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Abstract: The second derivative block hybrid method for the continuous integration of differential
systems within the interval of integration was derived. The second derivative block hybrid method
maintained the stability properties of the Runge-Kutta methods suitable for solving stiff differential
systems. The lack of such stability properties makes the continuous solution not reliable, especially
in solving large stiff differential systems. We derive these methods by using one intermediate off-grid
point in between the familiar grid points for continuous solution within the interval of integration.
The new family had a high accuracy, non-overlapping piecewise continuous solution with very
low error constants and converged under the suitable conditions of stability and consistency. The
results of computational experiments are presented to demonstrate the efficiency and usefulness of
the methods, which also indicate that the block hybrid methods are competitive with some strong
stability stiff integrators.

Keywords: block hybrid method; continuous scheme; differential system; multistep collocation

1. Introduction

The system whose numerical approximation is sought is written in the form

W — f(x,y), (a<x<b), ¢y
y(x0) = ¥o -

In Equation (1), y : [a4,b] — R™ and f : [a,b] x R™ — R™ are differentiable. To obtain
accurate integration methods, which combine, to some extent, the advantages of the Runge—
Kutta methods (RKMs) and linear multistep methods (LMMs), the use of the multistep
collocation technique has been proposed by many authors, for example, Onumanyi et al. [1],
Chollom and Jackiewicz [2], Chollom and Onumanyi [3], and Jator [4]. In this work,
methods were designed for finding a continuous approximate solution of the system in
Equation (1), where y(x) belongs to Cl([a, b], R™) and the set of points defined as

Q:EZZJCQ<X1<”‘<X”+1ZZJ,
so that
Xp:Xxp=x9+nh,n=01--- ,N—-1,h=x,,1 —x,and N = (b—a)/h.

The & in this paper, for simplicity, is a constant and N is a positive integer. Some of
the methods derived for Equation (1) were, in fact, to evaluate the solution only at the
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first derivative of Equation (1). Long before our consideration of introducing the off-step
points, Gragg and Stetter [5], Butcher [6,7], and Gear [8] had already considered introducing
some off-step points and referred to them as generalized multistep predictor—corrector
methods, a modified multistep method, and hybrid methods, respectively. Similarly,
the introduction of the second derivative terms had already been considered by many
authors. For example, earlier, Urabe [9] worked on a second derivative method with
y”(x) = g(x,y) to obtain a starting method for the single-step integrator in the paper.
In [10], Mitsui changed slightly Urabe’s PC pair to improve the performance of the method.
To unify and extend this result after some years, Cash [11] generalized the PC pair of
Urabe’s type of method. Gupta, in [12], derived and implemented second-derivative
methods. Shaintani [13,14] suggested some integration algorithms very similar to RKMs,
with ¥/ (x) = f(x,y) and ¥’ (x) = g(x,y). In [15], the author constructed (p,q)-stage
RKMs, which exhibit y” (x) = g(x,y) evaluation. Chan and Tsai [16] considered explicit
two-derivative RKMs, which are cheaper to calculate with fewer function evaluations than
the standard RKMs. Recently, many authors have worked on methods to obtain better
approximate solutions to differential equations or on stability properties to improve the
accuracy and efficiency of solution of differential equations (see, for example, [17-24]).

In this article, we extend the work of Yakubu et al. [25] to derive block-hybrid methods
that show a high order of accuracy with very low error constants and large regions of
absolute stability and converge rapidly to the required solution. We should also point out
that the effectiveness of this class of methods for the treatment of stiff systems is shown
on the basis of their attractive properties and the efficient technique to deal with a large
system of a stiff initial value problem of ordinary differential equations.

Definition 1 ([26]). Let Yy, and F,;, be vectors given by

Y = (Yn, Yni1, - --ryn+r—l)T/

Fin = (f'flffnJrl/ e ;fn+rf1)T.
Then the k-block method is of the form

k k

Ym = Z AiYm i+ Z BiFy i (2)
i=1 i=0

Ifr =1, then the above equation in Equation (2) is just the classical k-step method. When By = 0,
Equation (2) is explicit; otherwise, it is implicit.

The below diagram depicts the idea of the new methods.

In Figure 1, [a, b] is divided into a series of equal lengths of a block of six points
with size or length h. The approximate solutions {Vu-+u, Yu+1, Yn+v, Yn+2, Yn+w, Yn+3 } are
computed simultaneously in the block at the points { X+, Xy+1, Xn-+v, Xn+2, Xn+w, Xn+3} in
the kth block. Since the methods are self-starting, we do not need predictors to start the
block methods.
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Y
yllﬂl y:;+v
Yn Yn+1
| > X
a= Xp Xpiu Xp+l Xntv Xn+2 Xnw Xpt3 = b

Figure 1. Schematic representation of the block hybrid methods for stiff system of initial
value problems.

