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Abstract: Fractional cumulative residual entropy is a powerful tool for the analysis of complex sys-
tems. In this paper, we first provide some properties of fractional cumulative residual entropy (FCRE).
Secondly, we generate cumulative residual entropy (CRE) to the case of conditional entropy, named
fractional conditional cumulative residual entropy (FCCRE), and introduce some properties. Then,
we verify the validity of these properties with randomly generated sequences that follow different
distributions. Moreover, we give the definition of empirical fractional conditional accumulative
residual entropy and prove that it can be used to approximate FCCRE. Finally, the empirical analysis
of the aero-engine gas path data is carried out. The results show that FCRE and FCCRE can effectively
capture complex information in the gas path system.

Keywords: cumulative residual entropy; fractional calculus; conditional entropy; fractional cumulative
residual entropy

1. Introduction

In 1948, C.E. Shannon gave the concept of information entropy in a discrete distribution
based on thermodynamic entropy [1,2].

H(U) = −
n

∑
j=1

pj log pj, (1)

where pj are the probability density function of U.
When U is a non-negative continuous random variable with density f (u), Shannon

entropy for the continuous case is given below.
Shannon entropy has made great achievements in many fields, not only in

H(u) = −
∫ ∞

0
f (u) log f (u)du. (2)

information theory but also in financial analysis [3], communications [4], and statistics [5].
Therefore, a mass of innovative scientific research, based on the Shannon entropy, such as
transfer entropy [6], Rényi entropy [7], etc., have been raised.

Despite its enormous success, the following cases show that this method may be
inappropriate for some situations. It is only defined for distributions with densities. For
example, there is no definition of entropy for a mixture of densities with different distribu-
tions. These things considered, in general, the differential entropy of continuous variables
cannot be approximated by the entropy of empirical distributions.

In order to better extend Shannon entropy to random variables with continuous distri-
bution, Murali Rao et al. put forward the concept of cumulative residual entropy (CRE) [8]:

ε(FU) = −
∫ ∞

0
F(u) log F(u)du, (3)
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through the survival function F(u) = 1− F(u) of U, where F(u) is the cumulative dis-
tribution function of U. When U = (U1, U2, . . . , UN) is a random vector, the cumulative
residual entropy is also defined as ε(FU) = −

∫ ∞
0 F(u) log F(u)du [8]. Compared with

the density function in Shannon’s definition, the distribution function is more regular. It
has coincident definitions in continuous and discrete cases and is easily computed from
sample data. Based on the superior properties of CRE, many new concepts of entropy have
been proposed [9–15].

In practical applications, we might need to explore the uncertainty between two
messages [16]. In 2004, Murali Rao et al. also defined conditional cumulative residual
entropy (CCRE) [8]:

ε(U|η ) = −
∫

RN
+

p(|U| > u|η ) log p(|U| > u|η )du, (4)

where η is an σ-field. Conditional entropy plays an important role in information measure-
ment not only in mathematics and communication, but also in many fields such as physics,
biology, and computer applications [17–20].

To describe phenomena outside the scope of Boltzmann–Gibbs formalism, M. Rao et al.
proposed entropy based on the fractional calculus [21].

sq(p) = ∑
j

pj(− log pj)
q, 0 < q ≤ 1. (5)

Obviously, Shannon entropy is the case of q = 1. Fractional entropy has many special
properties, such as positive, concave, and non-additive. The study in Ref. [22] shows it
satisfies Lesche and thermodynamic stability and has higher sensitivity to signal evolution,
which is more beneficial for describing the dynamics of complex systems. Thus, FCRE has
been extended to diverse general cases [23–26].

Recently, inspired by CRE and fractional entropy, H. Xiong et al. introduced a new
expression of entropy, named fractional cumulative residual entropy (FCRE) [27].

