), y1, · · · , yn, t, i)

≤c3(|x−U(y1, t)|q1−2 + |x−U(y1, t)|q2−2)− 1− α0

α0
ω1|x−U(y1, t)|q2

− (1− nδ(q1 − 2))|x−U(y1, t)|q1 + 2e−ζδ(t)δ
n

∑
l=1
|yl |q1 + e−ζδ(t)ω2

n

∑
l=1
|yl |q2 −ω1|x−U(y1, t)|q2 .

As c3 > 0 and ω1 > 0, define the function

Θ(u) = c3(uq1−2 + uq2−2)− 1− α0

α0
ω1uq2 .

Then, Θ(u) has finite supremum value on R+, and can be denoted by
c4 := supu∈[0,+∞) Θ(u) < ∞. So,

LV(x−U(y1, t), y1, · · · , yn, t, i)

≤c4 − (1− nδ(q1 − 2))|x−U(y1, t)|q1 + 2e−ζδ(t)δ
n

∑
l=1
|yl |q1 + e−ζδ(t)ω2

n

∑
l=1
|yl |q2 −ω1|x−U(y1, t)|q2 .

By (22), the final estimation for LV is as follows:

LV(x−U(y1, t), y1, · · · , yn, t, i)

≤c4 − (1− nδ(q1 − 2))(1− σ)q1−1|x|q1 + (1− nδ(q1 − 2))σ(1− σ)q1−1(1− δ̄)e−ζδ(t)|y1|q1

−ω1(1− σ)q2−1|x|q2 + ω1σ(1− σ)q2−1(1− δ̄)e−ζδ(t)|y1|q2

+ 2e−ζδ(t)δ
n

∑
l=1
|yl |q1 + e−ζδ(t)ω2

n

∑
l=1
|yl |q2 .

(33)

Now, we prove the main results of Theorem 1 based on those we obtained in the above.
By the existing conditions, we see that on [−δ(0), σ∞), system (3) has the unique

maximal local solution x(t), where σ∞ is the explosion time [36]. For bounded ξ, there is a
positive constant γ0 such that ‖ξ‖ < γ0. For each γ ≥ γ0, the stopping time τγ is defined by

τγ = inf{t ≥ 0 : |x(t)| ≥ γ}, inf ∅ = ∞. (34)

as γ → ∞, τγ is increasing. Denote by τ∞ := limγ→∞ τγ ≤ σ∞, a.s. To prove that in finite
time the solution x(t) of system (3) does not explode, we need to show τ∞ = ∞, a.s., which
implies σ∞ = ∞, a.s.



Fractal Fract. 2022, 6, 385 10 of 21

From (27), by taking expectation and combining with (33), we have that for t ≥ 0,

EV(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ))

=EV(x̃0, 0, r(0)) +E
∫ t∧τγ

0
LV(x̃s, x(s− δ1(s)), · · · , x(s− δn(s)), s, r(s))ds

≤EV(x̃0, 0, r(0)) + c4t− (1− (q1 − 2)nδ)(1− σ)q1−1E
∫ t∧τγ

0
|x(s)|q1 ds

+ (1− (q1 − 2)nδ)σ(1− σ)q1−1(1− δ̄)E
∫ t∧τγ

0
|x(s− δ1(s))|q1 ds

−ω1(1− σ)q2−1E
∫ t∧τγ

0
|x(s)|q2 ds + ω1σ(1− σ)q2−1(1− δ̄)E

∫ t∧τγ

0
|x(s− δ1(s))|q2 ds

+ 2δ
n

∑
l=1

E
∫ t∧τγ

0
|x(s− δl(s))|q1 ds + ω2

n

∑
l=1

E
∫ t∧τγ

0
|x(s− δl(s))|q2 ds.

(35)

It follows from assumption (A2A2A2) that for any l = 1, · · · , n,

E
∫ t∧τγ

0
|x(s− δl(s))|q1 ds ≤ 1

1− δ̄
E
∫ t∧τγ

−δ(0)
|x(s)|q1 ds

=
1

1− δ̄
E
∫ 0

−δ(0)
|ξ(s)|q1 ds +

1
1− δ̄

E
∫ t∧τγ

0
|x(s)|q1 ds,

(36)

and

n

∑
l=1

E
∫ t∧τγ

0
|x(s− δl(s))|q1 ds ≤

n

∑
l=1

E 1
1− δ̄

∫ t∧τγ

−δ(0)
|x(s)|q1 ds

=
n

1− δ̄
E
∫ 0

−δ(0)
|ξ(s)|q1 ds +

n
1− δ̄

E
∫ t∧τγ

0
|x(s)|q1 ds.

