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Abstract: Let BH = {BH
t , t ≥ 0} be a fractional Brownian motion with Hurst index 1

2 ≤ H < 1. In this

paper, we consider the linear self-attracting diffusion: dXH
t = dBH

t + σXH
t dt− θ

(∫ t
0
(
XH

s − XH
u
)
ds
)

dt

+ νdt with XH
0 = 0, where θ > 0 and σ, ν ∈ R are three parameters. The process is an analogue

of the self-attracting diffusion (Cranston and Le Jan, Math. Ann. 303 (1995), 87–93). Our main aim
is to study the large time behaviors. We show that the solution

(
t− σ

θ

)H(XH
t − XH

∞
)

converges in
distribution to a normal random variable, as t tends to infinity, and obtain two strong laws of large
numbers associated with the solution XH .

Keywords: diffusion process; fractional Brownian motion; rate of convergence; law of large numbers
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1. Introduction

In 1995, Cranston and Le Jan [1] introduced a linear self-attracting diffusion

Xt = Bt + νt− θ
∫ t

0

∫ s

0
(Xs − Xu)duds, t ≥ 0 (1)

with θ > 0 and ν ∈ R, where B is a 1-dimensional standard Brownian motion. It showed
that the process Xt converges in L2 and almost surely as t tends to infinity. This is a special
case of path-dependent stochastic differential equations. In 2008, inspired by research on
fractional Brownian motion as a polymer model, Yan et al. [2] considered the analogue
driven by fractional Brownian motion with 1

2 ≤ H < 1, and, moreover, Sun and Yan [3]
studied related parameter estimation. In fact, such a path-dependent stochastic differential
equation was first developed by Durrett and Rogers [4] and was introduced in 1992 as a
model for the shape of a growing polymer (Brownian polymer):

Xt = Bt +
∫ t

0

∫ s

0
f (Xs − Xu)duds (2)

where Bt is a standard Brownian motion on Rd and f Lipschitz continuous (which is called
the interacting function). Xt corresponds to the location of the end of the polymer at time t.
The model is a continuous analogue of the motion of edge self-interacting random walk (see
Pemantle [5]). We may call this solution a Brownian motion interacting with its own passed
trajectory, i.e., a self-interacting motion. In general, Equation (2) defines a self-interacting
diffusion without any assumption on f . We will call it self-repelling (resp. self-attracting)
if, for all x ∈ Rd, x · f (x) ≥ 0 (resp. ≤ 0); in other words, if it is more likely to stay away
from (and, respectively, come back to) the places that it has already visited before. In
2002, Benaïm et al. [6] also introduced a self-interacting diffusion with dependence on the
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(convolved) empirical measure. A great difference between these diffusions and Brownian
polymers is that the drift term is divided by t. It is important to note that, in many cases of
f , the interaction potential is attractive enough to compare the diffusion (a bit modified) to
an Ornstein–Uhlenbeck process, which gives access to its ergodic behaviour.

On the other hand, in 2015, Benaim et al. [7] studied the self-repelling diffusion of
the form

Xt = Bt +
∫ t

0
g(Xs)ds−

∫ t

0

∫ s

0
f (Xs − Xu)duds,

where B is a Brownian motion and f is a 2π-periodic function with sufficient regularity.
Under a suitable condition of the initial drift profile g, they introduced the Feller property
and invariant measure of the transition semigroup. More works can be found in the works
by Chakravarti and Sebastian [8], Cherayil and Biswas [9], Cranston and Mountford [10],
Gauthier [11], Herrmann and Roynette [12], Herrmann and Scheutzow [13], Mountford
and P. Tarrés [14], Sun and Yan [15], Chen and Shen [16] and the references. Motivated by
these results, in this paper, we consider the equation

XH
t = BH

t + σ
∫ t

0
XH

s ds + νt− θ
∫ t

0

∫ s

0

(
XH

s − XH
u

)
duds, (3)

where θ > 0, σ, ν ∈ R are three parameters and BH is a fBm with Hurst index 1
2 ≤ H < 1.

Perhaps this process should be called the fractional Ornstein–Uhlenbeck process with linear
self-attracting drift. Our main aim is to expand and prove the next statements.

(I) Let 1
2 ≤ H < 1 and θ > 0. Define the function

hθ,σ(s) = 1− (θs− σ)e
θ
2 s2−σs

∫ ∞

s
e−

θ
2 u2+σudu.