εq(FU) =
∫ ∞

0
F(u)

[
− log F(u)

]qdu, 0 < q ≤ 1. (6)

In particular, fractional CRE degenerates into CRE when the parameter q is equal to
1. In addition, it is evident that ε0

(
FU
)
= E(U). When U = (U1, U2, . . . , UN) is a random

vector, its fractional cumulative residual entropy can still be obtained by Equation (6).
In this paper, we first produced some new results on fractional cumulative residual

entropy. Many research works on entropy manifest that conditional entropy provides
a method to describe the interaction between two kinds of information [17–20]. Hence,
inspired by the research mentioned above [8,21,27], we propose the fractional-order cal-
culation for CCRE to obtain an improved concept of entropy, named fractional-order
conditional cumulative residual entropy (FCCRE), and discuss the properties of conditional
fractional CRE.

The remaining part of the paper is organized as follows: Section 2 presents some
properties of fractional cumulative residual entropy and gives some simulations to show
the reliability of FCRE. In Section 3, we define fractional conditional CRE and introduce
some properties of fractional conditional cumulative entropy. Then, the sample data are
used to verify the reliability of these properties. Section 4 presents empirical FCCRE and
discusses its properties. In Section 5, we discuss the application of the FCRE and FCCRE
methods in the aero-engine gas path system. Finally, Section 6 draws some conclusions.

2. Some Properties of FCRE

In this section, some properties of FCRE are given. Before introducing these properties,
we display the relationship among FCRE, the probabilities P, and the fractional order
q, as seen in Figure 1, where P is the probability calculated by the residual distribution
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function. In the following examples, we use the sample data generated by one of the typical
distribution functions to display the change in FCRE or FCCRE with different values q on
[0, 1], and other distribution functions can also achieve the experimental effect.
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Figure 1. The relationship among fractional cumulative residual entropy, fractional order q, and
probability P for typical examples of the uniform distribution on [0, 1].

Proposition 1. Let U be a random vector, then

εq(
−
FU) ≥ 0,

the identity holds when P(|U| = A) = 1 , which means the probability of |U|j = Aj is 1, where
Aj is the jth component of the vector A = {A1, A2, · · · , An}.

Proof of Proposition 1. If the equation holds, consider

u(− log u)q = 0,

for all 0 < q ≤ 1, is established if and only if u = 0 or u = 1.

So, εq(
−
FU) = 0 means P(|U| > A) = 0 or P(|U| > A) = 1 for all A.

When P(|U| > A) = 0, then P(|U| = 0) = 1.
Consider P(|U| > A) = 1 holds for all A, and α = max

A∈ϕ
A, then α satisfies

P(|U| = α) = 1,

where ϕ = {A|P(|U| > A) = 1}. The proposition is proved. �

Example 1. Assuming that U is an arbitrary constant column denoted by ‘constant sequence’,
and the random sequence V is formed out of uniform distribution on [0, 1] denoted by ‘uniform
distribution’. Then, the condition of Proposition 1 is satisfied. The result is shown in Figure 2.

Proposition 2. Let U and V be two independent non-negative random variables,

max
(
εq(U), εq(V)

)
≤ εq(U + V). (7)
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Proof of Proposition 2. Since U and V are independent, then

P[U + V > t] =
∫

dFV(c)P[U > t− c],

where FV represents the cumulative distribution function of V.
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Since FU ≤
[
FU
]q for all u ∈ U, u > 0 and 0 < q ≤ 1 where

−
FU means the survival

function of U.

− εq(U + V) ≤ εq(U + V) =
∫ ∞

0

−
FU+V

[
− log

−
FU+V

]q
du ≤

∫ ∞

0

[
−
−
FU+V log

−
FU+V

]q
du,

where FU+V is the survival function of U + V.
According to Jensen’s inequality,

[P[U + V > t]|log P[U + V > t]|]q ≤
∫

dFV(c)[P[U > t− c]|log P[U > t− c]|]q.

Integrating both sides of the above formula from 0 to ∞,

−εq(U + V) ≤
∫

dFV(c)
∫ ∞

0 [P[U > t− c]|log P[U > t− c]|]qdt

=
∫

dFV(c)
∫ ∞

c [P[U > t− c]|log P[U > t− c]|]qdt

= −
∫

dFV(c)εq(
−
FU)

= −εq(U).

When t ≤ c, P[U > t− c] = 1. The proposition is proved. �

Example 2. Suppose U follows a uniform distribution on [0, 1], V follows an exponential distribu-

tion with λ = 0.5. Then, the distribution function of W = U +V is F(W) =
eλ(eb−ea)

λ(a−b)

(
e−λW − 1

)
.