(37)

Substituting (36) and (37) into (35), together with (26), we have

c1E|x̃t∧τγ |q1 ≤K3 + c4t +
(

2nδ

1− δ̄
− (1− (q1 − 2)nδ)(1− σ)q1

)
E
∫ t∧τγ

0
|x(s)|q1 ds

+

(
nω2

1− δ̄
−ω1(1− σ)q2

)
E
∫ t∧τγ

0
|x(s)|q2 ds,

(38)

where

K3 =EV(x̃0, 0, r(0)) +
(

2nδ

1− δ̄
+ (1− nδ(q1 − 2))σ(1− σ)q1−1

)
E
∫ 0

−δ(0)
|ξ(s)|q1 ds

+

(
nω2

1− δ̄
+ ω1σ(1− σ)q2−1

)
E
∫ 0

−δ(0)
|ξ(s)|q2 ds.

Recalling (18), it follows from (38) that

c1E|x̃t∧τγ |q1 ≤ K3 + c4t. (39)

From (22), we obtain

(1− σ)q1−1E|x(t ∧ τγ)|q1 ≤ E|x̃t∧τγ |q1 + σ(1− σ)q1−1(1− δ̄)E|x(t ∧ τγ − δ1(t ∧ τγ))|q1 .
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By (39), we can further derive that

c1(1− σ)q1−1 sup
0≤s≤t

E|x(s ∧ τγ)|q1 ≤ K3 + c4t + c1σ(1− σ)q1−1(1− δ̄) sup
0≤s≤t

E|x(s ∧ τγ − δ1(s ∧ τγ))|q1

≤ K
′
3 + c4t + c1σ(1− σ)q1−1 sup

0≤s≤t
E|x(s ∧ τγ)|q1 ,

where K
′
3 = K3 + c1σ(1− σ)q1−1 sup−δ(0)≤s≤0 E|ξ(s)|q1 . Consequently,

c1(1− σ)q1E|x(t ∧ τγ)|q1 ≤ K
′
3 + c4t. (40)

Recalling τγ defined in (34), it follows from (40) that

c1(1− σ)q1 γq1P(τγ ≤ t) ≤ K
′
3 + c4t.

Letting γ → ∞, P(τ∞ ≤ t) = 0 for t ≥ 0. This means P(τ∞ ≥ t) = 1. Because t is
arbitrary, we obtain τ∞ = ∞ a.s..

Next, we show the properties (23) and (24).
Firstly, (38) yields

0 ≤ c1E|x̃t∧τγ |q1 ≤ K3 + c4t +
(

nω2

1− δ̄
−ω1(1− σ)q2

)
E
∫ t∧τγ

0
|x(s)|q2 ds,

namely, (
ω1(1− σ)q2 − nω2

1− δ̄

)
E
∫ t∧τγ

0
|x(s)|q2 ds ≤ K3 + c4t.

Bearing in mind that
(

ω1(1− σ)q2 − nω2
1−δ̄

)
> 0, and letting γ → ∞, the monotone

convergence theorem gives that

lim sup
t→∞

1
t

∫ t

0
E|x(s)|q2 ds ≤ c4(1− δ̄)

ω1(1− σ)q2(1− δ̄)− nω2
=: K1,

which verifies that (23) is true.
To show (24), fix ε0 < ζ ∧ η∗1 so that F1(ε0) < 0. By the generalized Itô formula,

eε0tV(x̃t, t, r(t)) =V(x̃0, 0, r(0)) + M1(t)

+
∫ t

0
eε0s(ε0V(x̃s, s, r(s)) + LV(x̃s, x(s− δ1(s)), · · · , x(s− δn(s)), s, r(s)))ds,

where M1(t) is another martingale with M1(0) = 0.
It follows after taking expectation to eε0(t∧τγ)V(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ)) that

E(eε0(t∧τγ)V(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ)))

=EV(x̃0, 0, r(0)) +E
∫ t∧τγ

0
eε0s(ε0V(x̃s, s, r(s)) + LV(x̃s, x(s− δ1(s)), · · · , x(s− δn(s)), s, r(s)))ds.