Then, XH
t converges to

XH
∞ =

∫ ∞

0
hθ,σ(s)dBH

s + ν
∫ ∞

0
hθ,σ(s)ds

in L2 and almost surely as t tends to infinity. Moreover, we have(
t− σ

θ

)H(
XH

t − XH
∞

)
−→ N(0, ζ(H, θ)) (4)

in distribution, as t tends to infinity, where N(0, σ) denotes a central normal random
variable with the variance σ and

ζ(H, θ) = Hθ−2HΓ(2H).

(II) Let 1
2 ≤ H < 1 and θ > 0. Define the process

YH
t =

∫ t

0

(
r− σ

θ

)
dXH

r , t ≥ 0.

Then, we have
1
T

∫ T

0
YH

t dt −→ ν

θ
(5)

and
1

T3−2H

∫ T

0
(YH

t )2dt −→ Hθ−2H

3− 2H
Γ(2H) (6)

in L2 and almost surely as T tends to infinity.

It is important to note that the above convergences are not true if θ = 0, i.e., the
process (3) is an Ornstein–Uhlenbeck process. This also points out, in general, that the
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long-time behavior of the process (3) is much more complex than that of the Ornstein–
Uhlenbeck process, so many cases cannot be observed in the Ornstein–Uhlenbeck process.
When θ > 0, we can basically conclude that the asymptotic behavior of the system is very
sensitive to the complexity of the dependent structure of a driving noise, and the driving
noise is the main contradiction that leads to the complexity of the asymptotic behavior of
such processes. Guo et al. [17] considered the model driven by sub-fBm and σ = 0. When
θ < 0, the asymptotic behavior of the process (3) basically does not depend on the selection
of noise (in fact, the results in the study by Sun and Yan [15] support this judgment). We
also need to say that such an equation can be written as

XH
t = BH

t +
∫ t

0

∫ s

0
(θr + σ)dXH

r ds + νt

with XH
0 = 0, which is a special case of the equation

XH
t = x + BH

t +
∫ t

0

∫ s

0
g1(r)dXH

r ds + g2(t)

with XH
0 = x, where g1 and g2 are two Borel measurable functions. We will consider this

general equation in a future paper. This paper is organized as follows. In Section 2, we
present some preliminaries for fractional Brownian motion and Malliavin calculus. In
Section 3, we prove the statement (I). The statement (II) is given in Section 4.

2. Preliminaries

In this section, we briefly recall some basic definitions and results of fractional Brow-
nian motion. For more aspects of this material we refer to Duncan et al. (2000) [18],
Hu (2005) [19], Mishura (2008) [20] and the references therein. Throughout this paper,
we assume that 1

2 ≤ H < 1 is arbitrary but fixed and we let BH =
{

BH
t , t ≥ 0

}
be a one-

dimensional fBm with Hurst index H defined on
(
Ω,FH , P

)
such thatFH is the sigma-field

generated by BH . A fractional Brownian motion (fBm) BH =
{

BH
t , t ≥ 0

}
with Hurst index

H is a mean zero Gaussian process such that BH
1 = 0 and

E
[

BH
t BH

s

]
=

1
2

[
t2H + s2H − |t− s|2H

]
for all t, s > 0. For H = 1

2 , BH coincides with the standard Brownian motion B. BH is
neither a semi-martingale nor a Markov process unless H = 1

2 , so many of the powerful
techniques from stochastic analysis are not available when dealing with BH .

Let H be the completion of the linear space E generated by the indicator functions
1[0,t], t ∈ [0, T] with respect to the inner product

〈1[0,s], 1[0,t]〉H =
1
2

[
t2H + s2H − |t− s|2H

]
for all s, t ∈ [0, T]. When 1

2 < H < 1, we have

〈ϕ, ψ〉H = αH

∫ T

0

∫ T

0
ϕ(t)ϕ(s)|t− s|2H−2dsdt < ∞

for all ϕ, ψ ∈ E with αH = H(2H − 1). The elements of the Hilbert space H may not be
functions but distributions of negative order (see, for instance, Pipiras and Taqqu (2001)).
In order to avoid unnecessary trouble, we introduce a subspace ofH as follows:

|H| =
{

ϕ : [0, T]→ R | ‖ϕ‖|H| < ∞
}
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for all 1
2 < H < 1, where

‖ϕ‖2
|H| = αH

∫ T

0

∫ T

0
|ϕ(t)||ϕ(s)||t− s|2H−2dsdt.

