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Abstract: Let f and g be two continuous functions. In the present paper, we put forward a method to
calculate the lower and upper Box dimensions of the graph of f + g by classifying all the subsequences
tending to zero into different sets. Using this method, we explore the lower and upper Box dimensions
of the graph of f + g when the Box dimension of the graph of g is between the lower and upper Box
dimensions of the graph of f . In this case, we prove that the upper Box dimension of the graph of
f + g is just equal to the upper Box dimension of the graph of f . We also prove that the lower Box
dimension of the graph of f + g could be an arbitrary number belonging to a certain interval. In
addition, some other cases when the Box dimension of the graph of g is equal to the lower or upper
Box dimensions of the graph of f have also been studied.

Keywords: fractal dimension; lower Box dimension; upper Box dimension; sum of two continu-
ous functions

1. Introduction

Let I = [0, 1] and CI be the set of all continuous functions on I. We know CI is a
metric space consisting of differentiable functions and continuous functions that are not
differentiable at certain points in I. It is well known that the Weierstrass function is an
example of continuous functions differentiable nowhere on I [1], which are usually called
fractal functions, whose graphs have certain uncommon properties. Write

Γ( f , I) = {(x, f (x)) : x ∈ I} (1)

as the graph of the function f (x) on I. For a fractal function f (x) on I, its most remarkable
feature is that Γ( f , I) has fractal dimensions larger than the topological dimension. There-
fore, the studies of fractal dimensions of different types of fractal functions have drawn the
attention of numerous researchers. In [2–4], self-affine curves and the corresponding fractal
interpolation functions have been investigated. Barnsley and Ruan have made research
on the linear fractal interpolation functions in [5,6], respectively. Moreover, there exist
certain particular examples of one-dimensional fractal functions discussed in [7–14] and
two-dimensional fractal functions constructed in [15,16]. For Hölder continuous functions,
ref. [17,18] estimated the Box dimension of their fractional integral.

As is commonly known, the Weierstrass function [3,4,19,20] and the Besicovitch
function [4,21,22] are two typical examples of fractal functions with different fractal dimen-
sions. Here, we present their definitions as follows:

Example 1 ([3,4,19,20]). The Weierstrass function
Let 0 < α < 1, λ > 4. The Weierstrass function is defined as

W(x) =
∞

∑
j=1

λ−αj sin(λjx).
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Example 2 ([4,21,22]). The Besicovitch function
Let 1 < s < 2, λj ↗ ∞. The Besicovitch function is defined as

B(x) = ∑
j≥1

λs−2
j cos(λjx).

Up to now, the Box dimension of the Weierstrass function has been calculated to
be equal to 2− α [3], although its Hausdorff dimension has not been investigated thor-
oughly [23–25]. In fact, Shen [26] proved that its Hausdorff dimension is equal to its Box
dimension for integer λ in Example 1, which can be regarded as a significant advance in
estimating Hausdorff dimension of specific functions. In addition, ref. [4] says that the
Box dimension of the Besicovitch function may not exist for suitably chosen {λj}∞

j=1 in
Example 2, which can be an example of fractal functions that do not always have a Box
dimension. However, we know a fractal function must have a lower Box dimension and an
upper Box dimension, even if its Box dimension does not exist [3]. Now, we first give the
definitions of lower Box dimension, upper Box dimension and Box dimension as below.

Definition 1 ([3]). Let F( 6= ∅) be any bounded subset of R2 and Nδ(F) be the smallest number of
sets of diameter at most δ, which can cover F. Lower Box dimension and upper Box dimension of F
are defined as, respectively,

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

(2)

and

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

. (3)

If (2) and (3) are equal, we refer to the common value as the Box dimension of F

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

.

From (1) and Definition 1, we can write the lower Box dimension, upper Box dimension
and Box dimension of the graph of the function f (x) on I as

dimBΓ( f , I), dimBΓ( f , I) and dimB Γ( f , I)

respectively. Then, it holds

1 < dimB Γ(W, I) = 2− α < 2

in Example 1 and
dimBΓ(B, I) 6= dimBΓ(B, I)

for suitably chosen {λj}∞
j=1 in Example 2. Hence, the Box dimension of Γ(W, I) always

exists, but the Box dimension of Γ(B, I) does not always exist. Then, a question is natu-
rally asked:

Question 1. If we choose W(x) and B(x) satisfying

dimBΓ(B, I) < dimB Γ(W, I) < dimBΓ(B, I),

does the Box dimension of Γ(W + B, I) still exist? If the Box dimension of Γ(W + B, I) does not
exist, what can the lower and upper Box dimensions of Γ(W + B, I) be, respectively?

It is essentially a problem of estimating fractal dimensions of the sum of two continu-
ous functions. Actually, perhaps the first attempt to investigate fractal dimensions of the
sum of two continuous functions was made by Wen [4]. On a fractal conference, Wen [4]
said the possible value of the Box dimension of the sum of two continuous functions under
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known Box dimensions of these two functions is an interesting and sophisticated problem.
Until now, some research achievements of this problem in certain circumstances have been
obtained. If these two functions have different Box dimensions, they can be found in [3].
Wang and Zhang [27] made research on the case when these two functions have the same
Box dimension. Moreover, ref. [4] shows us the following conclusion when the lower Box
dimension of one function is larger than the upper Box dimension of the other one:

Proposition 1 ([4]). Let f (x), g(x) ∈ CI . We have

dimBΓ( f + g, I) = dimBΓ( f , I)

when
dimBΓ(g, I) < dimBΓ( f , I). (4)

For f (x), g(x) ∈ CI , Proposition 1 gives a result for calculating dimBΓ( f + g, I). How-
ever, under the condition of (4), the estimation of dimBΓ( f + g, I) has not been solved yet.
Furthermore, if dimBΓ(g, I) ≥ dimBΓ( f , I), both dimBΓ( f + g, I) and dimBΓ( f + g, I) are
unknown. All the above problems will be further explored in the present paper.

For the convenience of discussion, we first introduce the definitions of fractal function
sets as follows:

Definition 2. Fractal functions sets.

(1) Let sDI be the set of all continuous functions whose Box dimensions exist and are equal to s
on I when 1 ≤ s ≤ 2. That is, sDI is the set of s−dimensional continuous functions on I.

(2) Let s2
s1 DI be the set of all continuous functions whose Box dimensions do not exist on I.

