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1. Introduction

The most actively developing modern area of scientific knowledge is the theory
of correctly and incorrectly posed problems, most of which have practical value and
require decision-making in uncertain or contradictory conditions. The development and
justification of methods for solving such a complex class of problems as ill-posed ones
is an intensely studied problem at the present time. The theory of ill-posed problems is
an apparatus of scientific research for many scientific areas, such as the differentiation of
approximately given functions, solving inverse boundary value problems, solving problems
of linear programming and control systems, solving degenerate or ill-conditioned systems
of linear equations, etc.

J. Hadamard [1] introduced the concept of a well-posed problem. It is due to their view
that any mathematical problem corresponding to a physical or technological problem must
be well-posed. J. Hadamard was concerned about what physical interpretation a solution
might have if a small arbitrary change in the data could lead to major changes in the
solution. He specified that it was difficult to apply approximation methods to such issues.
Therefore, the opportunity arose to study ill-posed problems. For ill-posed problems, two
questions were asked. The first one was: what is meant by approximate solution? It should
be defined in such a way that it is stable in the event of minor changes to the original
information. A second question was: what algorithms can we use to build such solutions?
Tikhonov [2] gave the basic answers to these questions.

Formulas that allow one to find a solution to an elliptic equation in the case when the
Cauchy data are known only on a part of the boundary of the domain are called Carleman-
type formulas. In [3], Carleman established a formula giving a solution to the Cauchy–
Riemann equations in a domain of a special form. Developing their idea, G.M. Goluzin
and V.I. Krylov [4] derived a formula for determining the values of analytic functions from
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data known only on a portion of the boundary, already for arbitrary domains. A formula
of the Carleman type, in which the fundamental solution of a differential operator with
special properties (the Carleman function) is used, was obtained by M.M. Lavrent’ev (see,
for instance [5–7]). Using this method, Sh.Ya. Yarmukhamedov (see, for instance [8–10])
constructed the Carleman functions for the Laplace and Helmholtz operators. Carleman-
type formulas for various elliptic equations and systems were also obtained in [5–26].
A multidimensional analogue of Carleman’s formula for analytic functions of several
variables was constructed in [11]. In [15], an integral formula was proved for systems
of equations of elliptic type of the first order, with constant coefficients in a bounded
domain. Using the methodology of [8,9], Ikehata [22] considered the probe method and
Carleman functions for the Helmholtz equation in the three-dimensional domain. Using
exponentially growing solutions, Ikehata [23] obtained a formula for solving the Helmholtz
equation with a variable coefficient for regions in space where the unknown data were
located on a section of the hypersurface. In [20], the Cauchy problem was considered for the
Helmholtz equation in an arbitrary bounded plane domain with Cauchy data, known only
on the region boundary. The solvability criterion for the Cauchy problem for the Laplace
equation in the space Rm was considered by Shlapunov in [16]. In [27], the continuation
of the problem for the Helmholtz equation was investigated and the results of numerical
experiments were presented.

The concept of conditional correctness first appeared in the work of Tikhonov [2],
and then in the studies of Lavrent’ev [5–7]. In a theoretical study of the conditional
correctness (correctness according to Tikhonov) of an ill-posed problem of the existence of
a solution and its belonging to the correctness set, it was postulated in the very formulation
of the problem. The study of uniqueness issues in a conditionally well-posed formulation
does not essentially differ from the study in a classically well-posed formulation, and the
stability of the solution from the data of the problem is required only from those variations
of the data that do not deduce solutions from the well-posedness set. After establishing
the uniqueness and stability theorems in the study of the conditional correctness of ill-
posed problems, the question arises of constructing effective solution methods, i.e., the
construction of regularizing operators. The paper studied the construction of exact and
approximate solutions to the ill-posed Cauchy problem for the matrix factorization of
the Helmholtz equation. Such problems naturally arise in mathematical physics and in
various fields of natural science (for example, in electrogeological exploration, in cardiology,
in electrodynamics, etc.). In general, the theory of ill-posed problems for elliptic systems
of equations has been sufficiently developed thanks to the works of A.N. Tikhonov, V.K.
Ivanov, M.M. Lavrent’ev, N.N. Tarkhanov and others famous mathematicians. Among them,
the most important for applications are the so-called conditionally well-posed problems,
characterized by stability in the presence of additional information about the nature of
the problem data. One of the most effective ways to study such problems is to construct
regularizing operators. For example, this can be the Carleman-type formulas (as in a
complex analysis) or iterative processes (the Kozlov-Maz’ya-Fomin algorithm, etc.) [15].