The simulated result is shown in Figure 3. It is evident that the FCRE of the sum of two random
variables is greater than that of either random variable, which is in accordance with Proposition 2.
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Weak convergence is a significant property in statistics [28]. Combining the theorem 1
in Ref. [25], there is the following proposition.

Proposition 3. Given random vector Un that converges to the random vector U in distribution,
then for any bounded continuous functions φ on RN ,

lim
n→∞

E[φ(Un)] = E[φ(U)]. (8)

For some p > N, if all the Un are bounded in LP, we have

εq(Un)
a.s.→ εq(U), n→ ∞. (9)

Proof of Proposition 3. Let Un converge to the random vector U in distribution [29]; it is
known that

lim
n→∞

P[|Un| > u] = P[|U| > u],

for all u on R+
N .

Then,

lim
n→∞

P[|Un| > u] log P[|Un| > u] = P[|U| > u] log P[|U| > u].

From Theorem 1 in Ref. [8], we know

[P[|Un| > u]|log P[|Un| > u]|]q≤
(

e−1

1− α

)q[ N

∏
j=1

P
[∣∣∣Unj

∣∣∣ > uj

] α
N

]q

,

for each n and j.
Therefore,

∫ ∞
0 P[|Uni | > ui]

qα
N du =

∫ 1
0 P
[∣∣∣Unj

∣∣∣ > uj

] qα
N du +

∫ ∞
1 P

[∣∣∣Unj

∣∣∣ > uj

] qα
N du

≤ 1 +
∫ ∞

1

{
1

uj
p E
[∣∣∣Unj

∣∣∣p]} qα
N

du,
(10)

where
pqα

N
> 1. The proposition is proved. �
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Proposition 4. For a non-negative random variable U and 0 < q ≤ 1, it holds that
εq(U) ≤ [ε(U(λ))]q , where U(λ) is the exponentially distributed random variable with mean
λ = E

(
U2)/2E(U).

Proof of Proposition 4. Since F(u) ≤
[
F(u)

]q for u > 0 and 0 < q ≤ 1,

εq(U) =
∫ ∞

0 F(U)
[
− log F(U)

]qdu ≤
∫ ∞

0

[
−F(U) log F(U)

]qdu

≤
[∫ ∞

0 −F(U) log F(U)du
]q

= [ε(U)]q,
(11)

where the last inequality is attained from Jensen’s inequality. The equality holds at q = 1.
Then, by log-sum inequality∫ ∞

0
p(U > t) log

(
et/λ p(U > t)

)
dt ≥ E(U) log(E(U)/λ). (12)

Expanding the LHS of Equation (12), we obtain∫ ∞

0
P(U > t) log P(U > t)dt +

∫ ∞

0
P(U > t)

t
λ

dt ≥ E(U) log(E(U)/λ). (13)

Since
∫ ∞

0 P(U > t)tdt = E
(
U2)/2, we obtain from above that∫ ∞

0
P(U > t) log P(U > t)dt ≥ −E

(
U2
)

/2λ + E(U) log(E(U)/λ). (14)

Equation (14) holds for all positive λ. The maximum of the RHS of Equation (14) is
obtained when λ = E

(
U2)/2E(U).

Substituting this value of λ into Equation (14), we obtain∫ ∞
0 P(U > t) log P(U > t)dt ≥ −E(U) + E(U) log 2E(U)2/E

(
U2)

≥ −E(U) + E(U)
[
1− E

(
U2)/2E(U)2]

= −E
(
U2)/2E(U),

(15)

and log u ≥ 1− 1/u is used to prove the second inequation.
Thus, ε(U) ≤ ε(U(λ)) is proved. By using Equation (11), the proposition is proved. �

Example 3. We assume the two typical cases of the random variable U, the uniform distribution on
[0, 1] in Figure 4 and the exponential distribution with λ = 0.5 in Figure 5, where V follows the
exponential distribution with λ = E

(
U2)/2E(U).
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Let U1, U2, · · · , Un be positive and independent and identically distributed (i.i.d.) with
distribution F. The empirical FCRE is defined as

εq
(

Fn
)
=
∫ ∞

0
Fn(u)

[
− log Fn(u)

]qdu,

where Fn is the empirical distribution of the sample U1, U2, · · · , Un, and Fn = 1− Fn.
The following property demonstrates that the empirical FCRE asymptotically con-

verges to theoretical FCRE.