Here, s1, s2 are, respectively, the lower and upper Box dimensions of the function on I as
1 ≤ s1 < s2 ≤ 2.

Remark 1 (Remarks to Definition 2). Here, we give several examples belonging to fractal func-
tions sets defined in Definition 2:

(1) The Weierstrass function W(x) ∈ 2−αDI . The functions constructed in [15,16] belong to
2DI . In fact, for ∀s ∈ [1, 2], sDI is non-empty.

(2) The Besicovitch function B(x) ∈ s2
s1 DI if we choose a suitable sequence {λj}∞

j=1 [4]. In fact,
for ∀s1, s2 satisfying 1 ≤ s1 < s2 ≤ 2, s2

s1 DI is non-empty, as well.

Suppose that f (x) ∈ s2
s1 DI and g(x) ∈ sDI . In this study, we mainly consider the

problem of estimating the lower and upper Box dimensions of Γ( f + g, I) when s1 < s < s2.
The rest of this paper is organized as follows:

In Section 2, we acquire a general method to calculate dimBΓ( f + g, I) and dimBΓ( f + g, I)
and give several basic results. For the above problem, we prove that dimBΓ( f + g, I) is
equal to s2. Additionally, an upper bound estimation of dimBΓ( f + g, I) has also been
obtained which is dimBΓ( f + g, I) ≤ s. Then, we present some conclusions of fractal di-
mensions of the sum of two continuous functions when both of them have Box dimensions.

In Section 3, we investigate the calculation of dimBΓ( f + g, I) for the above problem
by discussing whether s is one of the accumulation points of Φ f (δ) (defined in Section 2.2)
when δ → 0 or not. If s is not one of the accumulation points of Φ f (δ) when δ → 0, we
prove that dimBΓ( f + g, I) is equal to s. If s is one of the accumulation points of Φ f (δ)
when δ→ 0, we find that dimBΓ( f + g, I) could be any number belonging to [1, s). Hence,
we arrive at the conclusion that dimBΓ( f + g, I) could be any number belonging to [1, s],
which means the above problem has been answered totally.

In Section 4, we make further research on two other cases when s = s2 or s = s1. Their
results have been obtained by similar arguments to that in Section 3. In Section 5, as the
end of the present paper, we give some conclusions and remarks.
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2. Theoretical Basis

In Section 2.1, we give certain preliminary theories for the subsequent research. In
Section 2.2, we put forward a method to calculate the lower and upper Box dimensions
of the sum of two continuous functions and prove several basic results. Then, we present
some conclusions of fractal dimensions of the sum of two continuous functions whose Box
dimensions both exist in Section 2.3.

2.1. Preliminary

In the present paper, given a function f (x) and an interval [a, b], we write R f [a, b] for
the maximum range of f (x) over [a, b] as

R f [a, b] = sup
a≤x,y≤b

| f (x)− f (y)|

and denote NδΓ( f , [a, b]) as the number of squares of the δ-mesh that intersect Γ( f , [a, b]).
For f (x), g(x) ∈ CI , our motivation is to seek the potential results for dimBΓ( f + g, I)

and dimBΓ( f + g, I). From Definition 1, we can find that the calculation of NδΓ( f + g, I) is
key to estimate dimBΓ( f + g, I) and dimBΓ( f + g, I). So, in this subsection, we first show
several conclusions about NδΓ( f + g, I).

Suppose that 0 < δ < 1
2 and n is denoted as the largest integer less than or equal

to δ−1. Now, we divide I into n subintervals written as [iδ, (i + 1)δ] with equal width
δ(i = 0, 1, 2, · · · , n− 1).

Since f (x) ∈ CI, the estimation of NδΓ( f , I) can be transformed into the oscillation of
f (x) on the above subintervals. We note that the number of mesh squares of side δ in the
column above the subinterval [iδ, (i + 1)δ] that intersect Γ( f , I) is no less than

max

{
R f [iδ, (i + 1)δ]

δ
, 1

}

and no more than

2 +
R f [iδ, (i + 1)δ]

δ
.

Summing over all the subintervals leads to the following estimation of NδΓ( f , I),
which is adopted from ref. [3].

Lemma 1 ([3]). Let f (x) ∈ CI. The range of NδΓ( f , I) can be estimated as

n−1

∑
i=0

max

{
R f [iδ, (i + 1)δ]

δ
, 1

}
≤ NδΓ( f , I) ≤

n−1

∑
i=0

{
2 +

R f [iδ, (i + 1)δ]
δ

}
. (5)

Now, we investigate NδΓ( f + g, I). From Lemma 1,

NδΓ( f + g, I) ≤
n−1

∑
i=0

{
2 +

R f+g[iδ, (i + 1)δ]
δ

}
.

In addition, we know

R f+g[iδ, (i + 1)δ] ≤ R f [iδ, (i + 1)δ] + Rg[iδ, (i + 1)δ],

which is a property for the maximum range of f (x) + g(x) over [iδ, (i + 1)δ]. Hence, the
sum of the oscillation of f (x) and g(x) on subintervals can be used to estimate the upper
bound of NδΓ( f + g, I), that is

NδΓ( f + g, I) ≤ 2n +
n−1

∑
i=0

R f [iδ, (i + 1)δ]
δ

+
n−1

∑
i=0

Rg[iδ, (i + 1)δ]
δ

. (6)
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From (5) and (6), we find that NδΓ( f + g, I) seems to have a certain connection with
NδΓ( f , I) and NδΓ(g, I). Here, we present an estimation of NδΓ( f + g, I) as the following
theorem, which reveals the relationship among NδΓ( f , I), NδΓ(g, I) and NδΓ( f + g, I).

Theorem 1. Let f (x), g(x) ∈ CI. The range of NδΓ( f + g, I) can be estimated as

1
3
|NδΓ( f , I)− NδΓ(g, I)| ≤ NδΓ( f + g, I) ≤ 3NδΓ( f , I) + NδΓ(g, I). (7)

Proof. On one hand, it follows from Lemma 1 that

n−1

∑
i=0

Rg[iδ, (i + 1)δ]
δ

≤ NδΓ(g, I)

and
n−1

∑
i=0

{
2 +

R f [iδ, (i + 1)δ]
δ

}
=

n−1

∑
i=0

{
1 + 1 +

R f [iδ, (i + 1)δ]
δ

}

≤ 3
n−1

∑
i=0

max

{
R f [iδ, (i + 1)δ]

δ
, 1

}
≤ 3NδΓ( f , I).