Based on the works from [8–10,24], in this paper, we construct the Carleman matrix
and based on it the approximate solution of the Cauchy problem for the matrix factorization
of the Helmholtz equation, in a multidimensional unbounded domain of Rm. Based on the
results of the previous work, we similarly obtain better results with approximate estimates
for a multidimensional unbounded domain. When solving correct problems, sometimes it
is not possible to find the value of the vector function on the entire boundary. Finding the
value of a vector function on the entire boundary for systems of elliptic type with constant
coefficients (see, for example, [26]) is an important problem in differential equations theory.

In many well-posed problems it is not possible to compute the values of the function on
the whole boundary. Thus, one of the important problems in the theory of differential equa-
tions is the reconstruction of the solution of systems of equations of the first-order elliptic
type, factorizing the Helmholtz operator. We recall that ill-posed problems of mathematical
physics have been studied in recent years. Some papers in these directions, regarding
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the Laplace equation are [5,6,8–10]. Other results have been established in [9,13–20,22–26].
Boundary value problems and numerical solutions of some problems can be consulted
in [28–33].

We consider k ∈ N, k ≥ 1, m = 2k, and the Euclidean space Rm. Let

x = (x1, . . . , xm) ∈ Rm, y = (y1, . . . , ym) ∈ Rm,

and
x′ = (x1, . . . , xm−1) ∈ Rm−1, y′ = (y1, . . . , ym−1) ∈ Rm−1.

We also consider an unbounded simply connected domain Ω ⊂ Rm, having a piece-
wise smooth boundary ∂Ω = Σ

⋃
D, where Σ is a smooth surface lying in the half-space

ym > 0 and D is the plane ym = 0.
The following notations are used below:

r = |y− x|, α =
∣∣y′ − x′

∣∣, z = i
√

a2 + α2 + ym, a ≥ 0.

∂x = (∂x1 , . . . , ∂xm)
T , ∂x → ξT , ξT =

 ξ1
. . .
ξm

—transposed vector ξ,

V(x) = (V1(x), . . . , Vn(x))T , v0 = (1, . . . , 1) ∈ Rn, n = 2m, m ≥ 2,

E(u) =

∥∥∥∥∥∥∥∥∥
u1 0 · · · 0
0 u2 · · · 0

· · · · · · . . . · · ·
0 0 0 un

∥∥∥∥∥∥∥∥∥—diagonal matrix, u = (u1, . . . , un) ∈ Rn.

P(ξT) is an (n× n)-dimensional matrix satisfying:

P∗(ξT)P(ξT) = E((|ξ|2 + λ2)v0),

where P∗(ξT) is the Hermitian conjugate matrix of P(ξT), λ ∈ R, and the elements of the
matrix P(ξT) are linear functions with constant coefficients from C.

Definition 1. Let us consider the following first-order system

P(∂x)V(x) = 0, x ∈ Ω, (1)

where P(∂x) is the matrix of first-order differential operators.
Furthermore, consider the set

S(Ω) =
{

V : Ω −→ Rn},

V being continuous on Ω, satisfying the system (1).

2. Statement of the Cauchy Problem

The Cauchy problem for system (1) is formulated as follows:

Definition 2. Let f : Σ −→ Rn be a continuous given function on Σ.
Suppose V(y) ∈ S(Ω) and

V(y)|Σ = f (y), y ∈ Σ. (2)

Our purpose is to determine the function V(y) in the domain Ω when its values are known Σ.
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If V(y) ∈ S(Ω), then

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, (3)

where
L(y, x; λ) =

(
E
(

ϕm(λr)v0
)

P∗(∂x)
)

P(tT),

t = (t1, . . . , tm) is the unit exterior normal at a point y ∈ ∂Ω, ϕm(λr) is the fundamental
solution of the Helmholtz equation in Rm, and

ϕm(λr) = Nmλ(m−2)/2
H(1)
(m−2)/2(λr)

r(m−2)/2
,

Nm =
1

2i(2π)(m−2)/2
, m = 2k, k ≥ 2.