It is not difficult to show that |H| is a Banach space with the norm ‖ · ‖|H| and that E
is dense in |H|. Moreover, we have

〈ϕ, ψ〉H = αa,b

∫ T

0

∫ T

0
ϕ(t)ψ(s)(t ∧ s)a|t− s|b−1dsdt

for all ϕ, ψ ∈ |H| and we also have

L2([0, T]) ⊂ L
1
H ([0, T]) ⊂ |H| ⊂ H

for any T > 0.
As usual, we define the Wiener integral

BH(ϕ) =
∫ T

0
ϕ(t)dBH

t , ϕ ∈ H (7)

as the limit in probability of a Riemann sum, which is a linear isometry betweenH and the
Gaussian space spanned by BH , and it can be understood as an extension of the mapping
1[0,t] 7→ BH

t . The Wiener integral BH(ϕ) is well-defined as a mean zero Gaussian random
variable such that

E
∣∣∣∣∫ T

0
ϕ(t)dBH

t

∣∣∣∣2 = ‖ϕ‖2
H

for all ϕ ∈ H. If the Wiener integral
∫ T

0 ϕ(t)dBH
t is well-defined for every T > 0, then we

can define the integral ∫ ∞

0
ϕ(t)dBH

t

for any ϕ satisfying

‖ϕ‖2
H := αH

∫ ∞

0

∫ ∞

0
ϕ(t)ϕ(s)|t− s|2H−2dsdt < ∞.

Thus, we regard (7) as the indefinite Wiener integral.
Consider the set S of smooth functionals of the form

F = f
(

BH(ϕ1), BH(ϕ2), . . . , BH(ϕn)
)

(8)

where f ∈ C∞
b (Rn) ( f and all of its derivatives are bounded) and ϕi ∈ H. The derivative

operator DH (the Malliavin derivative) of a functional F of form (8) is defined as

DH F =
n

∑
j=1

∂ f
∂xj

(
BH(ϕ1), BH(ϕ2), . . . , BH(ϕn)

)
ϕj.

The derivative operator DH is a closable operator from L2(Ω) into L2(Ω;H). We
denote the closure of F by D1,2 with respect to the norm

‖F‖1,2 :=
√

E|F|2 + E‖DH F‖2
H.
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The divergence integral δH is the adjoint of the derivative operator DH . That is, we
say that a random variable u in L2(Ω;H) belongs to the domain of the divergence operator
δH , denoted by Dom(δH), if

E
∣∣∣〈DH F, u

〉
H

∣∣∣ ≤ c‖F‖L2(Ω)

for every F ∈ F . In this case, δH(u) is defined by the duality relationship

E
[

FδH(u)
]
= E

〈
DH F, u

〉
H

for every u ∈ D1,2. We have D1,2 ⊂ Dom(δH) and

E|δ(u)|2 = αH

∫ T

0

∫ T

0
E[usut]|s− t|2H−2dsdr

+ α2
H

∫ T

0

∫ T

0

∫ T

0

∫ T

0
E
[
(DH

x us)(DH
y ut)

]
|s− y|2H−2|t− x|2H−2dsdtdxdy

for all u ∈ D1,2. We will use the notation

δH(u) =
∫ T

0
usδBH

s

to express the Skorohod integral of a process u, and the indefinite Skorohod integral is
defined as

∫ t
0 usδBH

s = δH(u1[0,t]).
Finally, we recall that the fBm t → BH

t admits almost surely a bounded p > 1
H -

variation on any finite interval. As an immediate result, one can define the Young integral∫ t

0
usdBH

s

as the limit in probability of a Riemann sum, and

utBH
t =

∫ t

0
usdBH

s +
∫ t

0
BH

s dus

provided the process u is of bounded q-variation on any finite interval with q > 1 and
1
p + 1

q > 1. Moreover, if u ∈ D1,2(|H|) such that

∫ T

0

∫ T

0
|DH

s ut||t− s|2H−2dsdt < ∞.

then, we have ∫ T

0
usdBH

s =
∫ T

0
usδBH

s + αH

∫ T

0

∫ T

0
DH

s ut|t− s|2H−2dsdt.