(8)

Combining (6), we obtain

NδΓ( f + g, I) ≤
n−1

∑
i=0

{
2 +

R f [iδ, (i + 1)δ]
δ

}
+

n−1

∑
i=0

Rg[iδ, (i + 1)δ]
δ

≤ 3NδΓ( f , I)+ NδΓ(g, I).

On the other hand, similar with (8),

3NδΓ( f + g, I) ≥
n−1

∑
i=0

{
2 +

R f+g[iδ, (i + 1)δ]
δ

}

≥ 2n +

∣∣∣∣∣n−1

∑
i=0

R f [iδ, (i + 1)δ]
δ

−
n−1

∑
i=0

Rg[iδ, (i + 1)δ]
δ

∣∣∣∣∣
≥ |NδΓ( f , I)− NδΓ(g, I)|.

That is
NδΓ( f + g, I) ≥ 1

3
|NδΓ( f , I)− NδΓ(g, I)|.

This completes the proof of (7).

Corollary 1. Let f (x), g(x) ∈ CI. Then,

dimBΓ( f + g, I) ≤ max
{

dimBΓ( f , I), dimBΓ(g, I)
}

.

Proof. It follows from Theorem 1 that
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dimBΓ( f + g, I) = lim
δ→0

log NδΓ( f + g, I)
− log δ

≤ lim
δ→0

log(3NδΓ( f , I) + NδΓ(g, I))
− log δ

≤ lim
δ→0

log 4 max{NδΓ( f , I), NδΓ(g, I)}
− log δ

= max
{

lim
δ→0

log NδΓ( f , I)
− log δ

, lim
δ→0

log NδΓ(g, I)
− log δ

}
= max

{
dimBΓ( f , I), dimBΓ(g, I)

}
.

Thus, we get Corollary 1.

Theorem 1 implies that the value of NδΓ( f + g, I) can be controlled by certain lin-
ear combinations of NδΓ( f , I) and NδΓ(g, I). If we can figure out which of NδΓ( f , I)
and NδΓ(g, I) is ‘dominant’ in a certain particular situation, the relationship between
NδΓ( f + g, I) and the ‘dominant’ one of NδΓ( f , I) and NδΓ(g, I) may surface. In other
words, we may discover some kind of link between fractal dimensions of Γ( f + g, I) and
fractal dimensions of Γ( f , I) or Γ(g, I), whose results will be obtained in Section 2.2.

2.2. Basic Results

For convenience of notation, let

Φ f (δ) =
log NδΓ( f , I)
− log δ

.

Here, 0 < δ < 1
2 and f (x) ∈ CI . Then, the lower and upper Box dimensions of Γ( f , I)

can be written as

dimBΓ( f , I) = lim
δ→0

Φ f (δ) and dimBΓ( f , I) = lim
δ→0

Φ f (δ)

respectively. If Box dimension of Γ( f , I) exists, dimB Γ( f , I) = lim
δ→0

Φ f (δ) holds naturally.

It is universally acknowledged that lim
δ→0

Φ f (δ) may exist or not. Actually, the number

of the accumulation points of Φ f (δ) when δ→ 0 is uncertain, which may be finite, count-
ably infinite or uncountably infinite. For f (x), g(x) ∈ CI , we first define some notations
as follows:

(1) Let Ω f =
{

µj
}

j∈J1
be the set of all the accumulation points of Φ f (δ) when δ → 0.

Here, J1 is the index set reflecting the number of the elements in Ω f . Then,

dimBΓ( f , I) = inf
j∈J1

{
µj
}

and dimBΓ( f , I) = sup
j∈J1

{
µj
}

.

(2) Let Ωg =
{

νj
}

j∈J2
be the set of all the accumulation points of Φg(δ) when δ → 0.

Here, J2 is the index set reflecting the number of the elements in Ωg. Then,

dimBΓ(g, I) = inf
j∈J2

{
νj
}

and dimBΓ(g, I) = sup
j∈J2

{
νj
}

.

(3) For ∀j ∈ J1, we denote ∆j as the set of a subsequence
{

δ
j
lk

}∞

k=1
corresponding to µj,

which satisfies
lim
k→∞

Φ f (δ
j
lk
) = µj, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

Here lim
k→∞

δ
j
lk
= 0.
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(4) For ∀j ∈ J1, we denote αj and β j as the minimum and the maximum value in the
following set:

Sj =

{
lim
k→∞

Φ f+g(δ
j
lk
) :
{

δ
j
lk

}∞

k=1
∈ ∆j

}
respectively. Here, lim

k→∞
δ

j
lk
= 0.

Now, we present the following proposition, which provides a calculation of dimBΓ( f + g, I)
and dimBΓ( f + g, I):

Proposition 2. Let f (x), g(x) ∈ CI . It holds

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}

(9)

and
dimBΓ( f + g, I) = sup

j∈J1

{
β j
}

. (10)

Proof. From the definition of ∆j, we know
⋃

j∈J1

∆j covers all the possible subsequences

verging to zero. Namely,
⋃

j∈J1

Sj contains all the accumulation points of Φ f+g(δ) when

δ → 0. This means dimBΓ( f + g, I) and dimBΓ( f + g, I) are just the minimum and the
maximum value in

⋃
j∈J1

Sj, respectively, which leads to the conclusion of Proposition 2.

From Proposition 2, we observe that the key work to calculate dimBΓ( f + g, I) and
dimBΓ( f + g, I) is to figure out the values of αj and β j. In preparation for the subsequent
work, we first prove a conclusion about sequences given in the following lemma.

Lemma 2. Let f (x), g(x) ∈ CI . For any non-negative sequence
{

δlk

}∞
k=1 satisfying lim

k→∞
δlk = 0,

it holds

lim
k→∞

Φ f+g(δlk ) = lim
k→∞

Φg(δlk ) and lim
k→∞

Φ f+g(δlk ) = lim
k→∞

Φg(δlk )

when
lim
k→∞

Φ f (δlk ) < lim
k→∞

Φg(δlk ).

Proof. Suppose that

lim
δlk
→0

log Nδlk
Γ( f , I)

− log δlk
= s1 and lim

δlk
→0

log Nδlk
Γ(g, I)

− log δlk
= s2.