2. The Block Hybrid Methods
The block hybrid methods in this segment are based on the polynomial of the form

p-l
y(x) = &g+ agx +ax® + -+ + wp_ﬂp_l = Z o' ®)
i=0

and are referred to as interpolation polynomials, which is twice continuously differentiable.
The y(x) is interpolated at {x,.;}, and y’(x) and y” (x) are collocated at {c,;} to obtain
the system,

y(xn+j) :y(xn+]h), jG {0,1,2,...,1’*1}, 4)
Y (Cntj) = furj = fn +jhy(en +jh), j=012,...,5-1, ©)
Y'(Cusj) = 8nyj=fr+ fyy = fx+ ffy, j=01,2,...,t =1 (6)

Following Yakubu et al. [25], we put Equations (4)—(6) as:

to have
. 1 A
1 Xn x2 x, Xy X
2 3 4 p1
1 xpr1 x5, Yigr—1 Yogr—1 7 xn+f—12
0o 1 2xy 3x7 4, - D
V=] : 3 3 : ®
2 3 7 piz
0 1 2nts—1 e AN D xn+s—31
0 0 2 6x, 1217 D"xjy”
2 7”7 P*3
L 0 0 2000 Oxpppn 12254, 0 DX
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T T
= (0‘0/0‘1/“2/' t lap—l) ’ ]/ - (ynl' o ryn—‘,-r—lrfn/' t /fn+s—1r gn/ te 1gn+t—1) .

The D' = (p—1) and D" = (p — 1)(p — 2) are first and second derivatives. From
Equation (7), we have

« = Uy, where U = vl 9)
which is rearranged to have
r—1 s—1 2t71
Y = X &0 Y B fus Y () g (10)
j=0 j=0 j=0
where
p-1 ,
wj(x) =Y wjip1x, j=0,1,2 ..., r—1, (11a)
i=0
p—1 .
hBi(x) =h)_ Bjiwax, j=0,1,2, ...,s—1, (11b)
i=0
p—1 .
Wyi(x) =Y yjiax, j=0,1,2, ..., t—1 (11c)
i=0

In fact, the coefficients in Equation (11) can be calculated from the inverse of the matrix

U, as in Equation (9), or written as
u=v-", (12)

Insert Equation (11) into Equation (10) (see Yakubu et al. [25,27]) to have

r—1r+s+t—1 s—1r+s+t-1 21‘71 r+s+t—1
y(x) =Y. Y aipiyariPi(x) +RY Y BiraifuriPi(0)+R2Y Y vie1j8nriPi(x)
j=0 =0 j=0  i=0 j=0 =0

which is factorized to obtain

r+s+t—1 | r—1 s—1 2l,‘fl
y(x)= % L @i 1,j¥n+j THE Bivajfurjth T Yit1,i8n+j ¢ Pi(x)
i=0 j=0 j=0 j=0 (13)
r4s+t—1
= ‘Zo @iPi(x)
=

where

r—1 s—1 t—1
2
$i =Y i1 iYnrj + 1Y BivifuriTH Y Vie1,j8n+j-
j=0 j=0 j=0

Then Equation (13) becomes

r—1 s—1 t—1
yx) = { Yo i Yus H 1Y Biafari TR Y Viagutis
=0 j=0 j=0

r—1 s—1 t—1
'Eo Xj2Yntj+h 'Eo Bipfusi+h? '20 Vi 28n+i,
j= j= j=

r

-1 s—1 -1 T

2 2 +s+t—1
Z Kjrtstt—1Yn+j T hz ﬁj,r+s+t71fn+j+ h Z 7j,r+s+tlgn+j} (1/ X, x5, X0 ) . (14)
=0 =0 =0

Expanding Equation (14) fully, we obtain

TS — T
]/(x) - (yn,‘ . ryn+rflrf1’1/' o /frH»Sflrgi’lr' o ,gn+t71)TuT(1’x,. X et 1) . (15)



Fractal Fract. 2022, 6, 386

50f16

The T in Equation (15) denotes the transpose of.

3. Specification of the Multistep Block Hybrid Methods
3.1. Block Hybrid Method of Seventh Order

In this segment, we use the multistep approach for the construction of the new block
hybrid method with symmetric points of order seven. We introduce three off-step points,
u= %, V= %, and w = %, and 17 = (x — x,,) for the construction of the continuous scheme.
These points are carefully chosen to guarantee the convergence of the method, as pointed
out by [28-30]. From Equation (10), putting r = 1 and s = 7 gives the block hybrid method

of the form

6
y(x) = ao(x)yn + h;} Bj (%) fusj- (16)
j=

Simplifying Equation (16), the interpolation and collocation polynomial in Equation
(10) reduces to the proposed continuous scheme of the form in Equation (15), as follows:

y(x) = ao(x)yn + h[Bo(x) frn + B1(x) futu + B2(X) fur1 + B3(X) futo + Ba(X) fura + B5(X) futw + B6(X) fuya]  (17)