Proposition 5. For any random variable U in Lp for some p > 1, the empirical FCRE converges to
the FCRE of U , i.e., εq

(
Fn
)
→ εq

(
F
)

almost surely.

Proof of Proposition 5. The proof of this proposition is based on the dominated conver-
gence proposition; the integral of Gn(U) log Gn(U) on any finite interval converges to that
of G(U) log G(U). By the dominated convergence proposition, we need only to prove that
as n→ ∞ ∣∣∣∣∫ ∞

1
Gn(u)[− log Gn(u)]

qdu−
∫ ∞

1
G(u)[− log G(u)]qdu

∣∣∣∣→ 0. (16)

Recalling Gn(u) = Pn(U > u), where Pn is a probability distribution on R+ put 1
n at

each of the sample points U1, U2, · · · , Un.
It follows that

upGn(u) ≤ En[Up] =
1
n

n

∑
1

Up
j , (17)

where En is the expectation relative to Pn. By the strong law [28], we obtain

1
n

n

∑
1

Up
j → E

[
Up

1

]
. (18)

In particular,

sup
n

1
n

n

∑
1

Un
j < ∞ almost surely.
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Combining Equations (17) and (18) gives us Gn(u) ≤ u−p
(

sup
n

1
n

n
∑
1

Un
j

)
, u ∈ [1,+∞]. �

Example 4. Suppose U follows the uniform distribution on [0, 1], then the theoretical value can be
obtained that εq(FU) =

bΓ(q+1)
2q+1 , and Equation (20) in Ref. [27] can be used to calculate the sample

value of FCRE. The result is shown in Figure 6. The result confirms the sample value of FCRE
asymptotically converges to the theoretical FCRE.
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3. Fractional Conditional Cumulative Residual Entropy (FCCRE) and Some Properties

Inspired by the properties of conditional CRE in Ref. [8], we define fractional condi-
tional cumulative residual entropy (FCCRE) below.

Let V be a random variable that is measurable with respect to an σ− field η, and U
is a random variable with finite expectation. We denote the conditional expectation of U
given η by E(U/η).

Definition 1. Given a random vector U on RN and an σ-field η, we define fractional conditional
cumulative residual entropy (FCCRE): εq(U|η) by

εq(U|η ) =
∫

RN
+

p(|U| > u|η )[− log p(|U| > u|η )]q)du, (19)

where εq(U|η) is measurable with respect to the σ-field η; if η is the σ-field generated by the random
variable V, one sets δq(U|V) = εq(U|η), where

δq(U|V ) =
∫

p(|U| > u|V = v )[− log p(|U| > u|V = v )]qdu.

When η is the trivial field, εq(U|η) = εq(U). Suppose U and V are two discrete random
vectors; the specific calculation process is as follows:

εq(U|V) = ∑
v∈V

P(v)εq(U|V = v)

= ∑
v∈V

p(v) ∑
u∈U

p(u|v)(− log p(u|v))q

= ∑
u∈U

∑
v∈V

p(u, v)(− log p(u|v))q

= ∑
u∈U,v∈V

p(u, v)(− log p(u|v))q

= ∑
u∈U,v∈V

p(u, v)
(
− log

p(u, v)
p(v)

)q
.

Some properties are presented here to reflect the uncertainty between two random variables.
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Proposition 6. For random non-negative and independent variables U, V, and an σ- field η,

max
(

εq

(
F(U|η)

)
, εq

(
F(V|η)

))
≤ εq

(
F(U+V|η)

)
,

where F(U|η) and F(V|η) are the survival functions of U and V , respectively.

Proof of Proposition 6. The proof content is similar to Proposition 1, so we will not repeat
it here. �

Then, a simple example is used to demonstrate Proposition 6.