Given 0 < ε ≤ s2−s1
4 , there must exist a certain number δ0 > 0 such that

log Nδlk
Γ( f , I)

− log δlk
≤ s1 + ε

and
log Nδlk

Γ(g, I)

− log δlk
≥ s2 − ε

when δlk ≤ δ0. Now, we have

Nδlk
Γ( f , I) ≤

(
1

δlk

)s1+ε

<

(
1

δlk

)s2−ε

≤ Nδlk
Γ(g, I).
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Thus,
Nδlk

Γ( f , I)

Nδlk
Γ(g, I)

≤
(

1
δlk

)s1−s2+2ε

≤
(

1
δ0

) s1−s2
2

= δ
s2−s1

2
0 .

Let C = δ
s2−s1

2
0 . That is

Nδlk
Γ( f , I) ≤ C · Nδlk

Γ(g, I).

Then, by Theorem 1,

Nδlk
Γ( f + g, I) ≤ 3Nδlk

Γ( f , I) + Nδlk
Γ(g, I) ≤ (3C + 1) · Nδlk

Γ(g, I)

and
Nδlk

Γ( f + g, I) ≥ 1
3

(
Nδlk

Γ(g, I)− Nδlk
Γ( f , I)

)
≥ 1− C

3
· Nδlk

Γ(g, I).

Thus,

lim
δlk
→0

log Nδlk
Γ( f + g, I)

− log δlk
≤ lim

δlk
→0

log(3C + 1) · Nδlk
Γ(g, I)

− log δlk
= lim

δlk
→0

log Nδlk
Γ(g, I)

− log δlk

and

lim
δlk
→0

log Nδlk
Γ( f + g, I)

− log δlk
≥ lim

δlk
→0

log 1−C
3 · Nδlk

Γ(g, I)

− log δlk
= lim

δlk
→0

log Nδlk
Γ(g, I)

− log δlk
.

This means

lim
δlk
→0

log Nδlk
Γ( f + g, I)

− log δlk
= lim

δlk
→0

log Nδlk
Γ(g, I)

− log δlk
.

That is
lim
k→∞

Φ f+g(δlk ) = lim
k→∞

Φg(δlk ).

Similarly, we can also obtain

lim
k→∞

Φ f+g(δlk ) = lim
k→∞

Φg(δlk ).

Hence, Lemma 2 holds.

Now we can acquire several basic results of the lower and upper Box dimensions of the
sum of two continuous functions. We begin by presenting the calculation of dimBΓ( f + g, I)
in the following theorem.

Theorem 2. Let f (x), g(x) ∈ CI. It holds

dimBΓ( f + g, I) = max
{

dimBΓ( f , I), dimBΓ(g, I)
}

when
dimBΓ( f , I) 6= dimBΓ(g, I).

Proof. On one hand, from Corollary 1,

dimBΓ( f + g, I) ≤ max
{

dimBΓ( f , I), dimBΓ(g, I)
}

. (11)

On the other hand, if
dimBΓ( f , I) > dimBΓ(g, I),
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there must exist an index set J′1 ⊂ J1 such that

sup
i∈J2

{νi} < inf
j∈J′1

{
µj
}
≤ sup

j∈J′1

{
µj
}
= dimBΓ( f , I).

Thus, for ∀j ∈ J′1,

lim
k→∞

Φg(δ
j
lk
) ≤ sup

i∈J2

{νi} < µj = lim
k→∞

Φ f (δ
j
lk
), ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

Then, it follows from Lemma 2 that for ∀j ∈ J′1,

lim
k→∞

Φ f+g(δ
j
lk
) = lim

k→∞
Φ f (δ

j
lk
) = µj, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

This means β j = µj for ∀j ∈ J′1. From (10), we can get

dimBΓ( f + g, I) = sup
j∈J1

{
β j
}
≥ sup

j∈J′1

{
β j
}
= sup

j∈J′1

{
µj
}
= dimBΓ( f , I).

If
dimBΓ(g, I) > dimBΓ( f , I),

similarly we can get
dimBΓ( f + g, I) ≥ dimBΓ(g, I).

Thus,
dimBΓ( f + g, I) ≥ max

{
dimBΓ( f , I), dimBΓ(g, I)

}
(12)

when
dimBΓ( f , I) 6= dimBΓ(g, I).

Hence, we can get the conclusion of Theorem 2 by (11) and (12).

Theorem 2 shows the conclusion of upper Box dimension of the sum of two continuous
functions. If upper Box dimensions of two continuous functions are not equal, upper Box
dimension of the sum of these two functions must be the maximum one. This means
a continuous function with smaller upper Box dimension can be absorbed by another
continuous function with bigger upper Box dimension.

From Theorem 2, we can immediately get Corollary 2, shown below.

Corollary 2. Let f (x) ∈ s2
s1 DI and g(x) ∈ sDI . If s1 < s < s2, it holds

dimBΓ( f + g, I) = s2.

Next, we study the calculation of dimBΓ( f + g, I) under the condition of (4). Theorem 3
tells us its conclusion.

Theorem 3. Let f (x), g(x) ∈ CI. It holds

dimBΓ( f + g, I) = dimBΓ( f , I)

when
dimBΓ(g, I) < dimBΓ( f , I).

Proof. For ∀j ∈ J1,

lim
k→∞

Φg(δ
j
lk
) ≤ sup

i∈J2

{νi} < inf
i∈J1
{µi} ≤ lim

k→∞
Φ f (δ

j
lk
), ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.
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Then, it follows from Lemma 2 that for ∀j ∈ J1,

lim
k→∞

Φ f+g(δ
j
lk
) = lim

k→∞
Φ f (δ

j
lk
) = µj, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

This means αj = µj for ∀j ∈ J1. From (9), we can get

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}
= inf

j∈J1

{
µj
}
= dimBΓ( f , I).

So, Theorem 3 holds.

Now, for f (x), g(x) ∈ CI satisfying

dimBΓ( f , I) < dimB Γ(g, I) < dimBΓ( f , I),

we have an upper bound estimation of dimBΓ( f + g, I) as follows.

Corollary 3. Let f (x) ∈ s2
s1 DI , g(x) ∈ sDI . If s1 < s < s2, it holds

dimBΓ( f + g, I) ≤ s.

