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Abstract: This study develops a numerical strategy for finding the approximate solution of the nonlin-
ear foam drainage (NFD) equation with a time-fractional derivative. In this paper, we formulate the
idea of the Laplace homotopy perturbation transform method (LHPTM) using Laplace transform and
the homotopy perturbation method. This approach is free from the heavy calculation of integration
and the convolution theorem for the recurrence relation and obtains the solution in the form of a
series. Two-dimensional and three-dimensional graphical models are described at various fractional
orders. This paper puts forward a practical application to indicate the performance of the proposed
method and reveals that all the outputs are in excellent agreement with the exact solutions.

Keywords: Laplace transform; nonlinear foam drainage equation; homotopy perturbation method;
approximate solution

1. Introduction

Modern calculus includes the study of fractional calculus (FC), where the fractional
order derivative of a function can be utilized to determine various long-term dynamics
and other helpful data about the intended phenomenon. Numerous fields including
signal processing, electrical community optics, and manipulating ideas of dynamical
systems, have successfully used fractional differential equations to simulate these uses
of FC. The topic of FC tackles the study of integrals and derivatives of fractional order.
In the past century, it has gained more scientific attention generally [1]. The concept of
non-integral order of integration can be traced back to some insights of G.W. Leibniz
and L. Euler. These definitions provide a new aspect of study for scientists to conceive
and characterize the fractional differential equations. In the discipline of FC, numerous
models have been developed with the passage of time. Different physical phenomena in
science and technology, such as fluid dynamics, physics, thermodynamics, biology, and
dynamics of compounds have been modeled by nonlinear partial differential equations
(PDEs). These nonlinear problems may not be convenient for finding exact solutions [2]. A
broad collection of analytical and numerical strategies was employed to deal with these
issues [3–5].

The foam drainage equation is a practical nonlinear differential equation that plays a
significant role in both natural and industrial activities. Consider the NFD problem with
the time-fractional derivative

Dα
t Ψ +

∂

∂x

(
Ψ2 −

√
Ψ

2
∂Ψ
∂x

)
= 0, (1)

with condition

Ψ(x, 0) = f (x), (2)
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where Ψ represents the cross section of a channel, x indicates the scaled level, and t

represents the time, respectively. α is the fractional order and Dα
t =

∂α

∂tα
is the Caputo

fractional derivative of Ψ.
The recent study of foam has focused on three main topics; see Figure 1. If α = 1,

Equation (1) changes to the traditional equation that occurs in daily life with our personal
use items such as food, lotions, creams, cleaning of clothes, and scrubbing. The study of
foam has a feature that when the liquid ripples out of foam due to gravitational force, it is
called free drainage. Many researchers have applied different schemes to solve the NFD
problem such as the (G′/G)-expansion method [6], the variational iteration method [7],
the exp-function approach [8], the power series method [9,10], the homotopy perturbation
method (HPM) [11], the reduced differential transform method, the homotopy analysis
method [12], and the Haar wavelets method [13]. New developments of HPM can be
seen in [14,15]. The performance of LHPTM shows its high validity for the propagation of
weakly nonlinear acoustic waves and other nonlinear problems [16,17].

Figure 1. Demonstration of drainage, coarsening, and rheology of the foam.

In this paper, LHPTM is applied to solve the NFD equation with a time-fractional
derivative in such a way that it produces a recurrence relation without any assumptions,
where the calculation is simple and HPM is implemented to obtain the series solution.
This research is summarized as follows: In Section 2, we introduce certain definitions and
facts of FC. In Section 3, we construct the idea of LHPTM mathematically and present the
convergence analysis in Section 4. We include numerical examples and provide the results
and discussion in Sections 5 and 6 to show the reliability and suitability of the presented
strategy, while the conclusion is in Section 7.

2. Preliminaries

In this section, we provide some definitions and facts of the Riemann–Liouville and
Caputo fractional derivatives which can be stated as follows:

Definition 1. The Riemann–Liouville fractional integral of a function ϑ(x, t) is given as [18]

Dαϑ(x, t) =
1

Γ(α)

∫ t

0
(t− η)α−1ϑ(x, η) dη. α, t > 0,

where D0ϑ(x, t) = ϑ(x, t), and Γ represents the gamma function, i.e.,

Γ(z) =
∫ ∞

0
xz−1e−t dt.

where the real part of the complex number z is strictly positive, i.e., <(z) > 0.