3. Large Time Behaviors

The object of this section is to expound and prove the large time behaviors of the linear
self-attracting diffusion

XH
t = BH

t + σ
∫ t

0
XH

s ds + νt− θ
∫ t

0

∫ s

0
(XH

s − XH
u )duds (9)

with θ > 0, σ, ν ∈ R, where BH
t is a fractional Brownian motion with 1

2 ≤ H < 1. For sim-
plicity, throughout this paper, C stand for a positive constant that may depend on H, θ, σ, ν,
and its value may be different in appearance. This assumption is also suitable for c.
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Proposition 1. Equation (9) admits a unique solution, and the solution can be expressed as

XH
t =

∫ t

0
hθ,σ(t, s)dBH

s + ν
∫ t

0
hθ,σ(t, s)ds, (10)

where

hθ,σ(t, s) =
(

1− (θs− σ)e
θ
2 s2−σs

∫ t

s
e−

θ
2 u2+σudu

)
1{t≥s} (11)

for s, t ≥ 0.

Proof. We can show the result by integration by parts. Of course, we also can regard (9) as
a deterministic equation since the diffusion coefficient is equal to a constant. Thus, we solve
the equation by the variation of constants method. In fact, Equation (9) is equivalent to

ẌH
t = B̈H

t − θtẊH
t + σẊH

t (12)

in distribution, with XH
0 = 0 and ẊH

0 = ḂH
0 + ν. Let Zt be the solution of the equation

Żt = −θtZt + σZt.

Then, we have
Zt = Cte−

θ
2 t2+σt.

Through the variation of constants method, we can assume that the process

ẊH
t = CH

t e−
θ
2 t2+σt (13)

is the solution of Equation (12) with XH
0 = 0 and ẊH

0 = ḂH
0 + ν. Then, we have CH

0 = ḂH
0 + ν

and
ĊH

t e−
θ
2 t2+σt = B̈H

t

for all t ≥ 0, which implies that

CH
t =

∫ t

0
e

θ
2 s2−σs B̈H

s ds + CH
0

= ḂH
t e

θ
2 t2−σt − ḂH

0 −
∫ t

0
(θs− σ)e

θ
2 s2−σsdBH

s + CH
0

= e
θ
2 t2−σt(ν + ḂH

t )−
∫ t

0
(θs− σ)e

θ
2 s2−σs(dBH

s + νds).

It follows from XH
0 = 0 and (13) that

XH
t =

∫ t

0
CH

s e−
θ
2 s2+σsds + XH

0

=
∫ t

0

(
ν + ḂH

u − e−
θ
2 u2+σu

∫ u

0
(θs− σ)e

θ
2 s2−σs(νds + dBH

s )

)
du

= νt + BH
t −

∫ t

0

(
e−

θ
2 u2+σu

∫ u

0
(θs− σ)e

θ
2 s2−σs(νds + dBH

s )

)
du

= νt + BH
t −

∫ t

0
(θs− σ)e

θ
2 s2−σs

(∫ t

s
e−

θ
2 u2+σudu

)
(νds + dBH

s )

=
∫ t

0

(
1− (θs− σ)e

θ
2 s2−σs

∫ t

0
e−

θ
2 u2+σudu

)(
νds + dBH

s

)
=
∫ t

0
hθ,σ(t, s)dBH

s + ν
∫ t

0
hθ,σ(t, s)ds

for all t ≥ 0.
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Lemma 1. Let θ > 0. Then, the function (t, s) 7→ hθ,σ(t, s) admits the following properties:

(1) The limit

hθ,σ(s) := lim
t→∞

hθ,σ(t, s) = 1− (θs− σ)e
θ
2 s2−σs

∫ ∞

s
e−

θ
2 u2+σudu (14)

exists for all s ≥ 0.
(2) For all t ≥ s ≥ 0, we have

e−
1
2 θ(t2−s2)+σ(t−s) ≤ hθ,σ(t, s) ≤ 1 + Cθ,σ (15)

for all t ≥ s ≥ 0.
(3) When σ ≤ 0, we have

hθ,σ(s) ≤ hθ,σ(t, s)

for all t ≥ s ≥ 0. When σ > 0, we have

hθ,σ(t, s) ≤ hθ,σ(s)

for all 0 ≤ s ≤ σ
θ and

hθ,σ(s) ≤ hθ,σ(t, s)

for all s > σ
θ .

(4) The estimates

0 ≤ hθ,σ(s) ≤ Cθ,σ min
{

1,
1

(θs− σ)2

}
(16)

hold for all s ≥ 0.
(5) For all t ≥ u ≥ 0, we have hθ,σ

(
t, σ

θ

)
= hθ,σ(t, t) = 1 and

∫ t

u
hθ,σ(t, s)ds = e

1
2 θu2−σu

∫ t

u
e−

1
2 θs2+σsds.