(4)

Here, H(1)
(m−2)/2(λr) is the Hankel function of the first kind of order (m− 2)

/
2 (see [34,35]).

Let K(z) be an entire function taking real values for real z, (z = a + ib, a, b ∈ R).
We suppose

K(a) 6= 0, sup
b≥1

∣∣∣bpK(p)(z)
∣∣∣ = B(a, p) < ∞,

−∞ < a < ∞, p = 0, 1, . . . , m.

(5)

Define, for y 6= x,

Ψ(y, x; λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫
0

Im
[

K(z)
z− xm

]
a I0(λa)√

a2 + α2
da,

z = i
√

a2 + α2 + ym,

(6)

where cm = (−1)k−1(k− 1)!(m− 2)ωm; I0(λa) = J0(iλa) is the Bessel function of the first
kind of order zero [34,35], and ωm is the area of a unit sphere in Rm.

Remark that (3) holds if we replace ϕm(λr) by

Ψ(y, x; λ) = ϕm(λr) + g(y, x; λ), (7)

where g(y, x) is the regular solution of the Helmholtz equation with respect to y, including
the case y = x.

Hence, (3) becomes

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, (8)

L(y, x; λ) =
(

E
(

Ψ(y, x; λ)v0
)

P∗(∂x)
)

P(tT).

Formula (8) can be generalized for an unbounded domain Ω.
We therefore consider an unbounded domain Ω ⊂ Rm, finitely connected, with a

piecewise smooth boundary ∂Ω extending to infinity.
Let ΩR be the part of Ω situated inside the circle of radius R, centered at zero:

ΩR = {y : y ∈ Ω, |y| < R}, Ω∞
R = Ω\ΩR, R > 0.
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Assume that Ω is situated inside the portion

0 < ym < h, h =
π

ρ
, ρ > 0,

of smallest width, and ∂Ω extends to infinity.

Theorem 1. Let V(y) ∈ S(Ω). If ∀x ∈ Ω, x fixed, we have

lim
R→∞

∫
Ω∞

R

L(y, x; λ)V(y)dsy = 0, (9)

then the formula (8) is true.

Proof. Let us fix x ∈ Ω (|x| < R). Using (8), we get∫
∂Ω

L(y, x; λ)V(y)dsy =
∫

∂ΩR

L(y, x; λ)V(y)dsy

+
∫

∂Ω∞
R

L(y, x; λ)V(y)dsy = V(x) +
∫

∂Ω∞
R

L(y, x; λ)V(y)dsy, x ∈ ΩR.

Taking into account condition (9), for R→ ∞, we obtain (8).
Furthermore, suppose, for d0 > 0,∫

∂Ω

exp
[
−d0ρ0

∣∣y′∣∣]dsy < ∞, 0 < ρ0 < ρ. (10)

Suppose V(y) ∈ S(Ω) so that it satisfies the boundary growth condition

|V(y)| ≤ exp
[
exp ρ2

∣∣y′∣∣], ρ2 < ρ, y ∈ Ω. (11)

In (6), we put

K(z) = exp
[
−d iρ1

(
z− h

2

)
− d1 iρ0

(
d− h

2

)]
,

K(xm) = exp
[

d cos ρ1

(
xm −

h
2

)
+ d1 cos iρ0

(
xm −

h
2

)]
,

0 < ρ1 < ρ, 0 < xm < h,

(12)

where
d = 2c exp

(
ρ1
∣∣x′∣∣), d1 >

d0

cos
(

ρ0
h
2

) , c ≥ 0, d > 0.

Then, the integral representation (8) is true.

For x ∈ Ω, x fixed and y→ ∞, we estimate Ψ(y, x; λ) and its derivatives
∂Ψ(y, x; λ)

∂yj
,

(j = 1, . . . , m− 1),
∂Ψ(y, x; λ)

∂ym
. For the estimation of

∂Ψ(y, x; λ)

∂yj
we use



Fractal Fract. 2022, 6, 403 6 of 14

∂Ψ(y, x; λ)

∂yj
=

∂Ψ(y, x; λ)

∂s
∂s
∂yj

= 2(yj − xj)
∂Ψ(y, x; λ)

∂s
,

s = α2, j = 1, . . . , m− 1.