Example 5. In Figure 7, we compare three FCCRE, εq(U|Z), εq(V|Z), and εq(U + V|Z). U
follows the uniform distribution on [0, 1], Vis normally distributed with the mean of 0 and the
variance of 1, and Zfollows exponential distribution with λ = 0.5. From Figure 7, we can see the
entropy of εq(U|Z) and εq(V|Z) is smaller than εq(U + V|Z).
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Proposition 7. εq(U|η) < ∞ when E[|U|p] < ∞ for some p > n , and an σ -field η , n is the
dimension of the vector U.

Proof of Proposition 7. First, we comment that according to the proof of the existence of
CRE in Ref. [8], which can prove the result sufficiently when U is a scalar random variable,
that is n = 1, and for p > 1. Then, letting p−1 < αq < 1, we use the following inequality [8]:

P
[∣∣Uj

∣∣ > uj, 1 ≤ j ≤ N|η
]∣∣[log P

∣∣Uj
∣∣ > uj, 1 ≤ j ≤ N|η

]∣∣
≤ e−1

1−α P
[∣∣Uj

∣∣ > uj, 1 ≤ j ≤ N|η
]α

≤ e−1

1−α

N
∏
j=1

P
[∣∣Uj

∣∣ > uj|η
]α/N .

Since FU ≤
[
FU
]q for u > 0 and 0 < q ≤ 1,

εq(U|η) =
∫ ∞

0
F(U|η)

[
− log F(U|η)

]qdu ≤
∫ ∞

0

[
−F(U|η) log F(U|η)

]qdu

So that [
P
[∣∣Uj

∣∣ > uj, 1 ≤ j ≤ N|η
]∣∣[log P

∣∣Uj
∣∣ > uj, 1 ≤ j ≤ N|η

]∣∣]q

≤
(

e−1

1−α

)q
[

N
∏
j=1

P
[∣∣Uj

∣∣ > uj|η
]α/N

]q

.
(20)
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Integrating both sides of Equation (20) on R+
N , we obtain

εq(U|η) ≤
(

e−1

1−α

)q∫
R+

N

N
∏
j=1

P
[∣∣Uj

∣∣ > uj|η
]qα/Ndu

=
(

e−1

1−α

)q N
∏
j=1

∫ ∞
0 P

[∣∣Uj
∣∣ > uj|η

]qα/Ndu.

For any positive random variable V,∫ ∞
0 P[V > v|η]qα/Ndv =

∫ 1
0 P[V > v|η]qα/Ndv +

∫ ∞
1 P[V > v|η]qα/Ndv

≤ 1 +
∫ ∞

1

{
1

vp E[Vp|η]
}qα/N

dv < ∞.

�

Example 6. U is a random sample from a uniform distribution over [0, 1] , and V follows an
exponential distribution with λ = 0.5. We calculate the different values of εq(U|V) when q ∈[0, 1],
which are shown in Figure 8.
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Figure 8. The fractional conditional cumulative residual entropy of εq(U|V).

Figure 8 shows that FCCRE values are finite regardless of the different values of q
between [0, 1].

Proposition 8. For εq(U|η) ≥ 0, if and only if P[|U| > A|η] = 1, the equation holds,
which means the probability of

∣∣Uj
∣∣ = Aj is 1, where Aj is the jth component of the vector

A = {A1, A2, · · · , An}.

Proof of Proposition 8. If the equation holds, consider

u(− log u)q = 0,

for all 0 < q ≤ 1 is established if and only if u = 0 or u = 1.
So, εq(U|η) = 0 means P[|U| > A|η] = 0 or P[|U| > A|η] = 1 for all A.
When P[|U| > A|η] = 0, then P[|U| > 0|η] = 0.
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Consider P[|U| > A|η] = 1 hold on A, then for α = max
A∈ϕ

A, which satisfies

P[|U| = α|η] = 1,

where ϕ = {A|P[|U| > A|η] = 1}. �

Example 7. Assuming U is a random variable that obeys a uniform distribution, V follows the
exponential distribution. Let Z be a constant sequence, equal to a fully probable event. The simulated
result is shown in Figure 9, which is in accordance with Proposition 8.
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Proposition 9. Let U ∈ Lp for some p > Nτ , and an σ-field η; N is the dimension of vector U , then