where
ap(x) =1,
Bo(x) = 9617 — 1176hn° + 5880h%;> — 15,4351 y* + 22, 736h* ;> — 18,522h°1% + 7560h°y
0 756018 ’
By(x) = —2437 + 280hn® — 13021215 + 3045h%y* — 3654h*y3 + 1890K5,>
nye 31516 '
B (x) = 48077 — 532015 + 23,016h21° — 48,4051%y* + 49, 140K*y® — 18,9007
2 25201 '
(x) = —24077 4 2520hn® — 10, 164h%5° + 19,5301h3* — 17, 780h*,3 + 6300155
Palx) = 94516 /
(x) = 48057 — 4760hn® + 17,976h%y° — 32,235h3y* + 27, 720h*y3 — 9450K°,>
Palx) = 2520h6 '
Bs(x) = —2457 4 224hn® — 798h%y° + 1365k%y* — 1134h*y® + 378112
5= 315K6 '
Bo(x) = 9617 — 840hn® 4 2856h1° — 4725h%y* + 3836h*y® — 1260h°7?
o 75601 '
Evaluate Equation (17) at X4u, Xy4+1Xn+0, Xn+2, Xntw, and x,43 to obtain the method:
yn+u == yVl + m [19, 087f}’l + 65, 112fn+u - 46, 461f1’l+1 + 37, 504fn+z; - 20, lefn+7_ + 6312fn+w - 863fn+3] (18)

h
Y1 = Y+ g5 (1139 fu + 5640 fuu + 331 + 1328 fuo — 8072 + 264 furio — 37fr 3]

h
Ynto = Yn + ESO [685](;1 + 3240fn+u + 1161fn+1 + 2176fn+v — 729fn+2 + 216fn+w — 29fn+3}

h
Ynt42 = Yn + % [143fn + 696fn+u + 192fn+1 + 752fn+y + 87fn+2 + 24fn+w — 4:fn+3}

h
Yntw = Yn + == [3715f, + 17,400 f, 1y + 6375 fy 11 + 16,000 10 + 11,625f, 12 + 5640 fn 00 — 275 43]

24,192

h
Yni3 =Yn + ﬁ [41f” + 216fn+u + 27fn+1 + 272fn+v + 27fn+2 + 216fn+w + 41fn+3}
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3.2. Second-Derivative Block Hybrid Method of Order 14

Here, we introduce the second-derivative term to have the block hybrid method of
order 14 whereby we have the following interpolation and collocation polynomial of the
form

y(x) = ]/n+hz ﬁ] fn+]+h Z'Y] gnJr/ (19)

Simplify Equation (19) to obtain the proposed continuous scheme of the form in
Equation (15) as:

y(x) = ao(x)yn + h[Bo(x) fu + B1(x) futu + B2(x) fus1 + B3(X) fruto + Ba(x) fui2a + B5(X) futw + Bo(X) fut3]

20
2 [70(0)gn + 71 ()t + 72(X) s + 73 ()10 + Va()8ns2 + V5(X)gn 110 + T (X) s3] 20)

where

ag(x) =1,
564 16,384y | 38,339n12 15428, n 1,028,06971°  2,578,814%° 1 54,733,637
Bo(x) 10,125113 ~ 131,625K12 " 30,375K11 2025110 33,7501° 30,375H8 324,0007
olx) = ,
2,737,391y 4 29,786,393y  173,613,232¢° n 1,383,221 48,587n° n
11,3408 121,5001° 101,250/% 18,000/3 27002 1

3527 100,0647' | 3016712 320,048y

2,762,01471° 12,992 4741°

3375h13 43,875h12 135h11 2475110 + 5625h° 10,125K8

Bi1(x) =
+1,588,042178 14,281,196y L 2,995,0661°  2,864,4461° X 12,7987* 3755
675h7 472516 1125h5 1875h% 2513 5h2

splt 2192413 | 1583712 31984y'! | 10428750  229,583y° I

Ba(x) 27113 351412 27011 99110 9019 8118
2(X) =

4,159,523y 2,142,395 i 36,2357% 3519455 | 28657 10073 ’
86417 37816 8h5 15h% 413 2

25613 128412 | 36,224p'! 544070 | 154928;°  12,088y° i
Bs(x) 1053012 27K 891110 2719 24318 on7

3\x) = ,

1,079,840n7  48,4481° 4 436,624°  10,1607% | 160073

L 567h° 2715 40504 2713 2712

gyt | 2176y 1559512 | 312445 101,1074'0 | 221,2905°

T 27KT3 351012~ 27jpll 99,10 9019 8118

~3,999,539,8 i 4,132,745¢7 158,999 I 70,0517°  11,7457% | 4254
8647 75616 36H5 30n% 1613 4h2

Ba(x) =

352p1 | 92,1281 63492 | 2449124 190857440 | 8,060,938%°

Bs(x) T 3375K13 T 43,875K12 3375h11 247500~ 5625k0 T 1012508

5(X) = s
4,402,92218 i 1411,86877  146,794%° i 1,136,4627° 23,334y n 6641°

L 3375h7 94506 125/5 1875h% 125K3 2512

56yt 14,1924 1139412 | 971241!  180,4034° i 1,117,2974°
10,125013 " 131,625K12  1215K11 T 2025410 11,2509 30,375h8

3,827,857,8

_ 1,884,30157  12,502,3815°
L 64,800/7

1,3269177° 21,5595 | 1523
28,35016 243,00015 o

+ 50,625h% 2700K3 13512

+

syt 112913 79112 392411 | 21581410 18,2774° 4
14,175012 ~ 8775h1T T 6075110 495k9 675018 2025h7

1,184,1531% 361347 I 685,3077°  23,5697° . 37,849y
64,8001° 13545 24,300 112513 360012