(13)

Really, ∣∣∣∣exp
[
−d iρ1

(
z− h

2

)
− d1iρ0

(
z− h

2

)]∣∣∣∣
= exp Re

[
−d iρ1

(
z− h

2

)
− d1iρ0

(
z− h

2

)]

= exp
[
−d ρ1

√
a2 + α2 cos ρ1

(
ym −

h
2

)
− d1ρ0

√
a2 + α2 cos ρ0

(
ym −

h
2

)]
.

As
−π

2
≤ −ρ1

ρ
· π

2
≤ ρ1

ρ
· π

2
<

π

2
,

−π

2
≤ −ρ1

ρ
· π

2
≤ ρ0

(
ym −

h
2

)
≤ ρ1

ρ
· π

2
<

π

2
.

Consequently,

cos ρ

(
ym −

h
2

)
> 0, cos ρ0

(
ym −

h
2

)
≥ cos

hρ0

2
> δ0 > 0,

it does not vanish in the region Ω and

|Ψ(y, x; λ)| = O[exp(−ερ1|y′|)], ε > 0, y→ ∞, y ∈ Ω
⋃

∂Ω,∣∣∣∣∣∂Ψ(y, x; λ)

∂yj

∣∣∣∣∣ = O[exp(−ερ1|y′|)], ε > 0, y→ ∞, y ∈ Ω
⋃

∂Ω, j = 1, . . . , m− 1.

∣∣∣∣∂Ψ(y, x; λ)

∂ym

∣∣∣∣ = O[exp(−ερ1|y′|)], ε > 0, y→ ∞, y ∈ Ω
⋃

∂Ω.

We now choose ρ1 with the condition ρ2 < ρ1 < ρ. Then, condition (10) is fulfilled and
the integral formula (8) is true.

Condition (12) can be weakened. Consider now the class Sρ(Ω) of vector-valued
functions from S(Ω), satisfying the following growth condition:

Sρ(Ω) =
{

V(y) ∈ S(Ω), |V(y)| ≤ exp
[
o
(
exp ρ

∣∣y′∣∣)], y→ ∞, y ∈ Ω
}

. (14)

We obtain the following theorem:

Theorem 2. Suppose V(y) ∈ Sρ(Ω) so that it satisfies the growth condition

|V(y)| ≤ C exp
[

c cos ρ1

(
ym −

h
2

)
exp

(
ρ1
∣∣y′∣∣)],

c ≥ 0, 0 < ρ1 < ρ, y ∈ ∂Ω,

(15)

where C is some constant. Then, formula (8) is valid.

Proof. Divide the area Ω by a line ym =
h
2

into two areas
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Ω1 =

{
y : 0 < ym <

h
2

}
and Ω2 =

{
y :

h
2
< ym < h

}
.

Consider the domain Ω1. In formula (6) we put together K(z) and K1(z)

K1(z) = K(z) exp
[
−δ iτ

(
z− h

2

)
− δ1iρ

(
z− h

2

)]
,

ρ < τ < 2ρ, δ > 0, δ1 > 0,

(16)

K(z) being given by (12). With this notation, (10) is true.
Really, ∣∣∣∣exp

[
−iτ

(
z− h

4

)
− δ1iρ

(
z− h

4

)]∣∣∣∣
= exp

[
−δτ

√
a2 + α2 cos τ

(
ym −

h
4

)]

= exp
[
−δτ

√
a2 + α2

]
≤ exp

[
−δ exp τ

∣∣y′∣∣],
as

−π

2
≤ −τ

π

4
≤ τ

(
ym −

h
4

)
≤ τ

π

2
<

h
2

and cos τ

(
ym −

h
4

)
≥ cos τ

h
4
≥ δ0 > 0.

Denote the corresponding Ψ(y, x; λ) by Ψ+(y, x; λ). As

cos τ

(
ym −

h
4

)
≥ δ0, y ∈ Ω1

⋃
∂Ω1,

then for a fixed x ∈ Ω1, y ∈ Ω1
⋃

∂Ω1, for Ψ+(y, x; λ), and its derivatives are true asymp-
totic estimates

|Ψ+(y, x; λ)| = O[exp(−δ0 exp(τ|y′|)], y→ ∞, ρ < τ < 2ρ,∣∣∣∣∣∂Ψ+(y, x; λ)

∂yj

∣∣∣∣∣ = O[exp(−δ0 exp(τ|y′|)], y→ ∞, ρ < τ < 2ρ, j = 1, . . . , m− 1.