Just as the same discussion as above, by (33), (35)–(38), and using (22), we can derive that

E(eε0(t∧τγ)V(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ)))

≤K4 +
c4

ε0
eε0t + F2(ε0)E

∫ t∧τγ

0
eε0s|x(s)|q1 ds + F1(ε0)E

∫ t∧τγ

0
eε0s|x(s)|q2 ds,

(41)
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where

K4 = EV(x̃0, 0, r(0)) +
(

ε0c2(1 + σ)q2−1σ +
nω2

1− δ̄
+ ω1σ(1− σ)q2−1

)
E
∫ 0

−δ(0)
|ξ(s)|q1 ds

+

(
ε0c2(1 + σ)q1−1σ +

2nδ

1− δ̄
+ (1− nδ(q1 − 2))σ(1− σ)q1−1

)
E
∫ 0

−δ(0)
|ξ(s)|q1 ds.

Now, we see a new function Ξ(u) : R+ → R :

Ξ(u) = c4 + F2(ε0)uq1 + F1(ε0)uq2 .

Because F1(ε0) < 0 and q2 > q1, function Ξ(u) has the finite supremum value that can
be denoted as c5 := supu≥0 Ξ(u) < ∞. Letting γ→ ∞ in (41), and with (26), we obtain

c1eε0tE|x̃t|q1 ≤ K4 +E
∫ t

0
eε0sΞ(|x(s)|)ds ≤ K4 +

c5

ε0
(eε0t − 1). (42)

Using inequality (21) by setting a = x̃t, b = U(x(t− δ1(t)), t) and ν = θ0 > (σ
−q1

q1−1 − 1)−1,
then by (42) we obtain

E|x(t)|q1 ≤ (1 + θ0)
q1−1E|x̃t|q1 + (1 + θ−1

0 )q1−1E|U(x(t− δ1(t)), t)|q1

≤ (1 + θ0)
q1−1

K4 +
c5
ε0
(eε0t − 1)

c1eε0t + (1 + θ−1
0 )q1−1σq1(1− δ̄)E|x(t− δ1(t))|q1 .

(43)

For any t ≥ 0, (43) gives

sup
0≤s≤t

E|x(s)|q1

≤(1 + θ0)
q1−1(

K4

c1
e−ε0t +

c5

c1ε0
) + (1 + θ−1

0 )q1−1σq1

(
sup

−δ(0)≤s≤0
E|ξ(s)|q1 + sup

0≤s≤t
E|x(s)|q1

)
.

Considering that 1− (1 + θ−1
0 )q1−1σq1 > 0, then

sup
0≤s≤t

E|x(s)|q1 ≤
(1 + θ0)

q1−1(K4
c1

e−ε0t + c5
c1ε0

) + (1 + θ−1
0 )q1−1σpE‖ξ‖q1

1− (1 + θ−1
0 )q1−1σq1

,

and so

lim sup
t→∞

E|x(t)|q1 ≤
c5(1 + θ0)

q1−1 + c1ε0(1 + θ−1
0 )q1−1σpE‖ξ‖q1

c1ε0(1− (1 + θ−1
0 )q1−1σq1)

=: K2,

which implies that (24) is satisfied. Thus, the proof is completed.

Theorem 2. Let Assumptions (A1A1A1)–(A5A5A5) hold. Denote by λ0 := min{η∗1 , η∗2 , ζ}. Additionally, if
αi1 = 0 for i ∈ S, then for any initial condition (4), the global solution x(t) of system (3) has the
following properties:

lim sup
t→∞

lnE|x(t)|q1

t
≤ −ζ, (44)

lim sup
t→∞

ln |x(t)|
t

≤ − ζ

q1
, a.s.. (45)

Proof. Recalling (17) and (18), η∗1 and η∗2 are, respectively, the unique positive root of
equations F1(η) = 0 and F2(η) = 0. So, we know λ0 > 0, and that for any 0 < λ̄ < λ0,
F1(λ̄) < 0, F2(λ̄) < 0.
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By the generalized Itô formula, it follows that

eλ̄tV(x̃t, t, r(t)) =V(x̃0, 0, r(0)) + M2(t)