_ 17
51
157502 — 2025007 T 9510  Te5kd | 125i5 2257

22,796n%  212,308y” 4 46,6581°  47618y° | 7029 24;7
4505 3150 75h% 125/3 52

71(x) =

'L
2
32114 1312913 | 404'2  43049"1 | 12,594710 6051417 ]
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84 320418 | 79412 1e4dy'l | 16,6497  38,1825°
63112~ T17KIT T 3RO T 11RO s i
T2(x) =
72596978 79149157 | 21,4494%  29,9291° | 4954* 75,8
886 252 T s 208 o Th
128714 12871 | 10784512 6592511 | 118264510  19,352°
567h12 2711 243010~ T 279 s oW T
13(x) = 8 7 6 5 4 3 !
298,1681 830,6081 872,3601 258,9521 5480 8007
81 1895 T 243iF 13510 o2~ "9
8yt 30441 | 7142 139241 4 13,2290 28,373y° 4
63112 117pIT T 3pl0 1119 3078 2717
Ya(x) = ,
50820178 255529947 | 19,3614°  42084° |, 41854*  75°
880 126 T 1@ 5@ 1602~ 2h
32514 118471 | 808712 3088y | 795440  33338;° | ]
1575012~ 2925K1T T 225p10 16549 12518 25+
’)/5(3() - 7
5425678  86,468y7 | 5366n°  13,7867° |, 846yt  245°
22506 31510 2504 T 12513 2502~ 5h
84 32413 23712 716" | 1084140 74367° | ]
14175112 ~ 2925111 " 243310 ~ 148519 675008 200507
’76(x) = ’
76,2138 831747 | 24781945 3500945 | 714t 4B
12,960n6 ~ 1260K° + 48,6001 13,5003 ' 90nZ  9h J

Evaluating the continuous scheme in Equation (20) as usual at x4, Xy11Xn+0, Xn+2,

Xn+w, and x, 13, we obtain the method

Yn+u = Yn + 145404,160,000 [

|

. h
Yn+1 = Yn t z862360,000
{ 7’

o h
Ynt+o = Yn + 57125120,000

|

h

]12
249,080,832,000

hZ
972,972,000

hZ
1,025,024,000

Ynt+2 = Yn + 153006875

|

hZ
30,405,375

_ h
Yn+w = Yn t 1992,646,656

|

hZ
1,992,646,656

h

Yn+3 = Yn + 20,000,000

h2

4,004,000

199, 368,819,177 f, — 68,951,829, 552 f,, 1+, — 380,416,470,375f,+1 + 300,642,304, 000 f;; o

1,784,098,013g, — 33,488, 665,488, 14 — 71,514,207,6758,+1 — 77,935,000, 0008, 4»

+457,138,998,375f,4+2 + 110,327,270,448 f, 1 + 4,592,987,927 113

| o
|

[ 783,720,817 f,, + 706,775,424 f, 1\, — 457,058,625 f,,1 + 1,387,808,000f, 4o |
+1,957,353,375f,12 + 466,919, 808f, 1 1» + 19,341,201, 3

057,013g, — 117,681,984g, 1, — 337,970,925g,, .1 — 336,793,008, o
[ 826,473,395, + 775,497,456 f 1, + 688,759,875 f, 11 + 2,699,264,000f, 15 ]

—3,164,886,075¢,42 — 3,963,034, 512¢,, 1 — 90,441, 763g,,1.3

7,450, 095¢, — 123,030,576g, 4+ — 333,689, 625¢, 11 — 390,561, 600g/, 4

14,560,225, — 235,515,600g 4+, — 614,964,375¢,1 — 623,480,0008 ;4

—134,615,475¢, 42 — 16,742,5928, 4 — 380, 629,43
42,168,488, 125,15 -+ 508, 254, 480, 4 o + 20,942,669 13
24,532,563, + 23,488,800f, 1, + 23,587,500, 41 + 116,768,000 £,
499,037,875 fy12 + 15,993,312 f, 4 o + 645, 700f,13
221,317g, — 3,633,120g, 14 — 9,727,200, 41 — 10,524, 8008, 4
—5,041,125¢, 12 — 567, 648gn 10 — 12,680,143
322,126,585 f, + 322,599,120 fy 1y + 379,475,625 f, 1 + 1,617,920,000 4o
1,719,564, 375 f, 2 + 609,445, 680 f, 1, + 10,485,255 f;, 13
{ +11,161,125f,15 + 5,014, 656 f 4 o + 3,310,219f, 43

[ 30,711g, — 409,5369,+u — 726,975¢,4+1 + 726,9758 42 ]

—147,584,025g,+2 — 18,189,360g, 4 — 411,921¢, 13

| |

—210,324,375g,+2 — 64,098,000+ — 1,010,975¢,, 13
3,310,219f, + 5,014, 656 f;,+,, + 11,161,125f,, 1 + 21,088,000 f;, 1

+409,536¢, 1w — 30,711,453

The order and error constants for the constructed block hybrid methods are presented in
Table 1. It is clear from the table that the members of the block hybrid method without a
second-derivative evaluation are all of order seven except the last member in the block,
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which has an order higher than the remaining members in the block (order eight). The
members of the block hybrid method with a second derivative are of uniform accuracy of
order 14 with smaller error constants and, hence, are more accurate than those without a

second derivative.