∣∣∣∣∂Ψ+(y, x; λ)

∂ym

∣∣∣∣ = O[exp(−δ0 exp(τ|y′|)], y→ ∞, ρ < τ < 2ρ.

Suppose V(y) ∈ Sρ(Ω1) so that in a domain Ω1 satisfies

|V(y)| ≤ C exp
[
exp(2ρ− ε)

∣∣y′∣∣], ε > 0. (17)

Consider τ in (16) such that

2ρ− ε < τ < 2ρ. (18)

Then, (16) is satisfied in Ω1, hence:

V(x) =
∫

∂Ω1

L(y, x; λ)V(y)dsy, x ∈ Ω1, (19)

where
L(y, x; λ) =

(
E
(

Ψ+(y, x; λ)v0
)

P∗(∂x)
)

P(tT).
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If V(y) ∈ Sρ(Ω2) satisfies the growth condition (15) in Ω2, then for τ satisfying (18),
similarly, we obtain

V(x) =
∫

∂Ω2

L(y, x; λ)V(y)dsy, x ∈ Ω2, (20)

L(y, x; λ) =
(

E
(

Ψ−(y, x; λ)v0
)

P∗(∂x)
)

P(tT).

Here, Ψ−(y, x; λ) is defined by the formula (6), K(z) being replaced by

K2(z) = K(z) exp
[
−δ iτ(z− h1)− δ1iρ

(
z− h

2

)]
, (21)

where
h1 =

h
2
+

h
4

,
h
2
< ym < h,

h
2
< xm < h1, δ > 0, δ1 > 0.

In the formulas obtained with this formula, the integrals (according to (11)) converge
uniformly for δ ≥ 0, when V(y) ∈ Sρ(Ω). In these formulas, we put δ = 0, hence

V(x) =
∫

∂Ω

L(y, x; λ)V(y)dsy, x ∈ Ω, xm 6=
h
2

, (22)

where
L(y, x; λ) =

(
E
(

Ψ̃(y, x; λ)v0
)

P∗(∂x)
)

P(tT).

(the integrals over the cross section ym =
h
2

are mutually destroyed)

Ψ̃(y, x; λ) = (Ψ+(y, x; λ))δ=0 = (Ψ−(y, x; λ))δ=0.

Ψ̃(y, x; λ) is given by (6), in which K(z) is determined by (16), for δ = 0. Using the
continuation principle, (22) holds, ∀x ∈ Ω. If (17) is satisfied, formula (22) is valid, ∀δ1 ≥ 0.
Supposing δ1 = 0, Theorem 2 is proved.

In formula (6), choosing

K(z) =
1

(z− xm + 2h)k exp(σz), k ≥ 2,

K(xm) =
1

(2h)k exp(σxm), 0 < xm < h, h =
π

ρ
,

(23)

we get

Ψσ(y, x) = − e−σxm

cm(2h)−k
∂k−1

∂sk−1

∞∫
0

Im
exp(σz)

(z− xm + 2h)k(z− xm)

a I0(λa)√
a2 + α2

da. (24)

Hence, (8) becomes:

V(x) =
∫

∂Ω

Lσ(y, x; λ)V(y)dsy, x ∈ Ω, (25)

where
Lσ(y, x; λ) =

(
E
(

Ψσ(y, x; λ)v0
)

P∗(∂x)
)

P(tT).
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3. Regularization of the Cauchy Problem and Estimation of Conditional Stability

Theorem 3. Let V(y) ∈ Sρ(Ω) satisfying in the following inequality

|V(y)| ≤ M, y ∈ D. (26)

If

Vσ(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy, x ∈ Ω, (27)

then
|V(x)−Vσ(x)| ≤ Kρ(λ, x)σk Me−σxm , x ∈ Ω, (28)

where Kρ(λ, x) are bounded functions on compact subsets of Ω.

Proof. Using (25) and (27), we have

V(x) =
∫
Σ

Lσ(y, x; λ)U(y)dsy +
∫
D

Lσ(y, x; λ)V(y)dsy

= Lσ(x) +
∫
D

Lσ(y, x; λ)V(y)dsy, x ∈ Ω.