+
∫ t

0
eλ̄s(λ̄V(x̃s, s, r(s)) + LV(x̃s, x(s− δ1(s)), · · · , x(s− δn(s)), s, r(s))

)
ds,

(46)

where M2(t) is a martingale with M2(0) = 0.
Then taking expectation to eλ̄t(t∧τγ)V(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ)), where τγ is given in (34),

we obtain

E(eλ̄(t∧τγ)V(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ)))

=EV(x̃0, 0, r(0)) +E
∫ t∧τγ

0
eλ̄s(λ̄V(x̃s, s, r(s)) + LV(x(s), x(s− δ1(s)), · · · , x(s− δn(s)), s, r(s))

)
ds.

Just as the same discussion as above, by (33), (35)–(38) and (22), we have that for
αi1 = 0,

E(eλ̄(t∧τγ)V(x̃t∧τγ , t ∧ τγ, r(t ∧ τγ))) ≤ K5 + F2(λ̄)E
∫ t∧τγ

0
eλ̄s|x(s)|q1 ds + F1(λ̄)E

∫ t∧τγ

0
eλ̄s|x(s)|q2 ds,

where

K5 = EV(x̃0, 0, r(0)) +
(

λ̄c2(1 + σ)q2−1σ +
nω2

1− δ̄
+ ω1σ(1− σ)q2−1

)
E
∫ 0

−δ(0)
|ξ(s)|q2 ds

+

(
λ̄c2(1 + σ)q1−1σ +

2nδ

1− δ̄
+ (1− nδ(q1 − 2))σ(1− σ)q1−1

)
E
∫ 0

−δ(0)
|ξ(s)|q1 ds.

As F1(λ̄) < 0, F2(λ̄) < 0 and from (26), we have that

c1E
(

eλ̄(t∧τγ)|x̃t∧τγ |q1
)
≤ K5.

when γ→ ∞, we obtain

eλ̄tE|x(t)−U(x(t− δ1(t)), t)|q1 ≤ K5

c1
.

Using inequality (21) by setting a = x̃t, b = U(x(t− δ1(t)), t) and ν = σ
1−σ , it becomes

eλ̄tE|x(t)|q1 ≤ (1− σ)1−q1 eλ̄tE|x̃t|q1 + σ1−q1 eλ̄tE|U(x(t− δ1(t)), t)|q1

≤ K5

c1
(1− σ)1−q1 + σ(1− δ̄)

(
eλ̄(t−δ1(t))E|x(t− δ1(t))|q1

)
.

(47)

So,

sup
0≤s≤t

eλ̄sE|x(s)|q1 ≤ K5

c1
(1− σ)1−q1 + σE‖ξ‖q1 + σ sup

0≤s≤t
eλ̄sE|x(s)|q1 .

Then, we have

sup
0≤s≤t

eλ̄sE|x(s)|q1 ≤ 1
1− σ

(
K5

c1
(1− σ)1−q1 + σE‖ξ‖q1

)
,

which implies

sup
0≤t≤∞

eλ̄tE|x(t)|q1 ≤
(

K5

c1
(1− σ)−q1 +

σE‖ξ‖q1

1− σ

)
,

and

lim sup
t→∞

E|x(t)|q1

t
≤ −λ̄.
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By (46), we can similarly derive

eλ̄tV(x̃t, t, r(t)) ≤ K6 + F2(λ̄)
∫ t

0
eλ̄s|x(s)|q1 ds + F1(λ̄)

∫ t

0
eλ̄s|x(s)|q2 ds + M2(t),

where

K6 = V(x̃0, 0, r(0)) +
(

λ̄c2(1 + σ)q2−1σ +
nω2

1− δ̄
+ ω1σ(1− σ)q2−1

) ∫ 0

−δ(0)
|ξ(s)|q2 ds

+

(
λ̄c2(1 + σ)q1−1σ +

2nδ

1− δ̄
+ (1− nδ(q1 − 2))σ(1− σ)q1−1

) ∫ 0

−δ(0)
|ξ(s)|q1 ds.

From F1(λ̄) < 0, F2(λ̄) < 0 and the inequality (26), we obtain

c1eλ̄t|x(t)−U(x(t− δ1(t)), t)|q1 ≤ K6 + M2(t).