Proof. Let H(x) = f (x) + g(x). If we suppose

dimBΓ(H, I) > s,

it means
dimBΓ(H, I) > dimBΓ(g, I).

From Theorem 3,

dimBΓ( f , I) = dimBΓ(−g + H, I) = dimBΓ(H, I) > s.

This is in contradiction with s1 < s. Thus,

dimBΓ( f + g, I) ≤ s.

So far, we have resolved a portion of the problem proposed in Section 1. If f (x) ∈
s2
s1 DI and g(x) ∈ sDI satisfying s1 < s < s2, we can obtain the results that the upper Box
dimension of Γ( f + g, I) is equal to s2 from Corollary 2 and the lower Box dimension of
Γ( f + g, I) is no more than s from Corollary 3. Therefore, the lower Box dimension of
Γ( f + g, I) has not yet been studied thoroughly. In Section 2.3, to prepare for the further
research, we first present several conclusions of sum of two continuous functions if both of
them have Box dimensions.

2.3. Sum of Two Continuous Functions Having Box Dimension

Firstly, we consider the sum of two continuous functions with different Box dimensions.
The following assertion is adopted from [3].

Proposition 3 ([3]). Let f (x), g(x) ∈ CI with different Box dimensions. Then,

dimB Γ( f + g, I) = max{dimB Γ( f , I), dimB Γ(g, I)}.

Secondly, Theorems 4 and 5 show the conclusions of the sum of two continuous
functions with the same Box dimension that is not equal to one.
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Theorem 4. Let f (x), g(x) ∈ CI with the same Box dimension s(1 < s ≤ 2). If the Box dimension
of Γ( f + g, I) exists, it could be any number belonging to [1, s).

Proof. Firstly, let
f (x) = −g(x) + W(x).

Here, W(x) is the Weierstrass function given in Example 1, and dimB Γ(W, I) could be
any number belonging to (1, s). Then, by Proposition 3,

dimB Γ( f , I) = dimB Γ(−g + W, I)

= max{dimB Γ(g, I), dimB Γ(W, I)}
= max{s, 2− β}
= s.

Secondly, let
f (x) = −g(x) + H(x).

Here, H(x) ∈ 1DI . In the same way,

dimB Γ( f , I) = max{dimB Γ(g, I), dimB Γ(H, I)} = max{s, 1} = s.

From discussion above, we find that Box dimension of Γ( f + g, I) exists and could be
any number belonging to [1, s).

Theorem 5. Let f (x), g(x) ∈ CI with the same Box dimension s(1 < s ≤ 2). If the Box dimension
of Γ( f + g, I) does not exist,

1 ≤ dimBΓ( f + g, I) < dimBΓ( f + g, I) < s. (13)

Here, dimBΓ( f + g, I) and dimBΓ( f + g, I) could be any numbers satisfying (13).

Proof. Let
f (x) = −g(x) + B(x).

Here, B(x) is the Besicovitch function given in Example 2. For suitably chosen {λj}∞
j=1,

we have
1 ≤ dimBΓ(B, I) < dimBΓ(B, I) < s. (14)

Here, dimBΓ(B, I) and dimBΓ(B, I) could be any numbers satisfying (14). From
Theorems 2 and 3,

dimBΓ( f , I) = dimBΓ(−g + B, I) = max
{

dimBΓ(g, I), dimBΓ(B, I)
}
= s

and
dimBΓ( f , I) = dimBΓ(−g + B, I) = dimBΓ(g, I) = s.

This means
dimB Γ( f , I) = s.

From (14), we know dimBΓ( f + g, I) and dimBΓ( f + g, I) could be any numbers
satisfying (13).

Thirdly, in Theorems 4 and 5 if s = 1, the result given below holds trivially.

Theorem 6. Let f (x), g(x) ∈ CI with the same Box dimension one. Then,

dimB Γ( f + g, I) = 1.
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Proof. On one hand, it follows from (11) that

dimBΓ( f + g, I) ≤ 1.

On the other hand, we know the lower Box dimension of any continuous functions is
no less than one. That is

dimBΓ( f + g, I) ≥ 1.

Thus,
dimB Γ( f + g, I) = 1.

Theorem 6 says that sum of two one-dimensional continuous functions on I can keep
the Box dimension closed, which implies that 1DI is a linear space. However, we note from
Theorems 4 and 5 that sDI is not linear when s 6= 1.

3. Further Research on dimBΓ( f + g, I)

For f (x) ∈ s2
s1 DI and g(x) ∈ sDI satisfying s1 < s < s2, dimBΓ( f + g, I) and an upper

bound estimation of dimBΓ( f + g, I) have been obtained in Section 2. In this section, we
make further research on the calculation of dimBΓ( f + g, I).

When s1 < s < s2, there must exist two index sets denoted as J(1)1 and J(2)1 , which satisfy

J(1)1

⋃
J(2)1 = J1

and

dimBΓ( f , I) = inf
j∈J(1)1

{
µj
}
≤ sup

j∈J(1)1

{
µj
}
< s ≤ inf

j∈J(2)1

{
µj
}
≤ sup

j∈J(2)1

{
µj
}
= dimBΓ( f , I).

For the convenience of discussion, write inf
j∈J(2)1

{
µj
}

= µj∗ . Here, j∗ ∈ J(2)1 . Since

s1 < s < s2, the element s may belong to Ω f or not. In other words, µj∗ may be equal to s
or not. So, we should discuss two cases as follows.

3.1. µj∗ 6= s

From Lemma 2, we check every element µj in the set Ω f and then obtain the follow-
ing results.

(I) For j ∈ J(1)1 , we know µj < s. That is

lim
k→∞

Φ f (δ
j
lk
) = µj < s = lim

k→∞
Φg(δ

j
lk
), ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

Thus,
lim
k→∞

Φ f+g(δ
j
lk
) = lim

k→∞
Φg(δ

j
lk
) = s, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

This means αj = s.

(II) For j ∈ J(2)1 , we know µj > s. That is

lim
k→∞

Φ f (δ
j
lk
) = µj > s = lim

k→∞
Φg(δ

j
lk
), ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

Thus,
lim
k→∞

Φ f+g(δ
j
lk
) = lim

k→∞
Φ f (δ

j
lk
) = µj, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j.

This means αj = µj > s.
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So, in this case, we can assert that

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}
= min

 inf
j∈J(1)1

{
αj
}

, inf
j∈J(2)1

{
αj
} = min

s, inf
j∈J(2)1

{
µj
} = s.