According to (26), we get

|V(x)−Vσ(x)| ≤

∣∣∣∣∣∣
∫
D

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣
≤
∫
D

|Lσ(y, x; λ)||V(y)|dsy ≤ M
∫
D

|Lσ(y, x; λ)|dsy, x ∈ Ω.

(29)

We estimate now the following integrals
∫
D

|Ψσ(y, x; λ)|dsy,
∫
D

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy,

(j = 1, . . . , m− 1) and
∫
D

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy on D : ym = 0.

We separate the imaginary part of (24), hence we get

Ψσ(y, x) =
eσ(ym−xm)

cm(2h)−k
∂k−1

∂sk−1

 ∞∫
0

(
(β + β1) cos σα1(
α2

1 + β2
1
)(

α2
1 + β2

)
+

(
−α2

1 + β1β
)(

α2
1 + β2

1
)(

α2
1 + β2

) sin σα1

α1

)
a I0(λa)da

]
,

(30)

where
α2

1 = a2 + α2, β = ym − xm, β1 = ym − xm + 2h.

Given (30) and the inequality

I0(λa) ≤
√

2
λπa

, (31)

we have ∫
D

|Ψσ(y, x; λ)|dsy ≤ Kρ(λ, x)σke−σxm , σ > 1, x ∈ Ω. (32)



Fractal Fract. 2022, 6, 403 10 of 14

Next, we use:

∂Ψσ(y, x; λ)

∂yj
=

∂Φσ(y, x; λ)

∂s
∂s
∂yj

= 2(yj − xj)
∂Ψσ(y, x; λ)

∂s
,

s = α2, j = 1, . . . , m− 1.

(33)

According to (30), (31) and (33), we have

∫
D

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy ≤ Kρ(λ, x)σke−σxm , σ > 1, x ∈ Ω, (34)

Now, we estimate the integral
∫
D

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy, and we obtain

∫
D

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy ≤ Kρ(λ, x)σke−σxm , σ > 1, x ∈ Ω, (35)

Using (32), (34), (35) and (29), (28) is proved.

Corollary 1.
lim

σ→∞
Vσ(x) = V(x),

holds uniformly on every compact set from Ω.

Suppose that the boundary of the domain Ω consists of a hyper plane ym = 0 and a
smooth surface Σ extending to infinity and lying in the layer

0 < ym < h, h =
π

ρ
, ρ > 0.

We assume that Σ is given by the equation

ym = ψ(y′), y′ ∈ Rm−1,

and ψ(y′) satisfies the condition∣∣ψ′(y′)∣∣ ≤ M < ∞, M = const.

Theorem 4. If V(y) ∈ Sρ(Ω) satisfies the condition in (26) and

|V(y)| ≤ δ, 0 < δ < 1, y ∈ Σ, (36)

then
|V(x)| ≤ Kρ(λ, x)σk M1− xm

h δ
xm
h , σ > 1, x ∈ Ω. (37)

Proof. From (25), we get

V(x) =
∫
Σ

Lσ(y, x; λ)V(y)dsy +
∫
D

Lσ(y, x; λ))V(y)dsy, x ∈ Ω. (38)

We estimate the following

|V(x)| ≤

∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
D

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣, x ∈ Ω. (39)
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We have ∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(y, x; λ)||V(y)|dsy

≤ δ
∫
Σ

|Lσ(y, x; λ)|dsy, x ∈ Ω.

(40)

Using (30) and (31), we obtain∫
Σ

|Ψσ(y, x; λ)|dsy ≤ Kρ(λ, x)σkeσ(h−xm), σ > 1, x ∈ Ω. (41)

Using (30)–(32), we get

∫
Σ

∣∣∣∣∣∂Ψσ(y, x; λ)

∂yj

∣∣∣∣∣dsy ≤ Kρ(λ, x)σkeσ(h−xm), σ > 1, x ∈ Ω. (42)

Furthermore, from (30) and (31), we have∫
Σ

∣∣∣∣∂Ψσ(y, x; λ)

∂ym

∣∣∣∣dsy ≤ Kρ(λ, x)σkeσ(h−xm), σ > 1, x ∈ Ω. (43)

From (41)–(43) and applying (40), we get∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤ Kρ(λ, x)σkδ eσ(h−xm), σ > 1, x ∈ Ω. (44)

We know that∣∣∣∣∣∣
∫
D

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤ Kρ(λ, x)σk Me−σxm , σ > 1, x ∈ Ω. (45)

Now, taking into account (44) and (45) and using (39) and (40), we have

|V(x)| ≤
Kρ(λ, x)σk

2
(δ eσh + M)e−σxm , σ > 1, x ∈ Ω. (46)

Considering

σ =
1
h

ln
M
δ

, (47)

(37) is proved.