(6) We have

|hθ,σ(t, s2)− hθ,σ(s2)||hθ,σ(t, s1)− hθ,σ(s1)|

≤ |θs1 − σ||θs2 − σ|
(θt− σ)2 e

θ
2 (s

2
1+s2

2)−σ(s1+s2) · e−θt2+2σt

for 0 < s1, s2 ≤ t. Moreover, we have∣∣∣∣∫ t

0
[hθ,σ(t, s)− hθ,σ(s)]ds

∣∣∣∣ ≤ 1
|θt− σ| (17)

for all t > 0.

Proof. The statement (1) is trivial. For the statement (2), we have

e−
1
2 θ(t2−s2)+σ(t−s) ≤ hθ,σ(t, s) ≤ 1

if σ ≤ 0. When σ > 0, we have

hθ,σ(t, s) = 1 +
(σ

θ
− s
)

e
1
2 θ( σ

θ−s)2
∫ σ

θ−t

σ
θ−s

e−
1
2 θx2

dx ≤ 1 +
σ2

θ2
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if 0 ≤ s ≤ t ≤ σ
θ , and

hθ,σ(t, s) = 1 +
(σ

θ
− s
)

e
1
2 θ( σ

θ−s)2
∫ t− σ

θ

s− σ
θ

e−
1
2 θx2

dx ≤ 1 +
σ2

θ2 ≤ 1 +
σ2

θ2 e
σ2
2θ

if 0 ≤ s ≤ σ
θ ≤ t, and

e−
1
2 θ(t2−s2)+σ(t−s) ≤ hθ,σ(t, s) ≤ 1

if t ≥ s ≥ σ
θ . Similarly, one can show this for the other statements.

Lemma 2. Let θ > 0 and denote

∆θ(t) :=
∫ t

0
hθ,σ(t, s)ds−

∫ ∞

0
hθ,σ(s)ds (18)

for all t ≥ 0. Then, we have
lim
t→∞

(
t− σ

θ

)
∆θ(t) = 0.

Proof. This is a simple calculus exercise. In fact, we have that∫ t

0
hθ,σ(t, s)ds−

∫ ∞

0
hθ,σ(s)ds

=
∫ t

0
(hθ,σ(t, s)− hθ,σ(s))ds−

∫ ∞

t
hθ,σ(s)ds

=
(

e
1
2 θt2−σt − 1

) ∫ ∞

t
e−

1
2 θu2+σudu−

∫ ∞

t
hθ,σ(s)ds

for all t ≥ 0 and θ > 0. Thus, the Lemma follows from convergences

lim
t→∞

(t− σ

θ
)
(

e
1
2 θt2−σt − 1

) ∫ ∞

t
e−

1
2 θu2+σudu

= lim
t→∞

1(
t− σ

θ

)−1e−
1
2 θt2+σt

∫ ∞

t
e−

1
2 θu2+σudu =

1
θ

and

lim
t→∞

(
t− σ

θ

) ∫ ∞

t
hθ,σ(s)ds = lim

t→∞

1(
t− σ

θ

)−1

∫ ∞

t
hθ,σ(s)ds

= lim
t→∞

(
t− σ

θ

)2
hθ,σ(t) =

1
θ

for θ > 0. This completes the proof.

Lemma 3. Let θ > 0. Then, we have

lim
t→∞

(θt− σ)3 d
dt

hθ,σ(t) = −2θ2. (19)

Proof. Given θ > 0, integration by parts implies that∫ ∞

t
e−

1
2 θu2+σudu = −

∫ ∞

t

1
θu− σ

e−
1
2 θu2+σud

(
−1

2
θu2 + σu

)
=

1
θt− σ

e−
1
2 θt2+σt − θ

∫ ∞

t

1

(θu− σ)2 e−
1
2 θu2+σudu

=
1

θt− σ

(
1− θ

(θt− σ)2 +
3θ2

(θt− σ)4 −
15θ3

(θt− σ)6 + o(t−6)

)
e−

1
2 θt2+σt
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for all t > (0∨ σ
θ ). It follows that

d
dt

hθ,σ(t) = −
(

θe
θ
2 t2−σt + (θt− σ)2e

θ
2 t2−σt

) ∫ ∞

t
e−

θ
2 u2+σudu

+ (θt− σ)e
θ
2 t2−σte−

θ
2 t2+σt

= −
(

θ + (θt− σ)2
)

e
θ
2 t2−σt

∫ ∞

t
e−

θ
2 u2+σudu + (θt− σ)

= −
(

θ

θt− σ
+ (θt− σ)

)
·
(

1− θ

(θt− σ)2 +
3θ2

(θt− σ)4 −
15θ3

(θt− σ)6 + o(t−6)

)
+ (θt− σ)

= − 2θ2

(θt− σ)3 +
12θ3

(θt− σ)5 −
15θ5

(θt− σ)7 + o(t−7)

for all t > (0∨ σ
θ ), which implies that

lim
t→∞

(θt− σ)3 d
dt

hθ,σ(t) = −2θ2.