Table 1. Order and error constants for the block hybrid methods.

Method Order Error Constants
(i) yn+u,P=7 C8 = 4.4403 x 107
(i) ya+1,P=7 C8=13.3068 x 107>
ces _ _ 75
Block method (18) (i) yn+ov,P=7 C8=23.9236 x 10

(iv) yu+2,P=7
V) yuw+w, P=7
(vi) yn+3,P=8

C8=13.3068 x 107>
C8 =4.4403 x 10~°
C9 =1.2555 x 10~

(i) yn+u P=14
(i) y.+1,P=14
Uniform order block method (iii) yn+v,P=14
(21) (iv) yn+2,P=14
V) yn+w,P=14
(vi) yu+3,P=14

C15=1.4789 x 1012
C15=1.5718 x 1012
C15=1.5989 x 1012
C15=1.6261 x 10712
C15=1.7190 x 10~12
C15=3.1979 x 1012

4. Regions of Absolute Stability (RAS) of the Block Hybrid Methods

Generally, in designing a new numerical method, it is very important to consider the
stability properties of the method. Therefore, in this paper, we reformulate the block hybrid
methods, as in [31,32], by the partitioning (s + r) x (s + r) of the form

vl Alu [ nf(x)
_ | AY ,n=12...,N,
ly[”ﬂ ] [B|V} yln!
where
Yl[n] [n—1]7 f(Yl[n] ygn]
vl [n-1] f(Y[n]) y["]
vyl — 2 , y[”—l] 2: , f(y["]) — :2 y[”] =72 |,
v y' foa) !
A B I u e—ypu
A:[O O],U:[IOO , B= 0 0 |, V= 0 0 I
A B 0 M e~k T 00 I—-6
ande=1[1,--- ,l]T € R™,
Thus, Equation (22a) is
" [nf(vy")
" nf(Y")
YO _[ALUT |
— B | 14 —1
ygn] ygn— ]
_yLn]_ I yinfl]

(22a)

(22b)
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The values r and s denote output and stage values, respectively. Applying Equation (22)
to the linear test equation y’ = Ay,x > 0and A € C, we have M(z) as

M(z) = V+2zB(1—zA)"'Uu (23)
and the stability polynomial p(#, z) of the method can easily be obtained as
p(1,z) = det(y1 — M(z)). (24)
The region of absolute stability R of the method is defined as
R=xeC:p(n,z)=1= |y <1

Computing the stability function gives the stability polynomial of the method, which
is plotted to produce the required graph of the region of absolute stability of the method,
as shown in Figure 2.

Figure 2. Regions of absolute stability of the block hybrid methods. (a) Method (18) is A(a)-stable.
(b) Method (21) is A-stable.

Remark 1. In the stable block hybrid second-derivative implicit method, we added the matrix D1
obtained from the coefficients of h? to the matrices A, C, B, and D, which enabled us to plot the
region of absolute stability of the new method. The region of absolute stability of method (18) is
A(w)-stable while the region of absolute stability of the second-derivative implicit method (21) is
A-stable since the region contains the complex plane outside the enclosed figure.

5. Numerical Illustrations

For the illustration of the performance of the derived methods, we consider both linear
and nonlinear challenging systems. To provide a direct comparison, Matlab software codes
were written for the preliminary test experiments using a fixed step length. We present
the calculated results in tables and depict the curves in figures. Here, nfe and Ext are the
function evaluations and exact values, respectively.

Example 1. The Kaps problem [30].
We consider the nonlinear Kaps stiff system,

0 - ety (e ] =[]
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The exact value of the system is

el peine

The solutions of this example are shown in Table 2 and the solution curves are depicted
in Figure 3.

Table 2. Absolute errors in the numerical integration of Example 1.

x Y; Method (18) Method (21)
v1 1.223052805026881 x 1073 1.228938367083599 x 103
5 Yo 1.290570363021715 x 10~° 1.800318343625484 x 10~°
v 3.320709446422848 x 105 3.325679258575631 x 10>
50 o 9.887815172193726 x 108 5.804723043345561 x 107
v1 3.619658989642897 x 1012 3.622719245691676 x 1012
250 2.523305960607913 x 1011 2.101212666995355 x 1010
v1 7.167561881971770 x 10~21 7.173620185942641 x 102!
500 1.122741130992365 x 10~1° 9.350493168888896 x 10715
0o o |
o N
a\‘ "\
os 1 o6 4
\ !
'.‘ l!
4 J“ 04 “\
L s L1
‘~. A
02 [ Q‘ 0z L ~“
\ \
01 \ o \
\\\ . s\ \
(a) (b)

Figure 3. Graphical plots of Example 1 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 1 using (18); (b) solution curve of Example 1 using (21).

Example 2. Consider the linear stiff system.

yil(x) 0 1 0 va(x)] [v1(0) 0
y) =1 -10 0 ||yx)| v20)|=|1].
Y3 (%) 25 1 =25 | [y3(x)] [v3(0) 2
The exact value is
y1(x) sin(x)
ya(x)| = | cos(x)

y3(x) sin(x) + 2 exp(Lx)
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The results of using the newly constructed methods are shown in Table 3 and the
solution curves are in Figure 4.