3.2. µj∗ = s

In this case, we first introduce an auxiliary lemma as follows.

Lemma 3. Let f (x) ∈ s2
s1 DI and g(x) ∈ sDI . For any non-negative sequence

{
δlk

}∞
k=1 satisfying

lim
k→∞

δlk = 0, if

lim
k→∞

Φ f (δlk ) = s ∈ (1, 2],

then lim
k→∞

Φ f+g(δlk ) could be any number belonging to [1, s).

Proof. In the present paper, we know ∆j∗ is just the set of sequences satisfying the condition
of this lemma. For s ∈ (1, 2], we choose any two possible functions F(x) and G(x) with the
same Box dimension s, which means

lim
k→∞

ΦF(δ
j∗
lk
) = lim

k→∞
ΦG(δ

j∗
lk
) = s, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ .

From Theorem 4, if the Box dimension of Γ(F + G, I) exists, its value could be any
number belonging to [1, s). In other words, lim

k→∞
ΦF+G(δ

j∗
lk
) could be any number belonging

to [1, s). From Theorem 5, if Box dimension of Γ(F + G, I) does not exist,

1 ≤ dimBΓ(F + G, I) < dimBΓ(F + G, I) < s. (15)

Here, dimBΓ(F + G, I) and dimBΓ(F + G, I) could be any numbers satisfying (15).
Besides, we know

1 ≤ dimBΓ(F + G, I) ≤ lim
k→∞

ΦF+G(δ
j∗
lk
) ≤ dimBΓ(F + G, I) < s.

From arbitrariness of dimBΓ(F + G, I) and dimBΓ(F + G, I) satisfying (15),

1 ≤ lim
k→∞

ΦF+G(δ
j∗
lk
) < s, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ . (16)

Here, lim
k→∞

ΦF+G(δ
j∗
lk
) could be any number satisfying (16). Let g(x) = G(x). Then, we

investigate the connection between f (x) and F(x). It is obvious that for ∀i ∈ J1,

lim
k→∞

ΦF(δ
i
lk
) = s, ∀

{
δi

lk

}∞

k=1
∈ ∆i.

For j ∈ J1, now we define Ψj as the set of Fj satisfying

lim
k→∞

ΦFj(δ
i
lk
) =

{
µj, i = j
s, i ∈ J1 \ {j}

, ∀Fj ∈ Ψj, ∀
{

δi
lk

}∞

k=1
∈ ∆i.

For ∀Fj ∈ Ψj, we note that we only change the limitation of ΦF(δ
j
lk
) from s to µj when

δ
j
lk
→ 0 for ∀

{
δ

j
lk

}∞

k=1
∈ ∆j. For the convenience of notation, we denote this transformation

as

Tj : F
∆j−−−→

s→µj
Fj.
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Write Tj � F = Fj. Then, we can acquire a series of transformations
{

Tj
}

j∈J1
. We find

that
{

Tj
}

j∈J1
can be divided into three different categories in terms of different effects on F,

which have been discussed as follows.

(a) For j ∈ J(1)1 , since µj < s, we observe that the only different result for Fj from F is that

lim
k→∞

ΦFj+g(δ
j
lk
) = lim

k→∞
Φg(δ

j
lk
) = s, ∀Fj ∈ Ψj, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j

by Lemma 2. However, for other sets ∆i(i ∈ J1 \ {j}), the results for Fj are the same as
F. Specially for ∆j∗ ,

1 ≤ lim
k→∞

ΦFj+g(δ
j∗
lk
) < s, ∀Fj ∈ Ψj, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ . (17)

Here, lim
k→∞

ΦFj+g(δ
j∗
lk
) could be any number satisfying (17).

(b) For j = j∗, since µj∗ = s, the results for Fj∗ are the same as F. Specially for ∆j∗ ,

1 ≤ lim
k→∞

ΦFj∗+g(δ
j∗
lk
) < s, ∀Fj∗ ∈ Ψj∗ , ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ . (18)

Here, lim
k→∞

ΦFj∗+g(δ
j∗
lk
) could be any number satisfying (18).

(c) For j ∈ J(2)1 \ {j∗}, since µj > s, we observe that the only different result for Fj from F
is that

lim
k→∞

ΦFj+g(δ
j
lk
) = lim

k→∞
ΦFj(δ

j
lk
) = µj, ∀Fj ∈ Ψj, ∀

{
δ

j
lk

}∞

k=1
∈ ∆j

by Lemma 2. However, for other sets ∆i(i ∈ J1 \ {j}), the results for Fj are the same as
F. Specially for ∆j∗ ,

1 ≤ lim
k→∞

ΦFj+g(δ
j∗
lk
) < s, ∀Fj ∈ Ψj, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ . (19)

Here, lim
k→∞

ΦFj+g(δ
j∗
lk
) could be any number satisfying (19).

Now, we do all the transformations
{

Tj
}

j∈J1
on F denoted as Tj

⊙
j∈J1

F = FJ1 . Define

ΨJ1 as the set of FJ1 . From the discussion above, we know for ∀i ∈ J1,

lim
k→∞

ΦFJ1
(δi

lk
) = µi, ∀FJ1 ∈ ΨJ1 , ∀

{
δi

lk

}∞

k=1
∈ ∆i (20)

and for ∆j∗ ,

1 ≤ lim
k→∞

ΦFJ1+g(δ
j∗
lk
) < s, ∀FJ1 ∈ ΨJ1 , ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ . (21)

Here, lim
k→∞

ΦFJ1+g(δ
j∗
lk
) could be any number satisfying (21). From (20), we note that

f ∈ ΨJ1 . Let FJ1 = f . Thus, for ∆j∗ ,

1 ≤ lim
k→∞

Φ f+g(δ
j∗
lk
) < s, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ . (22)

Here, lim
k→∞

Φ f+g(δ
j∗
lk
) could be any number satisfying (22).

This completes the proof of Lemma 3.
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Similarly, we check every element µj in the set Ω f .

(I) For j ∈ J1 \ {j∗}, the result is the same with Section 3.1, that is

αj = s, j ∈ J(1)1 ,

and
αj = µj > s, j ∈ J(2)1 \ {j∗}.