Then, the non-negative semi-martingale convergence theorem gives

lim sup
t→∞

(
eλ̄t|x(t)−U(x(t− δ1(t)), t)|q1

)
< ∞, a.s.

So, there exists a positive finite random variable ζ̃ such that

sup
0≤t<∞

(
eλ̄t|x(t)−U(x(t− δ1(t)), t)|q1

)
≤ ζ̃, a.s.

Similarly, with the procedure as in (47), it follows that for t ≥ 0,

sup
0≤s≤t

eλ̄s|x(s)|q1 ≤ 1
1− σ

(
(1− σ)1−q1 ζ̃ + σ‖ξ‖q1

)
, a.s.

Then
sup

0≤t<∞
eλ̄t|x(t)|q1 ≤ 1

1− σ

(
(1− σ)1−q1 ζ̃ + σ‖ξ‖q1

)
, a.s.

and consequently,

lim sup
t→∞

ln |x(t)|
t

≤ − λ̄

q1
, a.s.

Thus, we see that (44) and (45) hold by the arbitrariness of λ̄ as required. The proof
is completed.

Remark 1. In papers [23,24], the p-moment exponential stability of the Caputo fractional differen-
tial equations with a single structure were investigated by the application of Lyapunov functions. In
Theorem 2 of this work, the Lyapunov function method is used to establish the q1th moment and
almost sure exponential stability of the differently structured stochastic system (3). Moreover, If the
Caputo fractional derivatives of the Lyapunov functions are applied, the results of this work will
make sense in the corresponding Caputo fractional version driven by the standard Brownian motion
as well.

4. Example

This section will show three numerical examples to illustrate the main results.

Example 1. We discuss the following neutral stochastic pantograph differential equation on R:

d[x(t)−U(x(t− δ1(t)), t)]

=F(x(t), x(t− δ1(t)), x(t− δ2(t)), t, r(t))dt + G(x(t), x(t− δ2(t)), t, r(t))dW(t),
(48)



Fractal Fract. 2022, 6, 385 15 of 21

x(0) = −1, δ1(t) = 0.1t, δ2(t) = 0.2t and U(y1, t) = 0.24e−0.3ty1. W(t) is a 1-dimensional
standard Brownian motion. r(t) is the right continuous Markov chain with state space S = {1, 2, 3}
and the generator

Γ =

 −2 1 1
1.2 −3 1.8
0.5 0.5 −1

.

S is divided into S1 = {1, 2} and S2 = {3}. For i ∈ S, set

F(x, y1, y2, t, 1) = −5x + 1.2e−0.3ty1; G(x, y1, y2, t, 1) = 0.2e−0.3ty2;

F(x, y1, y2, t, 2) = −12x + 1.92e−0.3ty1 − 0.3e−0.3ty2; G(x, y1, y2, t, 2) = x + 0.1e−0.3ty2;

F(x, y1, y2, t, 3) = −8x3 − 6x− 0.6912e−0.6txy2
1 − 0.055296e−0.9ty3

1; G(x, y1, y2, t, 3) = 0.1e−0.6ty2
2.

(49)

Equation (49) shows that system (48) has different structures in the subspaces S1 and S2.
Now, the Assumptions (A1A1A1), (A2A2A2) and (A5A5A5) hold with d = 1, n1 = 2, n = 2, δ(t) = 0.2t,
δ̄ = 0.2, σ̄ = 0.24, σ = 0.3, ζ = 2. Then, it can be verified that

(x−U(y1, t))F(x, y1, y2, t, 1) +
3
2
|G(x, y2, t, 1)|2 ≤− 5|x−U(y1, t)|2 + 0.01e−0.6ty2

1 + 0.06e−0.6ty2
2;

(x−U(y1, t))F(x, y1, y2, t, 2) +
3
2
|G(x, y2, t, 2)|2 ≤− 10|x−U(y1, t)|2 + 0.1512e−0.6ty2

1 + 0.051e−0.6ty2
2;

(x−U(y1, t))F(x, y1, y2, t, 3) +
3
2
|G(x, y2, t, 3)|2 ≤− 3|x−U(y1, t)|2 + 0.1728e−0.6ty2

1 + 0.002e−0.6ty2
2

− 2|x−U(y1, t)|4 + 0.02e−1.2ty4
1 + 0.01e−1.2ty4

2.

so that for q1 = 2, q2 = 4, the Assumption (A3A3A3) is satisfied with

α11 = 0; α12 = 5; α131 = 0.01; α132 = 0.06; α21 = 0; α22 = 10; α231 = 0.1512; α232 = 0.051;

α31 = 0; α32 = 3; α331 = 0.1728; α332 = 0.02; α34 = 2; α351 = 0.02; α352 = 0.01.