This completes the proof.

Lemma 4. Let 1
2 < H < 1, θ > 0 and σ ∈ R. Then, the supremum

ΞH,θ,σ := sup
t≥0

{
e−Hθt2+2Hσt

(∫ ∞

t
e−

1
2 θu2+σudu

)2−2H

·
∫ t

0

∫ t

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v) dvdu

|u− v|2−2H

} (20)

is finite and non-zero.

Proof. By the continuity, the Lemma is equivalent to

ΛH,θ,λ := lim
t→∞

{
e−Hθt2+2Hσt

(∫ ∞

t
e−

1
2 θu2+σudu

)2−2H

·
∫ t

0

∫ t

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v) dvdu

|u− v|2−2H

}
∈ (0, ∞)

for 1
2 < H < 1, θ > 0 and σ ∈ R. According to L’Hospital’s rule and making the

substitution
1
2

θ
(

t2 − v2
)
− σ(t− v) = x,

we have
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ΛH,θ,σ = lim
t→∞

2e−θt2+2σt

(θt− σ)2−2H

∫ t

0

∫ u

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v) dvdu

(u− v)2−2H

= lim
t→∞

1

(θt− σ)2−2He
1
2 θt2−σt

∫ t

0
(θv− σ)e

1
2 θv2−σv(t− v)2H−2dv

= lim
t→∞

θ2H−1(
t− σ

θ

)2−2H

∫ t

0
(v− σ

θ
)e−

1
2 θ(t2−v2)+σ(t−v)(t− v)2H−2dv

= lim
t→∞

θ2H−2(
t− σ

θ

)2−2H

∫ 1
2 θt2−σt

0
e−x

((
t− σ

θ

)
−
√(

t− σ

θ

)2
− 2x

θ

)2H−2

dx

= lim
t→∞

θ2H−2(
t− σ

θ

)2−2H

·
∫ 1

2 θt2−σt

0
e−x
(

2x
θ

)2H−2
((

t− σ

θ

)
+

√(
t− σ

θ

)2
− 2x

θ

)2−2H

dx

= 22H−2 lim
t→∞

∫ 1
2 θt2−σt

0
e−xx2H−2

(
1 +

√
1− 2x

θ(t− σ
θ )

2

)2−2H

dx.

It follows from the dominated convergence theorem that

ΛH,θ,λ =
∫ ∞

0
e−xx2H−2dx = Γ(2H − 1)

for all 1
2 < H < 1. This completes the proof.

Lemma 5. Let θ > 0 and 1
2 ≤ H < 1. Denote

QH
t :=

∫ t

0
[hθ,σ(t, s)− hθ,σ(s)]dBH

s

for all t ≥ 0. Then, we have

E
[∣∣∣QH

t −QH
s

∣∣∣2] ≤ CH,θ,σ|t− s|2H (21)

for all 0 < s < t.

Proof. Let 1
2 < H < 1; this is a simple calculus exercise. In fact, we have

QH
t −QH

s =
∫ t

0
[hθ,σ(t, r)− hθ,σ(r)]dBH

r −
∫ s

0
[hθ,σ(s, r)− hθ,σ(r)]dBH

r

=
∫ t

s
[hθ,σ(t, r)− hθ,σ(r)]dBH

r +
∫ s

0
[hθ,σ(t, r)− hθ,σ(s, r)]dBH

r

=

(∫ ∞

t
e−

1
2 θu2+σudu

)(∫ t

s
(θr− σ)e

1
2 θr2−σrdBH

r

)
−
(∫ t

s
e−

1
2 θu2+σudu

)(∫ s

0
(θr− σ)e

1
2 θr2−σrdBH

r

)
≡ QH(1)−QH(2)

for all 0 < s < t. We estimate the variances of QH(1) and QH(2) in three cases.
Case I: σ ≤ 0 or σ