(II) For j = j∗, we know

lim
k→∞

Φ f (δ
j∗
lk
) = lim

k→∞
Φg(δ

j∗
lk
) = s, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ .

Here, s ∈ (1, 2). Then, it follows from Lemma 3 that lim
k→∞

Φ f+g(δ
j∗
lk
) could be any

number belonging to [1, s), which implies that αj∗ could be any number belonging
to [1, s).

So, in this case, we can assert that

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}
= min

s, αj∗ , inf
j∈J(2)1 \{j∗}

{
µj
} = αj∗ ,

which means dimBΓ( f + g, I) could be any number belonging to [1, s).

3.3. Conclusions of This Section

From discussion of Sections 3.1 and 3.2, we can obtain the result that dimBΓ( f + g, I)
could be any number belonging to [1, s]. Hence, we have the following conclusion:

Theorem 7. Let f (x) ∈ s2
s1 DI and g(x) ∈ sDI . If s1 < s < s2,

f (x) + g(x) ∈ s2
v DI .

Here, v could be any number belonging to [1, s].

So far, the problems in Section 1 have been investigated totally. We find that the value
of dimBΓ( f + g, I) depends on different situations of the accumulation points of Φ f (δ)
when δ→ 0. If s is one of the elements in Ω f , the value of dimBΓ( f + g, I) can definitely not
be equal to s. However, it may be equal to an arbitrary number belonging to [1, s). If s is not
one of the elements in Ω f , the value of dimBΓ( f + g, I) can only be equal to s. In particular,
if s1 and s2 are the only two elements in Ω f , we can directly obtain dimBΓ( f + g, I) = s.

Furthermore, Lemma 3 shows us a method to seek the relationship between two fractal
continuous functions. We find that the same accumulation point of Φ f (δ) and Φg(δ) by
the same subsequence is the “bridge” to connect f (x) and g(x). If we denote this same
accumulation point as s, we also prove that the accumulation points of Φ f+g(δ) could be
equal to any numbers belonging to [1, s) by this subsequence.

4. Other Cases

In Section 3, we have figured out the fractal dimensions of the sum of two continuous
functions f (x) and g(x) when dimB Γ(g, I) is between dimBΓ( f , I) and dimBΓ( f , I). Now,
we can further consider the following question:

Question 2. If dimB Γ(g, I) is equal to dimBΓ( f , I) or dimBΓ( f , I), can we acquire a similar result?

The purpose of this section is to make research on the above problem by the similar
discussion with that in Section 3.
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4.1. dimB Γ(g, I) = dimBΓ( f , I)

In this case, we can get the following conclusion.

Theorem 8. Let f (x) ∈ s2
s1 DI and g(x) ∈ sDI . If s1 < s = s2,

f (x) + g(x) ∈ s
vDI .

Here, v could be any number belonging to [1, s).

Proof. From (11),

dimBΓ( f + g, I) ≤ max
{

dimBΓ( f , I), dimBΓ(g, I)
}
= s.

Let H(x) = f (x) + g(x). If we suppose

dimBΓ( f + g, I) = dimBΓ(H, I) < s,

we can get
dimBΓ( f , I) = dimBΓ(−g + H, I) = dimBΓ(g, I) = s

by Proposition 3. This is in contradiction with s1 < s. Thus,

dimBΓ( f + g, I) = s.

For dimBΓ( f + g, I), we know

inf
j∈J1

{
µj
}
< sup

j∈J1

{
µj
}
= s.

Write sup
j∈J1

{
µj
}

= µj∗ . Similar argument with that in Section 3, we can obtain the

following results.

(I) For j ∈ J1 \ {j∗}, we have αj = s.
(II) For j = j∗,

lim
k→∞

Φ f (δ
j∗
lk
) = lim

k→∞
Φg(δ

j∗
lk
) = s, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ .

Here s ∈ (1, 2]. From Lemma 3, we know αj∗ could be any number belonging to [1, s).

Hence, we can assert that

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}
= min

{
s, αj∗

}
= αj∗ ,

which implies that dimBΓ( f + g, I) could be any number belonging to [1, s).
This completes the proof of Theorem 8.

4.2. dimB Γ(g, I) = dimBΓ( f , I)

In this case, we should discuss two situations according to whether dimB Γ(g, I) is
equal to one or not. Theorems 9 and 10 present their results, respectively.

Theorem 9. Let f (x) ∈ s2
s1 DI and g(x) ∈ sDI . If 1 < s1 = s < s2,

f (x) + g(x) ∈ s2
v DI .

Here, v could be any number belonging to [1, s).

Proof. From Theorem 2,
dimBΓ( f + g, I) = s2.
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For dimBΓ( f + g, I), in this case we know

1 < s = inf
j∈J1

{
µj
}
< sup

j∈J1

{
µj
}

.

Write inf
j∈J1

{
µj
}

= µj∗ . Similar argument with that in Section 3, we can obtain the

following results.

(I) For j ∈ J1 \ {j∗}, we have αj = µj > s.
(II) For j = j∗,

lim
k→∞

Φ f (δ
j∗
lk
) = lim

k→∞
Φg(δ

j∗
lk
) = s, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ .

Here, s ∈ (1, 2). From Lemma 3, we know αj∗ could be any number belonging to [1, s).

So, we can assert that

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}
= min

{
αj∗ , inf

j∈J1\{j∗}

{
µj
}}

= αj∗ ,

which means dimBΓ( f + g, I) could be any number belonging to [1, s).
This completes the proof of Theorem 9.

Theorem 10. Let f (x) ∈ s2
1 DI and g(x) ∈ 1DI . If s2 > 1,

f (x) + g(x) ∈ s2
1 DI .

Proof. From Theorem 2,
dimBΓ( f + g, I) = s2.

For dimBΓ( f + g, I), in this case we know

1 = inf
j∈J1

{
µj
}
< sup

j∈J1

{
µj
}

.

Write inf
j∈J1

{
µj
}

= µj∗ . Similar to the argument in Section 3, we can obtain the

following results.

(I) For j ∈ J1 \ {j∗}, we have αj = µj > 1.
(II) For j = j∗,

lim
k→∞

Φ f (δ
j∗
lk
) = lim

k→∞
Φg(δ

j∗
lk
) = 1, ∀

{
δ

j∗
lk

}∞

k=1
∈ ∆j∗ .

From Lemma 3, we can deduce that αj∗ = 1.