Fractal Fract. 2022, 6, 452 3 of 12

Definition 2. Suppose that α > 0, t > a, and a, α, t ∈ N. Then,

Dαϑ(x, t) =
1

Γ(n− α)

dn

dtn

∫ t

a

ϑ(x, η)

(t− η) α−n+1 dη, n− 1 < α < n ∈ N

is called the Riemann–Liouville fractional derivative [18].

Definition 3. Let α > 0, t > a, and a, α, t ∈ N. Then, the Caputo fractional derivative is [19]

Dαϑ(x, t) =
1

Γ(n− α)

∫ t

a

ϑ (n)(x, η)

(t− η) α−n+1 dη. n− 1 < α < n ∈ N

Proposition 1. If ϑ(x, t) = tα, then its Laplace transform (LT) is [20]

L[tα] =
∫ ∞

0
e−sttαdt =

Γ(α + 1)
s(α+1)

.

Proposition 2. The LT of a fractional derivative in the Caputo sense is [20]

L
[

Dαϑ(x, t)
]
= sα Lϑ(x, t)−

n−1

∑
m=0

sα−m−1ϑm(x, 0), n− 1 < α < n.

3. Basic Idea of LHPTM

The basic idea of LHPTM for the solution of nonlinear physical phenomena provides
the direct results in the form of power series, which converge to the exact solution very
quickly. To illustrate the simple concept of LHPTM, we assume a nonlinear general time-
fractional equation:

Dα
t ϑ(x, t) = L1[ϑ(x, t)] + L2[ϑ(x, t)] + g(x, t), n− 1 < α ≤ n, t > 0, x ∈ R (3)

with the initial condition

ϑ(x, 0) = h(x), (4)

where Dα
t =

∂α

∂tα
is the Caputo fractional derivative, L1 and L2 represent the linear and

nonlinear differential operators, respectively, and g(x, t) is the given source term.
Taking the LT of Equation (3)

L
[

Dα
t ϑ(x, t)

]
= L

[
L1(ϑ(x, t) + L2(ϑ(x, t) + g(x, t)

]
.

Applying Proposition 2

sα L
[
ϑ(x, t)

]
− sα−1ϑ(x, 0) = L

[
L1(ϑ(x, t)) + L2(ϑ(x, t)) + g(x, t)

]
.

Using the condition (4), we obtain

L
[
ϑ(x, t)

]
=

h(x)
s

+
1
sα

L
[

g(x, t)
]
+

1
sα

L
[

L1(ϑ(x, t) + L2(ϑ(x, t)
]
.

Thus, the inverse LT yields

ϑ(x, t) = G(x, t) + L−1

[
1
sα

L

{
L1(ϑ(x, t) + L2(ϑ(x, t)

}]
, (5)
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which is said to be the recurrence relation of ϑ(x, t) and

G(x, t) = L−1

[
h(x)

s
+

1
sα

L
{

g(x, t)
}]

.

The solution of Equation (3) can be written as

ϑ(x, t) =
∞

∑
n=0

pnϑn(x, t), (6)

where

L2ϑ(x, t) =
∞

∑
n=0

pn Hnϑ(x, t), (7)

where Hn(ϑ) is He’s polynomial and is defined as:

H(ϑ0, ϑ1, ϑ2, . . . , ϑn) =
1
n!