θ ≤ s < t. By means of the convergence

lim
t→∞

1

t−1e−
1
2 θt2

∫ ∞

t
e−

1
2 θx2

dx =
1
θ

, lim
t→0

1

e−
1
2 θt2

∫ ∞

t
e−

1
2 θx2

dx =

√
π

2θ
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and continuity of the functions t 7→
∫ ∞

t e−
1
2 θx2

dx and t 7→
(

1
t ∧ 1

)
e−

1
2 θt2

, we obtain
the inequality ∫ ∞

t
e−

1
2 θx2

dx ≤ Cθ

(
1
t
∧ 1
)

e−
1
2 θt2

(22)

for all t > 0. As an immediate result, we see that∫ ∞

t
e−

1
2 θu2+σudu = e

σ2
2θ

∫ ∞

t− σ
θ

e−
1
2 θx2

dx

≤ 1
t− σ

θ

e
σ2
2θ

∫ ∞

t− σ
θ

xe−
1
2 θx2

dx =
1

θt− σ
e−

1
2 θt2+σt

(23)

for all t > 0. It follows from Lemma 4 that

E
[
(QH(1))2

]
=

(∫ ∞

t
e−

1
2 θu2+σudu

)2
E
(∫ t

s
(θr− σ)e

1
2 θr2−σrdBH

r

)2

= αH

(∫ ∞

t
e−

1
2 θu2+σudu

)2

·
∫ t

s

∫ t

s
(θr− σ)(θv− σ)|r− v|2H−2e

1
2 θ(r2+v2)−σ(r+v)dvdr

≤ (θt− σ)2eθt2−2σt
(∫ ∞

t
e−

1
2 θu2+σudu

)2(
αH

∫ t

s

∫ t

s
|r− v|2H−2dvdr

)
≤ Cθ,σ(t− s)2H

and

E
[
(QH(2))2

]
=

(∫ t

s
e−

1
2 θu2+σudu

)2
E
(∫ s

0
(θr− σ)e

1
2 θr2−σrdBH

r

)2

=

(∫ t

s
e−

1
2 θu2+σudu

)2H(∫ t

s
e−

1
2 θu2+σudu

)2−2H

· αH

∫ s

0

∫ s

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v)|u− v|2H−2dvdu

≤ (t− s)2He−Hθs2+2Hσs
(∫ ∞

s
e−

1
2 θu2+σudu

)2−2H

· αH

∫ s

0

∫ s

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v)|u− v|2H−2dvdu

≤ αHΞH,θ,σ(t− s)2H

for all t > s ≥ σ
θ .

Case II: σ > 0 and 0 < s < t ≤ σ
θ . We have

E
[
(QH(1))2

]
= αH

(∫ ∞

t
e−

1
2 θu2+σudu

)2

·
∫ t

s

∫ t

s
(θr− σ)(θv− σ)|r− v|2H−2e

1
2 θ(r2+v2)−σ(r+v)dvdr

≤ σ2e
σ2
θ

(∫ ∞

σ
θ

e−
1
2 θu2+σudu

)2(
αH

∫ t

s

∫ t

s
|r− v|2H−2dvdr

)
≤ Cθ,σ(t− s)2H
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and

E
[
(QH(2))2

]
=

(∫ t

s
e−

1
2 θu2+σudu

)2

· αH

∫ s

0

∫ s

0
(θu− σ)(θv− σ)|u− v|2H−2e

1
2 θ(u2+v2)−σ(u+v)dvdu

≤ 2σ2e
σ2
θ (t− s)2

(
αH

∫ s

0

∫ s

0
|u− v|2H−2dvdu

)
= 2σ2

(σ

θ

)2H
e

σ2
θ (t− s)2 ≤ C(t− s)2H

for all 0 < s < t ≤ σ
θ .