Then, we obtain

A =

 12 −1. −1
−1.2 23 −1.8
−0.5 −0.5 7

; S =

(
22 −1
−1.2 43

)
.

Taking ω = 3, we have

(θ1, θ2, θ3) = (0.1013, 0.0608, 0.1544); (η1, η2) = (0.0466, 0.0246),

Thus, the conditions in the Assumption (A4A4A4) all hold.

By solving the equation F1(η) = 0 and F2(η) = 0, we obtain λ0 = 0.94133. Then,
by Theorems 1 and 2, we see that the unique global solution x(t) of Equation (48) is
exponentially stable as follows:

lim sup
t→∞

ln E|x(t)|q1

t
≤ −λ0 = −0.94133

and

lim sup
t→∞

ln |x(t)|
t

≤ −λ0

2
= −0.470665, a.s. (50)

Figures 1 and 2 show the computer simulations of the solution x(t) of the system (48)
and the stability (50), respectively, by the Euler–Maruyama method with a step size of
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0.01 and initial data x(0) = −1, r(0) = 2 for 1000 samples. Figure 1 indicates that the
highly nonlinear differently structured hybrid NSDEs with multiple unbounded time-
varying delays (48) are asymptotically stable, while Figure 2 shows that it is almost surely
exponential stable, which illustrates the results accurately.

0 2 4 6 8 10
-4

-3

-2

-1

0

1

2

Figure 1. Computer simulation of the solution x(t) of Equation (48).

0 2 4 6 8 10
-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 2. Computer simulation of the ln |x(t)|/t of the solution x(t) of Equation (48).

Example 2. We give two differently structured NSDEs with bounded and with unbounded delays
on R, respectively, and discuss the differences in the asymptotic behaviors of them.

Case 1 (with bounded delay):

d[x(t)−U(x(t− δ1(t)), t)]

=F(x(t), x(t− δ1(t)), x(t− δ2(t)), t, r(t))dt + G(x(t), x(t− δ2(t)), t, r(t))dW(t),
(51)
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where x(0) = −1, δ1(t) = sin t, δ2(t) = cos t U(y1, t) = 0.24y1.
Case 2 (with unbounded delay):

d[x(t)−U(x(t− δ1(t)), t)]

=F(x(t), x(t− δ1(t)), x(t− δ2(t)), t, r(t))dt + G(x(t), x(t− δ2(t)), t, r(t))dW(t),
(52)

where x(0) = −1, δ1(t) = 0.8t, δ2(t) = 0.5t, U(y1, t) = 0.24y1.
For comparison, we set all the other terms in Equations (51) and (52) to be the same. W(t) is

a 1-dimensional standard Brownian motion. r(t) is the same Markov chain as that in Example 1.
We set

F(x, y1, y2, t, 1) = −0.5x + 1.2y1; G(x, y1, y2, t, 1) = 0.2y2;

F(x, y1, y2, t, 2) = −1.2x + 1.92y1 − 0.3y2; G(x, y1, y2, t, 2) = x + 0.1y2;

F(x, y1, y2, t, 3) = −0.8x3 − 6x− 0.6912xy2
1 − 0.055296y3

1; G(x, y1, y2, t, 3) = 0.1y2
2.

Obviously, two equations have quite different structures in the subspaces of r(t), and both
of them do not satisfy the condition (A3A3A3) of Theorem 2. Now we simulate the solutions of Equa-
tions (51) and (52) respectively by the Euler–Maruyama method with step size 0.01 and initial data
x(0)=-1,r(0) = 2 for 1000 samples.

Figure 3 indicates that the highly nonlinear differently structured hybrid NSDDE (51)
with multiple bounded time-varying delays is asymptotically stable, though the conditions
of Theorem 2 are not met. Figure 4 shows that when the delay terms become unbounded,
the solution of the NSDDE (52) is no longer stable. Further with the Example 1, it can
be seen that when the conditions of Theorem 2 are satisfied in unbounded delay case,
the solution is asymptotically stable and almost surely exponential stable.