E
[
εq(U|η)

]
= 0 iff U is η −measurable. (21)

More generally, if
A =

{
εq(U|η) = 0

}
, (22)

then 1A|U| is η measurable, where 1A is the indicator function of the set A , and 1A|U|= |U| on
the set A and zero elsewhere. In particular, for random vectors U and V,

εq(U|V) = 0 if |U| is a function of V.
Note that E

[
εq(U|η)

]
is a scalar but εq(U|V) is a function of V. Additionally, if V is a

generator of η , then εq(U|η)= εq(U|V).

Proof of Proposition 9. Let φ(u) = u(log u)q; note that for any positive random variable Z
and any set A, 1Aφ(Z) = φ(1AZ). In particular, if A ∈ η,

1Aφ(E(Z|η)) = φ(1AE(Z|η)).

Therefore, the proof of Equation (21) indirectly proves the more general statement
Equation (22). Then, we use the following easily verified fact to prove Equation (21). For
any set A, A is η-measurable iff E(1A|η) is 0–1 valued.

Now, suppose |U| is η-measurable. Then, P(|U| > u|η) = 1A, where A = {|U| > u}.
Moreover, φ(1A) = 0, since φ(1B) = 0 for all sets B. Conversely, if εq(U|η) = 0, then for
almost all u

φ(P(|U| > u|η)) = 0,
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i.e., P(|U| > u|η) is 0–1 valued. Using Equation (18) in Ref. [8], we find that for almost all
u ∈ RN

+ , the set A = {|U| > u} belongs to η. Otherwise stated, |U| is η−measurable. The
proposition is proved.�

By using Jensen’s inequality, Proposition 10 discusses the relation of fractional condi-
tional CRE with conditional CRE. It gives an upper bound for the fractional conditional
CRE depending on the CRE.

Proposition 10. For a non-negative random variable U and an σ-field η , it holds that

εq(U|η) ≤ [ε(U|η)]q.

Proof of Proposition 10. Since F(U|η) ≤
[
F(U|η)

]q for u > 0 and 0 < q ≤ 1,

εq(U|η ) =
∫ ∞

0 F(U|η )
[
− log F(U|η )

]qdu ≤
∫ ∞

0

[
−F(U|η ) log F(U|η )

]qdu

≤
[∫ ∞

0

[
−F(U|η ) log F(U|η )

]
du
]q

= [ε(U|η )]q,

where the last inequality is attained from Jensen’s inequality.
The proposition is proved. �

Example 8. Suppose U follows the uniform distribution on [0, 1] , V follows exponential distribu-
tion with λ = 0.5. Figure 10 shows the value of εq(U|η) is far less than the value of [ε(U|η)]q.
The larger numerical deviation of FCCRE and q-order CCRE can also be seen from Table 1.

Table 1. The specific values of q-order FCCRE and q power of CCRE.

q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1.0

CCRE 0.0026 0.0027 0.0029 0.0030 0.0031 0.0033 0.0035 0.0036 0.0038 0.0040

q-order FCCRE 0.5752 0.3308 0.1903 0.1094 0.0629 0.0362 0.0208 0.0120 0.0069 0.0040
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The following proposition shows that the fractional conditional CRE dominates the
differential entropy, which gives a lower bound for the fractional conditional CRE relative
to the differential entropy.

Proposition 11. Let U ≥ 0 have density f , then

εq(U|η) ≥ C(q)e
H(U|η), 0 < q ≤ 1, (23)
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where H(U|η)is the conditional differential entropy defined in Equation (2) [8], and C(q) =

e
∫ 1

0 log [u(− log u)q ]du is a finite function of q.

Proof of Proposition 11. Let G(U|η) = P[U > u|η] =
∫ ∞

u f (u|η), using the log-sum inequality,∫ ∞
u f (u|η ) log f (u|η )

G(u|η )[− log G(u|η )]q
du ≥ log 1∫ ∞

0 G(u|η )[− log G(u|η )]qdu

= log 1
εq(u|η )

.
(24)

The LHS in Equation (24) equals

− H(U|η )−
∫ ∞

0
f (u|η ) log

[
G(u|η )[− log G(u|η )]q

]
du.