Table 3. Absolute errors in the numerical integration of Example 2.

x Y; Method (18) Method (21)
n 0 0
5 Yo 1.110223024625157 x 10716 1.110223024625157 x 10710
v3 7.993605777301127 x 1071 0
y1 5.551115123125783 x 10~ 4.163336342344337 x 10~
50 12 3.330669073875470 x 1016 3.330669073875470 x 1016
V3 1.038058528024521 x 10~ 14 0
v1 2.220446049250313 x 1016 1.110223024625157 x 10710
250 Y2 1.110223024625157 x 10716 1.110223024625157 x 10716
V3 3.330669073875470 x 10~16 1.665334536937735 x 10716
! 4.440892098500626 x 1016 3.330669073875470 x 1016
500 v 2.220446049250313 x 1016 1.110223024625157 x 10~16
y3 3.330669073875470 x 1016 2.220446049250313 x 1016
! i
14 ,} 14 |3
% é
12 § 12 i
i i
1 _11_, ———— ! j"“ﬁ\ss
—— H \\\\
wll — ol —
i sy i = ~
o6 | 1 S~ 06 Xi \\\\,
\ \ ]
wl N Wl N\

(a)

(b)

Figure 4. Graphical plots of Example 2 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 2 using (18); (b) solution curve of Example 2 using (21).

Example 3. The linear problem by Enright [33] is given by:

() -1 0 0 0 y1(x)] [y1(0) 1
Yo(x)| | 0 =10 0O 0 va(x) | |y200)| _ |1
o[ T -1 0 c10 0 | {wm@ | o] T 1]
Jh(x) 10 0 —1000 | |ya(x)] |ya(0) 1

The results of the integration are largely self-explanatory. If we examine the accuracy
obtained, however, we see that the newly constructed methods are considerably accurate
(see Table 4). The plotted curves are displayed in Figure 5.
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Table 4. Absolute errors in the numerical integration of Example 3.

x Yi

Method (18)

Method (21)

n
5 Y2
Y3
Y4

0
0
0
1.110223024625157 x 1016

0

0

0
1.110223024625157 x 10716

Y1
50 2
Y3
Y4

2.220446049250313 x 1016
4.440892098500626 x 1016
1.110223024625157 x 1016
2.220446049250313 x 1016

2.220446049250313 x 10~16
4.440892098500626 x 1016
1.110223024625157 x 10716
1.110223024625157 x 1016

W1
250 Y2
Y3
Ya

5.551115123125783 x 1016
7.771561172376096 x 1016
7.771561172376096 x 1016
5.204170427930421 x 1018

5.551115123125783 x 1016
7.771561172376096 x 1016
1.110223024625157 x 1016
5.204170427930421 x 1018

Al
500 Y2
Y3
Y4

2.220446049250313 x 1016
5.551115123125783 x 1016
3.885780586188048 x 1016
1.626303258728257 x 10~ 19

2.220446049250313 x 10~16
5.551115123125783 x 1016
2.775557561562891 x 10~16
3.388131789017201 x 10~20

0.9

0.8

0.7

y@ext ||
Y@EX

0.6

05

0.4

03 L B 03

02 | B 0.2

o1 b 4 01

o L L L I SR S —— 0 L L L I . I
o 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

(a) (b)

Figure 5. Graphical plots of Example 3 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 3 using (18); (b) solution curve of Example 3 using (21).

Example 4. This is given by Gear [34]:

y', == —0.013 y1 — 1000 y1y3, y1(0) =1,
y'y = —2500 yoy3, y2(0) =1,
y'y = —0.013 y; — 1000 y1y3 — 2500 yay3, y3(0) =0.

We solve this problem, and the solution curves are presented in Figure 6.



Fractal Fract. 2022, 6, 386 13 of 16

PesmmIIIIT I pe==EIIIITT T
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Figure 6. Graphical plots of Example 4 using the block hybrid methods with nfe = 500. (a) Solution
curve of Example 4 using (18); (b) solution curve of Example 4 using (21).

Example 5. Here, the present problem was solved by [35]. Therefore, for comparison, we present the
graphical plots of this example in Figure 7, comparing with the exact solution curves. The application
of the newly derived methods to this problem is to demonstrate their performance. However, we
considered only the first four components {y1,y2,y3,Ya}, as shown in Table 5.

/ -
vy (%) -10 100 0 0 0 0 v (x)] v1(0) 1
Yo (x) -100 -10 0 0 0 0 ya(x)| |y2(0) 1
!
y/3(x) _ 0 0 —4 0 0 0 y3(x)| |y3(0) _ |1
Yy (%) 0 0 0 -1 0 0 ya(x) | |y4(0) 1
1/5(?6) 0 0 0 0 —-05 0 ys(x) | |ys(0) 1
_y;(x)_ 0 0 0 0 0 -01 ve(x)] Lye(0) 1
Table 5. Absolute errors of numerical integration of Example 5.
x Vi Method (18) Method (21)
v1 2.024105327791403 x 1010 2.220446049250313 x 10~16
2 4.056337835067758 x 1010 1.318389841742373 x 10716
5 Y3 0 0
Ya 0 0
v 1.721994824510631 x 10~ 3.330669073875470 x 1016
Yo 1.453979242560521 x 10~? 7.771561172376096 x 1016
50 v3 4.440892098500626 x 1016 4.440892098500626 x 10~16
Y4 0 1.110223024625157 x 10~16
e 2.077217382476237 x 10710 6.591949208711867 x 1017
Y2 1.233960850166582 x 10~11 1.734723475976807 x 10~ 18
250 3 2.775557561562891 x 1017 8.326672684688674 x 10~17
Vs 6.661338147750939 x 1016 6.661338147750939 x 1016
1 2.711908290569135 x 1012 6.810144895924575 x 10~ 19
12 6.195955749334348 x 10713 2.710505431213761 x 10~20
500 v3 6.938893903907228 x 1018 4.857225732735060 x 10~17