∂n

∂pn L2

(
∞

∑
i=0

ϑi pi

)
p=0

. n = 0, 1, 2, . . . (8)

Puting the Equations (6) and (7) into Equation (5), we obtain

∞

∑
n=0

pnun(x, t) = G(x, t) + p L−1

[
1
sα

L

{
L1

( ∞

∑
n=0

pnun(x, t)
)
+

∞

∑
n=0

pn Hn(ϑ(x, t)

}]
. (9)

Equating the highest powers of p, we obtain the successive estimates:

p0 : ϑ0(x, t) = G(x, t),

p1 : ϑ1(x, t) = L−1

[
1
sα

{
L
(

L1ϑ0(x, t) + H0

)}]
,

p2 : ϑ2(x, t) = L−1

[
1
sα

{
L
(

L1ϑ1(x, t) + H1

)}]
,

p3 : ϑ3(x, t) = L−1

[
1
sα

{
L
(

L1ϑ2(x, t) + H2

)}]
,

p4 : ϑ4(x, t) = L−1

[
1
sα

{
L
(

L1ϑ3(x, t) + H3

)}]
,

...

continuing the comparable process, the series result is accordingly combined as

ϑ(x, t) = p0ϑ0(x, t) + p1ϑ1(x, t) + p2ϑ2(x, t) + · · · = lim
p→1

∞

∑
n=0

pnun(x, t).

Most of the time, the above series converges and its rate of convergence is dependent on
the nonlinear operator L2. Eslami and Mirzazadeh [21] investigated the convergence of the
finite approximate series for two-dimensional linear volterra integral equations of the first
kind. The decisions below were built by [22,23],

(i) The second order derivative of L2(ϑ) according to ϑ should be smaller as the parameter
p becomes larger, i.e., p→ 1
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(ii)

∥∥∥∥∥L−1
1

(∂L2

∂ϑ

)∥∥∥∥∥ < 1, so that the series converges, whereas L−1
1 represents the inverse of

the linear operator L1.

4. Convergence Analysis

Let P and Q be Banach spaces where X : P→ Q is a nonlinear mapping. If the series
produced by HPM is

ϑn(P, x) = X(ϑn−1(P, x)) =
n−1

∑
i=0

ϑi(P, x), n = 1, 2, 3 . . .

the following conditions must be true:

(1) ‖ϑn(P, x)− ϑ(P, x)‖ ≤ ϕn‖ϑ(P, x)− ϑ(P, x)‖;
(2) ϑn(P, x) is forever in the neighborhood of ϑ(P, x) meaning ϑn(P, x) ∈ B(ϑ(P, x), r) =

{ϑ∗(P, x)/‖ϑ∗(P, x)− ϑ(P, x)‖};
(3) limn→∞ ϑn(P, x) = ϑ(P, x).

Proof. (1) We demonstrate condition (1) by recognition on n, such as ‖ϑ1 − ϑ‖ = ‖G(ϑ0)− ϑ‖,
and the Banach fixed point theorem states that X has a fixed point ϑ, i.e., X(ϑ) = ϑ; therefore,

‖ϑ1 − ϑ‖ = ‖G(ϑ0)− ϑ‖ = ‖G(ϑ0)− G(ϑ)‖ ≤ ϕ‖ϑ0 − ϑ‖ = ϕ‖ϑ(P, x)− ϑ‖

since X is a nonlinear mapping. If we consider that ‖ϑn−1 − ϑ‖ ≤ ϕn−1‖ϑ(P, 0)− ϑ(P, x)‖
is an induction hypothesis, then

‖ϑn − ϑ‖ = ‖G(ϑn−1)− G(ϑ)‖ ≤ ϕ‖ϑn−1 − ϑ‖ ≤ ϕϕn−1‖ϑ(P, x)− ϑ‖

(2) Our initial challenge is to demonstrate the ϑ(P, x) ∈ B(ϑ(P, x), r), which is attained by
replacing on m. Thus, for m = 1, ‖ϑ(P, x)− ϑ(P, x)‖ = ‖ϑ(P, 0)− ϑ(P, x)‖ ≤ r with ϑ(P, 0)
as an initial condition. If we consider that ‖ϑ(P, x)− ϑ(P, x)‖ ≤ r for m− 2 is an induction
theory, then

‖ϑ(P, x)− ϑ(P, x)‖ = ϑm−2(P, x)− fm(P)
Γ(δ−m + 1)

xδ−m‖

≤ ‖ϑm−1(P, x)− ϑ(P, x)‖+
∥∥∥∥ fm(P)

Γ(δ−m + 1)
xδ−m

∥∥∥∥
= r.