Then

H(U|η ) +
∫ ∞

0
f (u|η ) log

[
G(u|η )[− log G(u|η )]q

]
du ≤ log εq(U|η ). (25)

Finally, a change in variable gives∫ ∞

0
f (u|η ) log

[
G(u|η )[− log G(u|η )]q

]
du =

∫ 1

0
log
[
u(log u)q]du.

Hence, we obtain the following equation from Equation (25):

H(U|η) +
∫ 1

0
log
[
u(− log u)q]≤ log εq(U|η). (26)

Exponentiating both sides of Equation (26), we have Equation (23). �

Definition 2. Cross CRE [8] is defined as

ε(U, V) = ε(U) + E[ε(V|U)]. (27)

Similarly, we define fractional cross CRE by

εq(U, V) = εq(U) + E
[
εq(V|U)

]
. (28)

Now, using Proposition 11, we have the following proposition.

Proposition 12.

εq(U, V) ≥ 2Cq exp
(

H(U, V)

2

)
, (29)

where H(U, V) is the joint entropy [1].

Proof of Proposition 12. The combination of Proposition 11, the convexity of ex, and
Jensen’s inequality lead to

εq(U, V) = εq(U) + E
[
εq(V|U)

]
≥ Cq exp[H(U)] + Cq exp[H(U|V)]

≥ 2Cq exp
{

H(U)+E[H(U|V)]
2

}
= 2Cq exp

{
H(U|V)

2

}
.

In the second inequality, we use 2 exp
{ u+v

2
}
≤ eu + ev. �



Fractal Fract. 2022, 6, 400 14 of 18

4. Empirical Fractional Conditional Cumulative Residual Entropy

Analogous to CRE, conditional FCRE can be computed using the fractional CRE of
empirical data [30–33].

Let U1, U2, · · · , Un be nonnegative absolutely continuous, independently and identi-
cally distributed random variables that form a random sample from a population having
distribution function F(U|v) for an σ-field η, which is generated by a random variable
V. Writing Fn(U|v) as the empirical conditional distribution of n-sample U1, U2, · · · , Un,
assigning mass 1

n to every sample point, then Fn(U|v) is the conditional cumulative distri-
bution function.

According to Equation (4), the CRE of empirical distribution Fn(U|v) is

εq
(

Fn(U|v)
)
=
∫ ∞

0
Fn(U|v)

[
− log Fn(U|v)

]qdu, (30)

where Fn(U|v)= 1− Fn(U|v).
The following propositions uncover the asymptotic of empirical fractional conditional

CRE, namely the FCCRE of sample data asymptotically converges to the true value.

Proposition 13. For any random variable U in Lp for some p > 1, empirical conditional FCRE
converges to the conditional FCRE of U, i.e., εq[Fn(U|v)]→ εq[F(U|v)] a.s.

Proof of Proposition 13. By using the dominated convergence proposition, it holds that the
integral of Gn(U|v) log Gn(U|v) on any finite interval converges to that of G(U|v) log G(U|v).
Therefore, we just need to show that as n→ ∞∣∣∣∣∫ 1

0
Gn(U|v )[− log Gn(U|v )]

q

du−
∫ 1

0
G(U|v )[− log G(U|v )]

q

du
∣∣∣∣→ 0.

Recall that
Gn(U|v) = Pn(U > u|v),

where Pn is the probability distribution on R+ assigning mass 1
n to each of the sample

points U1, · · · , Un.
It follows that

xpGn(U|v) ≤ En

[
UP
]
=

1
n

n

∑
1

Up
j , (31)

where En is expectation relative to Pn. Then, using the strong law [28], we obtain

1
n

n

∑
1

Up
j → E

[
U1

P
]

almost surely. (32)

In particular,

sup
n

1
n

n

∑
1

Up
j < ∞ almost surely.