Consider now V(y) ∈ Sρ(Ω) and instead of V(y) on Σ, its continuous approximations
fδ(y) are given, with error 0 < δ < 1. Then,

max
Σ
|V(y)− fδ(y)| ≤ δ. (48)

We put

Vσ(δ)(x) =
∫
Σ

Lσ(y, x; λ) fδ(y)dsy, x ∈ Ω. (49)
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Theorem 5. If V(y) ∈ Sρ(Ω) satisfies (26) on the plane ym = 0, then∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ ≤ Kρ(λ, x)σk M1− xm

h δ
xm
h , σ > 1, x ∈ Ω. (50)

Proof. From the integral formulas (25) and (49), we have

V(x)−Vσ(δ)(x) =
∫

∂Ω

Lσ(y, x; λ)L(y)dsy

−
∫
Σ

Lσ(y, x; λ) fδ(y)dsy =
∫
Σ

Lσ(y, x; λ)V(y)dsy

+
∫
D

Lσ(y, x; λ)V(y)dsy −
∫
Σ

Lσ(y, x; λ) fδ(y)dsy

=
∫
Σ

Lσ(y, x; λ){V(y)− fδ(y)}dsy +
∫
D

Lσ(y, x; λ)L(y)dsy.

Using conditions (26) and (48), we have:

∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ =

∣∣∣∣∣∣
∫
Σ

Lσ(y, x; λ){V(y)− fδ(y)}dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
D

Lσ(y, x; λ)V(y)dsy

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(y, x; λ)||{V(y)− fδ(y)}|dsy

+
∫
D

|Lσ(y, x; λ)||V(y)|dsy ≤ δ
∫
Σ

|Lσ(y, x; λ)|dsy

+M
∫
D

|Lσ(y, x; λ)|dsy.

As in the proof of Theorems 3 and 4, we get

∣∣∣V(x)−Vσ(δ)(x)
∣∣∣ ≤ Kρ(λ, x)σk

2
(δ eσh + M)e−σxm ,

From here, choosing σ from equality (47), we obtain an estimate (50).

Corollary 2.
lim
δ→0

Vσ(δ)(x) = V(x)

holds uniformly on each compact set of Ω.

Example 1. Consider the following system of partial differential equations of first order:
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∂V1

∂x1
− ∂V2

∂x2
+ iV4 = 0,

∂V1

∂x2
+

∂V2

∂x1
+ iV3 = 0,

−∂V3

∂x1
+

∂V4

∂x2
− iV2 = 0,

∂V3

∂x2
+

∂V4

∂x1
+ iV1 = 0.

Check that the following relations hold:

P∗(ξT)P(ξT) = E((|ξ|2 + λ2)v0), v0 = (1, . . . , 1) ∈ Rn. (51)

Assuming
∂

∂x1
→ ξ1 and

∂

∂x2
→ ξ2, compose the following matrices

P(ξT) =


ξ1 ξ2 0 i
−ξ2 ξ1 − i 0

0 i − ξ1 ξ2
i 0 ξ2 ξ1

, P∗(ξT) =


ξ1 − ξ2 0 − i
ξ2 ξ1 − i 0
0 i − ξ1 ξ2
−i 0 ξ2 ξ1

.

The relation (51) is easily checked.

4. Conclusions

We built in this paper a family of vector-functions Vσ(δ)(x) = V(x, fδ) (called a
regularized solution of the problem for matrix factorizations of the Helmholtz equation),
in a multidimensional unbounded domain in Rm, m = 2k, k ≥ 2, depending on a parameter
σ, and we proved that the family Vσ(δ)(x) converged in the usual sense to a solution V(x)
at a point x ∈ Ω, if certain conditions were set on the parameter σ = σ(δ), at δ → 0.
A regularized solution determines a stable method of finding an approximate solution to
the problems (1) and (2).

Hence, functional Vσ(δ)(x) determines the regularization of the solution of the problem
for matrix factorizations of the Helmholtz equation.
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