The Example 2 shows not only the differences in the asymptotic behavior of the
systems with bounded and with unbounded delays, but also the effectiveness of the
conditions of Theorem 2 in the unbounded delay case.

0 2 4 6 8 10

-2

-1.5

-1

-0.5

0

Figure 3. Computer simulation of the solution x(t) of Equation (51).
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Figure 4. Computer simulation of the solution x(t) of Equation (52).

Example 3. Now we show the following neutral stochastic differential delay equation on R2:

d[x(t)−U(x(t− δ1(t)), t)]

=F(x(t), x(t− δ1(t)), x(t− δ2(t)), t, r(t))dt + G(x(t), x(t− δ2(t)), t, r(t))dW(t),
(53)

where x(t) = (x1(t), x2(t))T ∈ R2, x(0) = (−1,−1)T , δ1(t) = 0.1t, δ2(t) = 0.2t. For y ∈ R2,
we set U(y, t) = 0.24e−0.3ty. F = (F1, F2)

T , G = (G1, G2)
T . F1, F2, G1, G2 will be defined later.

W(t) is a 1-dimensional standard Brownian motion. r(t) is the same Markov chain as that in
Examples 1 and 2. For i ∈ S, z1, z2, z3 ∈ R, set

F1(z1, z2, z3, t, 1) = −2.4z1 + 5e−0.3tz2; G1(z1, z2, z2, t, 1) = 0.2e−0.3tz3;

F2(z1, z2, z3, t, 1) = −z1 + 3.9e−0.3tz2; G1(z1, z2, z, t, 1) = 0.06e−0.3tz3;

F1(z1, z2, z3, t, 2) = −2.5z1 + 1.6e−0.3tz2 − 0.3e−0.3tz3; G1(z1, z2, z, t, 2) = 1.58z1 + 0.1e−0.3tz3;

F2(z1, z2, z3, t, 2) = −3z1 + 0.85e−0.3tz2 − 0.5e−0.3tz3; G2(z1, z2, z, t, 2) = 2.7z1 + 0.3e−0.3tz3;

F1(z1, z2, z3, t, 3) = −5z3
1 − 6z1 − 0.6912e−0.6tz1z2

2 − 0.05e−0.9tz3
2; G1(z1, z2, z, t, 3) = 0.5e−0.6tz2

3;

F2(z1, z2, z3, t, 3) = −1.7z3
1 − 5z1 − 0.7e−0.6tz1z2

2 − 0.2e−0.9tz3
2; G2(z1, z2, z, t, 3) = 1.32e−0.6tz2

3.

Obviously, the system (53) has different structures in the subspaces. Similarly with the
calculation in Example 1, it can be verified that the conditions in Theorem 2 hold with d = 2,
n1 = 2, n = 2, δ(t) = 0.2t, δ̄ = 0.2, σ̄ = 0.24, σ = 0.3, ζ = 2. We now show the computer
simulations of the solution x(t) of the system (53) by the Euler-Maruyama method with step size
0.01 and initial data x(0) = (−1,−1)T , r(0) = 2 for 1000 samples.

Figure 5 indicates that the highly nonlinear differently structured hybrid NSDE with
multiple unbounded time-varying delays (53) is asymptotically stable, which illustrates the
results accurately.
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Figure 5. Computer simulation of the solution x(t) of the Equation (53).

5. Conclusions

In this paper, we study the highly nonlinear hybrid differently structured NSDDEs
with multiple unbounded time-varying delays. The existence, uniqueness and q1th moment
asymptotical boundedness of the exact global solution of the new system were investigated.
The criteria of the q1th moment and almost surely exponential stability are established.
Based on existing works, this paper’s main contribution is extending the exponential
stability results of highly nonlinear hybrid differently structured NSDDEs from the single
constant delay to more general multiple unbounded time-varying delays. We used the
M-matrix, generalized Itô formula, non-negative semi-martingale convergence theorem
and Lyapunov function methods to obtain the results. The factor e−ζδ(t) was fully used to
overcome the difficulty caused by the unbounded delay functions. The new system we
discussed in this paper is more general and applicable. A specific case of the application is
the pantograph dynamics, in which the unbounded delay is a proportional function. Three
numerical examples are also given to illustrated the results of this paper.
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