Combining Equations (31) and (32), we obtain Gn(U|v) ≤ u−p
(

sup
n

1
n

n
∑
1

Up
j

)
Now, by applying the dominated convergence proposition and using Equation (35) in

Ref. [8], we prove the proposition. �

Proposition 14. Let the random vector Unconverge to the random vector Uin distribution for all
bounded continuous functions ϕon RN , that is

lim
n→∞

E[ϕ(Un)] = E[ϕ(U)].
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For some p > N, if all the Un are bounded in Lp, then

εq(Un|v)
a.s.→ εq(U|v), n→ ∞.

Proof of Proposition 14. For all u on R+
N , Un converges to the random vector U in distribu-

tion [29],

lim
n→∞

P[|Un| > u|v] = P[|U| > u|v].

Then, for all u,

lim
n→∞

P[|Un| > u|v] log P[|Un| > u|v] = P[|U| > u|v] log P[|U| > u|v].

From Proposition 1 in Ref. [8], we know

[P[|Un| > u|v]|log P[|Un| > u|v]|]q ≤
(

e−1

1− α

)q[ N

∏
j=1

P
[∣∣∣Unj

∣∣∣ > Uj|v
] α

N

]q

.

For each n and j,

∫ ∞
0 P

[∣∣∣Unj

∣∣∣ > Uj|v
] qα

N du =
∫ 1

0 P
[∣∣∣Unj

∣∣∣ > uj|v
] qα

N
+
∫ ∞

1 P
[∣∣∣Unj

∣∣∣ > uj|v
] qα

N du

≤ 1 +
∫ ∞

1

{
1

up
j

E
[∣∣∣Unj

∣∣∣|v]p
} qα

N
du,

where pqα
N > 1, the proposition can be proved. �

5. Application

In this section, we analyze and compare the complexity of aero-engine gas path
variables based on the FCRE and FCCRE models, so as to explore the intrinsic dynamic
nature of aero-engine time series. We select the engine pressure ratio (EPR), high-pressure
rotor speed (N1), fuel flow (WF), and exhaust gas temperature (EGT) as data samples. These
four major variables reflect the operation condition of the aero-engine gas path system.

The fractional cumulative residual entropy curves of the six groups series in Figure 11
are interlaced to varying degrees and show a decreasing trend with the increase in frac-
tional parameters. Through fractional parameter analysis, we can explore the inherent
dynamic nature of aero-engine gas path time series and try to distinguish different gas path
parameters. In Figure 11, the entropy curve of N1 (high pressure rotor speed) is higher than
that of the EPR (engine pressure ratio), WF (fuel flow), and EGT (exhaust gas temperature)
while q ≤ 0.4. Oppositely, when q ≥ 0.6, the entropy curve of N1 lies under that of the EPR,
WF, and EGT. The reason may be that N1 represents the dynamic system. However, the
oiling system and temperature system associated with the dynamic system are indicated
by the WF and EGT.

In order to better observe the correlation between the dynamic system and three
other systems, Figure 12 shows the FCCRE of these three groups of gas path sequences,
respectively. Figure 12 shows a wide difference in the correlation for the aero-engine gas
path time series. The FCCRE values of the εq(EGT|N1 ) and εq(EPR|N1 ) sequences firstly
decrease rapidly with the increase in parameter q, and then decrease slowly. On the other
hand, when q increases, the entropy curve is obviously near the highest point.
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In summary, both FCRE and FCCRE can detect the nature of gas path systems and can
distinguish the complexity of different gas path series. The result of FCCRE can capture
not only the information of complexity but also the correlation in the gas path system.

6. Conclusions

In this paper, some new properties of fractional cumulative residual entropy and frac-
tional conditional cumulative residual entropy (FCCRE) were given. Among them, some
properties revealed the connection between fractional conditional CRE and differential
entropy. Moreover, the generated random sequences that followed different distributions
were used to verify the validity of the original property. Then, we discussed the empirical
approximation of FCCRE.

For the analysis of aero-engine gas path data, this article analyzed and compared the
complexity of the engine pressure ratio (EPR), high-pressure rotor speed (N1), fuel flow
(WF), and exhaust gas temperature (EGT). The results show that both FCRE and FCCRE
can detect the complex nature of the gas path system. In the future, we will continue
to investigate other properties and applications of fractional-order cumulative residual
entropy and fractional conditional cumulative residual entropy.
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