Ya 3.885780586188048 x 1016 3.330669073875470 x 1010
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Figure 7. Graphical plots of Example 5 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 5 using method (18); (b) solution curve of Example 5 using method (21).

6. Concluding Remarks

The presented second-derivative block hybrid method for a stiff system of ordinary
differential equations is suitable for large systems. The second-derivative block hybrid time
integrator provides good performance. Numerical results for the new second-derivative
block hybrid method are promising and are demonstrably comparable to those obtained
from popular high-order stiff time integrators found in the literature. Their stability
properties, based on Remark 1, indicate that they are good candidates for large stiff systems.
The next step of our research is to further apply some new methods to modeled differential
equations that arise in other areas of scientific fields, such as chemical reaction, enzyme
kinetics, cardiac electrophysiology, models of drug magnetic nanoparticle transport, and a
model of tumor immune interaction, to mention just a few.

Author Contributions: Conceptualization and methodology D.G.Y.; formal analysis and software
G.MK, AS, investigation: D.M. and A.S.; writing—original draft preparation, D.G.Y.; writing—review
and editing, D.M.; validation and visualization A.S. All authors planned the scheme, developed the
mathematical modeling, and examined the theory validation. The manuscript was written through
the contributions of all authors. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Tertiary Education Trust Fund (TETFund) Ref. No. TETF/ DAST&D. D/6.13/NOM-
CA/BAS&BNAS. The first and third authors gratefully acknowledged the financial support of the
TETFUND. The authors gratefully acknowledged the reviewers for their thorough and very fair
comments and observations.

Conflicts of Interest: The authors declare that there is no conflict of interest for the study.



Fractal Fract. 2022, 6, 386 15 of 16

References

1. Onumanyi, P; Awoyemi, D.O.; Jator, S.N.; Sirisena, U.W. New linear multi-step methods with continuous coefficients for first
order initial value problems. J. Nig. Math. Soc. 1994, 13, 37-51.

2. Chollom, ].P.; Jackiewicz, Z. Construction of two step Runge-Kutta (TSRK) methods with large regions of absolute stability. J.
Compt. Appl. Math. 2003, 157, 125-137. [CrossRef]

3. Chollom, J.P.; Onumanyi, P. Variable order A-stable Adams Moulton type block hybrid methods for solution of stiff first order
ODEs. ]. Math. Assoc. Niger. Abacus (31) B 2004, 2, 177-192.

4. Jator, S.N. Leaping type of algorithm for parabolic partial differential equations. JMS Natl. Math. Cent. Abuja Niger. 2013,
2,149-172.

5. Gragg, W.B,; Stetter, H.J. Generalized multistep predictor-corrector methods. J. Assoc. Comput. Mach. 1964, 11, 188-209. [CrossRef]

6.  Butcher, ].C. Modified multistep method for the numerical integration of ordinary differential equations. J. Assoc. Comput. Mach.
1965, 12, 124-135. [CrossRef]

7. Butcher, J.C. A multistep generalization of Runge-Kutta method with four or five stages. J. Ass. Comput. Mach. 1967, 14, 84-99.
[CrossRef]

8.  Gear, W.C. Hybrid multistep method for initial value in ordinary differential equations. ]. SIAM Numer. Anal. 1965, 2, 69-86.

9.  Urabe, M. An implicit one-step method of high-order accuracy for the numerical integration of ordinary differential equations.
J. Numer. Math. 1970, 15, 151-164. [CrossRef]

10. Mitsui, T. A modified version of Urabe’s implicit single-step method. J. Comp. Appl. Math. 1987, 20, 325-332. [CrossRef]

11. Cash, J.R. High order methods for the numerical integration of ordinary differential equations. Numer. Math. 1978, 30, 385-409.
[CrossRef]

12.  Gupta, G.K. Implementing second-derivative multistep methods using the Nordsieck polynomial representation. J. Math. Comput.
1978, 32, 13-18. [CrossRef]

13.  Shintani, H. On one-step methods utilizing the second derivative. Hiroshima Math. ]. 1971, 1, 349-372. [CrossRef]

14.  Shintani, H. On explicit one-step methods utilizing the second derivative. Hiroshima Math. ]. 1972, 2, 353-368. [CrossRef]

15.  Mitsui, T. Runge-Kutta type integration formulas including the evaluation of the second-derivative, Part I. Publ. Res. Inst. Math.
Sci. 1982, 18, 325-364. [CrossRef]

16. Chan, R.PK,; Tsai, A.Y.J. On explicit two-derivative Runge-Kutta methods. Numer. Algorithm 2010, 53, 171-194. [CrossRef]

17.  Marian, D.; Ciplea, S.A.; Lungu, N. On the Ulam-Hyers Stability of Biharmonic Equation. Univ. Politeh. Buchar. Sci. Bull.-Ser.
A-Appl. Math. Phys. 2020, 8, 141-148.