So, we can assert that

dimBΓ( f + g, I) = inf
j∈J1

{
αj
}
= min

{
1, inf

j∈J1\{j∗}

{
µj
}}

= 1.

This completes the proof of Theorem 10.

5. Conclusions

In this last section, we give some remarks on our paper.

5.1. Main Results

Throughout the present paper, we mainly investigated fractal dimensions of the sum
of two continuous functions f and g on I with certain lower and upper Box dimensions.
The main results we have obtained can be summarized as the following three aspects:
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(1) If
dimBΓ( f , I) < dimB Γ(g, I) < dimBΓ( f , I),

we prove that
dimBΓ( f + g, I) = dimBΓ( f , I).

Then, we study dimBΓ( f + g, I) by whether dimB Γ(g, I) is one of the accumulation
points of Φ f (δ) when δ→ 0 or not.

(i) If dimB Γ(g, I) is not one of the accumulation points of Φ f (δ) when δ → 0, we
prove that

dimBΓ( f + g, I) = dimB Γ(g, I);

(ii) If dimB Γ(g, I) is one of the accumulation points of Φ f (δ) when δ→ 0, we prove
that dimBΓ( f + g, I) could be any number belonging to [1, dimB Γ(g, I)).

In conclusion, dimBΓ( f + g, I) could be any number belonging to [1, dimB Γ(g, I)],
which answers the question proposed in Section 1.

(2) If
dimBΓ( f , I) < dimB Γ(g, I) = dimBΓ( f , I),

we prove that
dimBΓ( f + g, I) = dimBΓ( f , I)

and dimBΓ( f + g, I) could be any number belonging to [1, dimB Γ(g, I)).
(3) If

dimBΓ( f , I) = dimB Γ(g, I) < dimBΓ( f , I),

we prove that
dimBΓ( f + g, I) = dimBΓ( f , I).

Then we study dimBΓ( f + g, I) by whether dimB Γ(g, I) is equal to one or not.

(i) If dimB Γ(g, I) > 1, we prove that dimBΓ( f + g, I) could be any number belong-
ing to [1, dimB Γ(g, I));

(ii) If dimB Γ(g, I) = 1, we prove that dimBΓ( f + g, I) is equal to one.

Meanwhile, we should point out that the presented results can be generalized to any
closed interval [a, b]. This means all the results obtained in the present paper still hold for
two continuous functions f and g defined on [a, b].

5.2. Main Methods

We emphasize that the key work in the present paper is to propose the following two
main methods:

(1) We put forward a general method to calculate dimBΓ( f + g, I) and dimBΓ( f + g, I).
We classify all the subsequences into different sets by the accumulation points of
Φ f (δ) when δ → 0. Then, we just have to explore the minimum and maximum
accumulation point of Φ f+g(δ) by the subsequences in every set, respectively, so that
the values of dimBΓ( f + g, I) and dimBΓ( f + g, I) can be directly acquired. Hence, we
find the values of dimBΓ( f + g, I) and dimBΓ( f + g, I) depend on different situations
of the accumulation points distribution of Φ f (δ) and Φg(δ) when δ → 0. In other
words, studying the relationship between the accumulation points of Φ f (δ) and
Φg(δ) when δ→ 0 is the fundamental approach to figuring out dimBΓ( f + g, I) and
dimBΓ( f + g, I).

(2) We also obtain a way to seek the relationship between two fractal continuous func-
tions. We find that the same accumulation point of Φ f (δ) and Φg(δ) by the same
subsequence is the “bridge” to connect f (x) and g(x). If we denote this same accu-
mulation point as s, accumulation points of Φ f+g(δ) could be equal to any numbers
belonging to [1, s) by this subsequence.
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For the calculation of dimB Γ( f + g, I), the equivalent reformulation is that

dimB Γ( f + g, I) ≤ max{dimB Γ( f , I), dimB Γ(g, I)}

and dimB Γ( f , I) is just the infimum of p such that the unit interval I can be split into Cδ−p

subintervals Ij. Here C is a certain constant number and j = 1, 2, · · · , Cδ−p. We note that∣∣Ij
∣∣ ≤ δ and R f Ij ≤ δ for ∀δ > 0. Making the common splitting for f (x) and g(x) merely

doubles the number of such intervals, which can be another way to obtain dimB Γ( f + g, I).

5.3. Applications in Specific Examples

The calculation of the fractal dimension has been widely applied in a variety of fields
such as metal materials. The fracture surface topography regarding the fatigue of metals
can be investigated by fractal features, which can be found in [28,29]. Moreover, ref. [30]
shows that the fractal dimension is closely related to the parameters of areal surface of
metals. It is well known that there are a number of ways to calculate the fractal dimension,
and the results of different methods and resolutions are slightly different. The present
paper mainly studies how to calculate fractal dimension by counting boxes and how to
calculate the fractal dimension of the superposition of two fractal curves. People could
further explore the calculation of fractal dimension of the superposition of two fractal
surfaces and apply it to the study of fracture surface topography regarding to the fatigue of
metals. In the future, we will continue to do this work by visualizing specific examples,
which shows the utility of our study well.

5.4. Improvement and Further Research

There still exist several points worthy of improvement and further discussion in the
present work. We should point out that our results for fractal dimensions estimation are
only based on theoretical analysis. However, examples of fractal continuous functions
should be given to support these theoretical results. People could make further research on
this problem by numerical simulation of fractal dimensions estimation for specific examples
of fractal continuous functions.

At the end of our paper, we put forward an open question below:

Question 3. Suppose that f (x) ∈ s2
s1 DI and g(x) ∈ s4

s3 DI . What can the lower and upper Box
dimensions of Γ( f + g, I) be, respectively?

People could try to explore this question by discussing the relationship among s1, s2,
s3 and s4 in the future. The method used to deal with it may be similar with the present
paper. Here, we give our conjecture for three cases as follows:

Conjecture 1. Let f (x) ∈ s2
s1 DI and g(x) ∈ s4

s3 DI .

(1) If s1 < s2 < s3 < s4,
f + g ∈ s4

s3 DI .

(2) If s1 < s3 < s4 < s2,
f + g ∈ s2

v DI .

Here, v could be any number belonging to [1, s3].
(3) If s1 < s3 < s2 < s4,

f + g ∈ s4
v DI .

Here, v could be any number belonging to [1, s2].
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