Now, ∀ n ≥ 1, using (1) we obtain

‖ϑn − ϑ‖ ≤ ϕn‖ϑ(P, x)− ϑ‖ ≤ ϕnr ≤ r.

(3) Using condition (2) and limn→∞ ϕn = 0, it provides limn→∞‖ϑn − ϑ‖ = 0; hence,

lim
n→∞

ϑn = ϑ;

thus, ϑ converges.

Theorem 1. Let H be the Hilbert space defined as H = L2((a, b)× [0, T]) the set of applications

ϑ : (α, β)×[0, T]→ with
∫
(α,β)×[0,T]

ϑ2(x, s)dsdθ < +∞
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Now, we consider the time-fractional foam drainage equation in the above assumptions, and let
us denote

L(ϑ) =
∂αϑ

∂tα
;

then, the time-fractional foam drainage equation can be written in an operator form as

L(ϑ) =
1
2

ϑϑxx − 2ϑ2ϑx + ϑ2
x

The LHPTM is convergent if the following two assumptions are fulfilled:

• (L(ϑ)− L(w), ϑ− w) ≥ k ‖ ϑ− w ‖2; k > 0, ∀ϑ, w ∈ H;
• whatever may be M > 0, there exists a constant C(M) > 0 such that for ϑ, wεH with

‖ ϑ ‖≤ M, ‖ w ‖≤ M, we have (L(ϑ)− L(w), ϑ − w) ≤ C(M) ‖ ϑ − w ‖‖ v ‖ for
every v ∈ H.

5. Numerical Applications

In this segment, an NFD problem of time-fractional order with an initial condition is
considered to validate the accuracy and applicability of the proposed algorithm.

5.1. Example 1

Let us apply the following transformation in Equation (1) such that

Ψ(x, t) = ϑ2(x, t). (10)

Thus, Equation (1) becomes

Dα
t ϑ2 +

∂

∂x

(
ϑ4 − ϑ

2
.
∂ϑ2

∂x

)
= 0,

Dα
t ϑ2 +

∂

∂x

(
ϑ4 − ϑ2 ∂ϑ

∂x

)
= 0,

2uDα
t ϑ + 4ϑ3 ∂ϑ

∂x
− 2ϑ

∂ϑ

∂x
.
∂ϑ

∂x
− ϑ2 ∂2ϑ

∂x2 = 0,

which can be written as

Dα
t ϑ(x, t) =

1
2

ϑ(x, t)ϑxx(x, t)− 2ϑ2(x, t)ϑx(x, t) + ϑ2
x(x, t), (11)

with condition

ϑ(x, 0) = −
√

c tanh(
√

cx), (12)

here, c represents the speed of the wave front [7,8].
Applying LT on (11), we obtain

L
[

Dα
t ϑ(x, t)

]
= L

[
1
2

ϑ(x, t)ϑxx(x, t)− 2ϑ2(x, t)ϑx(x, t) + ϑ2
x(x, t)

]
,

sα L
[
ϑ(x, t)

]
− sα−1ϑ(x, 0) = L

[
1
2

ϑ(x, t)ϑxx(x, t)− 2ϑ2(x, t)ϑx(x, t) + ϑ2
x(x, t)

]
,

L
[
ϑ(x, t)

]
=

ϑ(x, 0)
s

+
1
sα

L

[
1
2

ϑ(x, t)ϑxx(x, t)− 2ϑ2(x, t)ϑx(x, t) + ϑ2
x(x, t)

]
.
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The inverse LT of the above equation tends to:

ϑ(x, t) = ϑ(x, 0) + L−1

[
1
sα

L

{
1
2

ϑ(x, t)ϑxx(x, t)− 2ϑ2(x, t)ϑx(x, t) + ϑ2
x(x, t)

}]
.

Now, applying He’s HPM properly

∞

∑
n=0

pnϑn(x, t) = ϑ(x, 0) + p L−1

[
1
sα

L

{
1
2

(
∞

∑
n=0

pnϑn(x, t)

)(
∞

∑
n=0

pnϑn(x, t)

)
xx

− 2

(
∞

∑
n=0

pnϑn(x, t)

)2( ∞

∑
n=0

pnϑn(x, t)

)
x

+

(
∞

∑
n=0

pnϑn(x, t)

)2

x

}]
.