18.  Shokri, A. The Symmetric P-Stable Hybrid Obrenchkoff Methods for the numerical solution of second Order IVPS. TWMS ]. Pure
Appl. Math. 2012, 5, 28-35.

19. Shokri, A. An explicit trigonometrically fitted ten-step method with phase-lag of order infinity for the numerical solution of the
radial Schrodinger equation. J. Appl. Comput. Math. 2015, 14, 63-74.

20. Shokri, A.; Saadat, H. P-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrédinger
equation. Bull. Iran. Math. Soc. 2016, 42, 687-706.

21. Marian, D.; Ciplea, S.A.; Lungu, N. Ulam-Hyers stability of Darboux-Ionescu problem. Carpathian J. Math. 2021, 37, 211-216.
[CrossRef]

22.  Sunday, J.; Shokri, A.; Marian, D. Variable step hybrid block method for the approximation of Kepler problem. Fractal Fract. 2022,
6, 343. [CrossRef]

23. Kwami, A.M.; Kumleng, G.M.; Kolo, A.M.; Yakubu, D.G. Block hybrid multistep methods for the numerical integration of stiff
systems of ordinary differential equations arising from chemical reactions. Abacus J. Math. Assoc. Nig. 2015, 42, 134-164.

24. Singh, G.; Garg, A.; Kanwar, V.; Ramos, H. An efficient optimized adaptive step-size hybrid block method for integrating
differential systems. Appl. Math. Comp. 2019, 362, 124567. [CrossRef]

25.  Yakubu, D.G.; Aminu, M.; Tumba, P.; Abdulhameed, M. An efficient family of second-derivative Runge-Kutta collocation methods
for oscillatory systems. J. Nig. Math. Soc. 2018, 37, 111-138.

26. Chu, M.T.; Hamilton, H. Parallel solution of ordinary differential equations by multi-block methods. SIAM J. Sci. Stat. Comp.
1987, 8, 342-353. [CrossRef]

27.  Yakubu, D.G.; Aminu, M.; Aminu, A. The numerical integration of stiff systems using stable multistep multi-derivative methods.
Mod. Meth. Numer. Math. 2017, 8,99-117. [CrossRef]

28. Fatunla, S.O. Block methods for second order ODEs. Intern. ].Comput. Math. 1991, 41, 55-63. [CrossRef]

29. Lambert, J.D. Computational Methods in Ordinary Differential Equations; John Willey and Sons: New York, NY, USA, 1973.

30. Lambert, ].D. Numerical Methods for Ordinary Differential Systems; John Wiley: New York, NY, USA, 1991.

31. Burrage, K.; Butcher, J.C. Non-linear stability for a general class of differential equation method. BIT Numer. Math. 1980,
20, 185-203. [CrossRef]

32. Butcher, ]J.C. Numerical Methods for Ordinary Differential Equations, 2nd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2008.

33. Enright, WH. Second derivative multistep methods for stiff ordinary differential equations. SIAM ]. Numer. Anal. 1974,

11, 321-341. [CrossRef]


http://doi.org/10.1016/S0377-0427(03)00382-0
http://doi.org/10.1145/321217.321223
http://doi.org/10.1145/321250.321261
http://doi.org/10.1145/321371.321378
http://doi.org/10.1007/BF02165379
http://doi.org/10.1016/0377-0427(87)90149-X
http://doi.org/10.1007/BF01398507
http://doi.org/10.1090/S0025-5718-1978-0478630-7
http://doi.org/10.32917/hmj/1206137979
http://doi.org/10.32917/hmj/1206137626
http://doi.org/10.2977/prims/1195184026
http://doi.org/10.1007/s11075-009-9349-1
http://doi.org/10.37193/CJM.2021.02.07
http://doi.org/10.3390/fractalfract6060343
http://doi.org/10.1016/j.amc.2019.124567
http://doi.org/10.1137/0908039
http://doi.org/10.20454/jmmnm.2017.1319
http://doi.org/10.1080/00207169108804026
http://doi.org/10.1007/BF01933191
http://doi.org/10.1137/0711029

Fractal Fract. 2022, 6, 386 16 of 16

34. Gear, W.C. DIFSUB for Solution of ordinary differential equations. Comm. ACM 1971, 14, 185-190. [CrossRef]
35.  Fatunla, S.O. Numerical integrators for stiff and highly oscillatory differential equations. J. Math. Comput. 1980, 34, 373-390.
[CrossRef]


http://doi.org/10.1145/362566.362573
http://doi.org/10.1090/S0025-5718-1980-0559191-X

	Introduction 
	The Block Hybrid Methods 
	Specification of the Multistep Block Hybrid Methods 
	Block Hybrid Method of Seventh Order 
	Second-Derivative Block Hybrid Method of Order 14 

	Regions of Absolute Stability (RAS) of the Block Hybrid Methods 
	Numerical Illustrations 
	Concluding Remarks 
	References