Equating the similar identity of p, we obtain

p0 : ϑ0(x, t) = ϑ(x, 0),

p1 : ϑ1(x, t) = L−1

[
1
sα

{
L

(
1
2

ϑ0ϑ0,xx − 2ϑ2
0ϑ0,x + ϑ2

0,x

)}]
,

p2 : ϑ2(x, t) = L−1

[
1
sα

{
L

(
1
2

(
ϑ1ϑ0,xx + ϑ0ϑ1,xx

)
− 2
(

ϑ2
0ϑ1,x + 2ϑ0ϑ1ϑ0,x

)
+ 2ϑ0,xϑ1,x

)}]
,

p3 : ϑ3(x, t) = L−1

[
1
sα

{
L

(
1
2

(
ϑ0ϑ2,xx + ϑ1ϑ1,xx + ϑ2ϑ0,xx

)
− 2
(

ϑ2
0ϑ2,x + 2ϑ0ϑ1ϑ1,x + ϑ2

1ϑ0,xr

+ 2ϑ0ϑ2ϑ0,x

)
+
(

ϑ2
1,x + 2ϑ0,xϑ2,x

))}]
,

(13)

Solving the above system of equations, we obtain

ϑ0(x, t) = −
√

c tanh(
√

cx),

ϑ1(x, t) =

(
sech4(√cx

)
+ tanh2(√cx

)
sech2(√cx

)) c2tα

Γ(α + 1)
,

ϑ2(x, t) =
2c7/2t2α tanh

(√
cx
)
sech2(√cx

)
Γ(2α + 1)

,

ϑ3(x, t) =
c5t3α

(
cosh

(
2
√

cx
)
− 2
)
sech6(√cx

)(
Γ(α + 1)2(cosh

(
2
√

cx
)
+ 3
)
− Γ(2α + 1)

)
Γ(α + 1)2Γ(3α + 1)

,

...

We may write these iterations such as

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + . . . ,

= −
√

c tanh
(√

cx
)
+

c2tα
(

sech4(√cx
)
+ tanh2(√cx

)
sech2(√cx

))
Γ(α + 1)

+
2c7/2t2α tanh

(√
cx
)
sech2(√cx

)
Γ(2α + 1)

+
c5t3α

(
cosh

(
2
√

cx
)
− 2
)
sech6(√cx

)(
Γ(α + 1)2(cosh

(
2
√

cx
)
+ 3
)
− Γ(2α + 1)

)
Γ(α + 1)2Γ(3α + 1)

+ · · · ,

(14)

Thus, this series converges to the approximate solution for α = 1,

ϑ(x, t) = −
√

c tanh
(√

c(x− ct)
)

. (15)
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5.2. Example 2

Again, we consider Equation (12) with the following condition

ϑ(x, 0) = − 1
2
+

1
1 + ex . (16)

Proceeding with the strategy of LHPTM, the system of Equation (13) provides the following
iterations,

ϑ0(x, t) = − 1
2
+

1
1 + ex ,

ϑ1(x, t) =

(
2ex
(

1
ex+1 −

1
2

)2

(ex + 1)2 +
1
2

(
2e2x

(ex + 1)3 −
ex

(ex + 1)2

)(
1

ex + 1
− 1

2

)
+

e2x

(ex + 1)4

)
tα

Γ(α + 1)
,

ϑ2(x, t) =
ex(ex − 1)t2α

16(ex + 1)3Γ(2α + 1)
,

ϑ3(x, t) =
ex(−4ex + e2x + 1

)
§3α
((

6ex + e2x + 1
)
Γ(α + 1)2 − 2exΓ(2α + 1)

)
64(ex + 1)6Γ(α + 1)2Γ(3α + 1)

,

...

we may write these iterations such as

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + . . .

= −1
2
+

1
1 + ex +

(
2ex
(

1
ex+1 −

1
2

)2

(ex + 1)2 +
1
2

(
2e2x

(ex + 1)3 −
ex

(ex + 1)2

)(
1

ex + 1
− 1

2

)
+

e2x

(ex + 1)4

)
tα

Γ(α + 1)

+
ex(ex − 1)t2α

16(ex + 1)3Γ(2α + 1)
+

ex(−4ex + e2x + 1
)
t3α
((

6ex + e2x + 1
)
Γ(α + 1)2 − 2exΓ(2α + 1)

)
64(ex + 1)6Γ(α + 1)2Γ(3α + 1)

+ · · · ,

(17)

which can be approaches to the precise solution at α = 1

ϑ(x, t) = − 1
2
+

1

1 + ex− 1
4 t

(18)

6. Results and Discussion

Figure 2a,b describe the approximate solutions of Equations (14) and (15) for different
values of α at 0 ≤ x ≤ 2π with fixed point t = 0.2. It is observed in Figure 2c–f for α = 1,
the approximate solution approaches to the precise solution with the increase of the values
of α. Similarly, Figure 3a,b describe the approximate solutions of Equations (17) and (18)
for different values of α at 0 ≤ x ≤ 2π with fixed point t = 0.2. It is observed in Figure 3c–f
for α = 1, the approximate solution approaches to the precise solution with the increase
of the values of α. We demonstrate the solution graphs in both 2-D and 3-D to analyze
the accuracy of our obtained results. Table 1 reveals the correlation of the estimated
and the precise solutions of Equations (14) and (15), whereas Table 2 provides these for
Equations (17) and (18) respectively, showing significant results at α = 1. These figures
confirm the accuracy of this scheme for evaluating the estimated solution of the time-
fractional NFD model. The LHPTM revealed the results in the order of series that were
very near to the precise solution.
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Figure 2. The different surfaces of approximate solutions and the exact solution. (a) Approximate
solution plot of Equation (14) for different values of α. (b) Approximate solution of Equation (14)
and exact solution of Equation (15) at α = 1. (c) The surface solution of Equation (14) at α = 0.50.
(d) The surface solution of Equation (14) at α = 0.75. (e) The surface solution of Equation (14) at
α = 1. (f) The surface solution of Equation (15) at α = 1.

Table 1. Comparison between approximate solutions of Equations (14) and (15) when t = 0.2.

x α = 0.50 α = 0.75 α = 1 Exact

0.01 0.315188 0.291273 0.187715 0.187746
0.02 0.309270 0.282554 0.178066 0.178081
0.03 0.303405 0.273793 0.168371 0.168381
0.04 0.297590 0.264991 0.158649 0.158649
0.05 0.294341 0.256149 0.148896 0.148885
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Table 2. Comparison between approximate solutions of Equations (17) and (18) when t = 0.5.

x α = 0.50 α = 0.75 α = 1 Exact

0.2 0.0196119 0.0177632 0.0125034 0.012974
0.4 −0.02963 −0.0318867 −0.0374168 −0.0374298
0.6 −0.0782875 −0.0809143 −0.0865996 −0.0866176
0.8 −0.125486 −0.128406 −0.134115 −0.134136
1.0 −0.170451 −0.173558 −0.179158 −0.1791179
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x
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-0.1

t

α=0.25
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Figure 3. The surface solutions with different fractional orders. (a) Approximate solution plot of
Equation (17) for different values of α. (b) Approximate solution of Equation (17) and exact solution
of Equation (18) at α = 1. (c) The surface solution of Equation (17) at α = 0.50. (d) The surface
solution of Equation (17) at α = 0.75. (e) The surface solution of Equation (17) at α = 1. (f) The
surface solution of Equation (18) at α = 1.

7. Conclusions

We have favorably applied the LHPTM to obtain the estimated results of the time-
fractional NFD problem. During the investigation, we revealed that the performance of



Fractal Fract. 2022, 6, 452 11 of 12

the Laplace transform with HPM does not require any assumptions and hypotheses to
construct a recurrence relation. We depicted the obtained solutions in terms of the plots
with various values of the fractional order, which indicate the nature of the considered
complex problem. The outcomes showed that the LHPTM operated the series solution to
the exact solution very rapidly only after a few iterations. Thus, we can declare that the
suggested approach is highly powerful for a broad group of nonlinear fractional-order
problems in various disciplines of science and technology.
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