Case III: σ > 0 and 0 < s < σ
θ ≤ t. According to the inequality (22), we have

E
[
(QH(1))2

]
≤ αHθ−2

(
(t− σ

θ
)−2 ∧ 1

)
e−θt2+2σt

·
∫ t

s

∫ t

s
(θr− σ)(θv− σ)|r− v|2H−2e

1
2 θ(r2+v2)−σ(r+v)dvdr

= αH

(
(t− σ

θ
)−2 ∧ 1

)
e−θ(t− σ

θ )
2

·
∫ t− σ

θ

s− σ
θ

∫ t− σ
θ

s− σ
θ

uv|u− v|2H−2e
1
2 θ(u2+v2)dvdu

≤ αH

(
(t− σ

θ
)−2 ∧ 1

)
e−θ(t− σ

θ )
2

·
∫ t− σ

θ

0

∫ t− σ
θ

0
uv|u− v|2H−2e

1
2 θ(u2+v2)dvdu

+ αH

(
(t− σ

θ
)−2 ∧ 1

)
e−θ(t− σ

θ )
2

·
∫ 0

s− σ
θ

∫ 0

s− σ
θ

uv|u− v|2H−2e
1
2 θ(u2+v2)dvdu

≤ αH

∫ t− σ
θ

0

∫ t− σ
θ

0
|u− v|2H−2dvdu

+ αH

(
(t− σ

θ
)−2 ∧ 1

)
(s− σ

θ
)2e

σ2
θ

∫ 0

s− σ
θ

∫ 0

s− σ
θ

|u− v|2H−2dvdu

≤
(

t− σ

θ

)2H
+ Cθ,σ

(σ

θ
− s
)2H
≤ Cθ,σ(t− s)2H

for all t ≥ σ
θ > s > 0. Similar to case I, we also have

E
[
(QH(2))2

]
=

(∫ t

s
e−

1
2 θu2+σudu

)2H(∫ t

s
e−

1
2 θu2+σudu

)2−2H

· αH

∫ s

0

∫ s

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v)|u− v|2H−2dvdu

≤ (t− s)2He−Hθs2+2Hσs
(∫ ∞

s
e−

1
2 θu2+σudu

)2−2H

· αH

∫ s

0

∫ s

0
(θu− σ)(θv− σ)e

1
2 θ(u2+v2)−σ(u+v)|u− v|2H−2dvdu

≤ CH,θ,σ(t− s)2H

for all t ≥ σ
θ > s > 0. Thus, we complete the proof for 1

2 < H < 1. Similarly, we can obtain
the case H = 1

2 .
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Theorem 1. Let θ > 0 and 1
2 ≤ H < 1. Then, the solution XH

t of (9) converges to the
random variable

XH
∞ :=

∫ ∞

0
hθ,σ(s)dBH

s + ν
∫ ∞

0
hθ,σ(s)ds (24)

in L2 and almost surely as t tends to infinity.

Proof. Let θ > 0. We first consider the convergence in L2. We decompose

XH
t − XH

∞ =
∫ t

0
[hθ,σ(t, s)− hθ,σ(s)]dBH

s −
∫ ∞

t
hθ,σ(s)dBH

s

+ ν

(∫ t

0
hθ,σ(t, s)ds−

∫ ∞

0
hθ,σ(s)ds

)
= QH

t −
∫ ∞

t
hθ,σ(s)dBH

s + ν∆θ(t)

(25)

for all t ≥ 0 and 1
2 ≤ H < 1. When H = 1

2 , by the fact∫ ∞

t
e−

1
2 θu2+σudu ∼ 1

θt− σ
e−

1
2 θt2+σt,

as t tends to infinity, we have

E
(

Q1/2
t

)2
=

(∫ ∞

t
e−

1
2 θu2+σudu

)2 ∫ t

0
(θs− σ)2eθs2−2σsds

∼ 1
(θt− σ)2 e−θt2+2σt

∫ t

0
(θs− σ)2eθs2−σsds ∼ 1

2(θt− σ)
−→ 0

(26)

and

E
(∫ ∞

t
hθ,σ(s)dB1/2

s

)2
=
∫ ∞

t
(hθ,σ(s))

2ds = O
(

1
(θt− σ)3

)
−→ 0, (27)

as t tends to infinity. Combining this with (25) and Lemma 2, we show that X1/2
t converges

to X1/2
∞ in L2 for H = 1

2 as t tends to infinity.
When 1

2 < H < 1, we also have that

E
[∣∣∣QH

t

∣∣∣2] = ‖hθ,σ(t, ·)− hθ,σ(·)‖2
H ≤ C‖hθ,σ(t, ·)− hθ,σ(·)‖2

L1/H([0,t])

= C
(∫ t

0
|hθ,σ(t, s)− hθ,σ(s)|1/Hds

)2H

= C
(∫ ∞

t
e−

1
2 θs2+σsds

)2(∫ t

0
|θs− σ|1/He

1
2H θs2− 1

H σsds
)2H

∼ C
(θt− σ)2H −→ 0

and

E
(∫ ∞

t
hθ,σ(s)dBH

s

)2
= αH

∫ ∞

t

∫ ∞

t
hθ,σ(s)hθ,σ(r)|s− r|2H−2dsdr

≤ C
∫ ∞

t

∫ ∞

t

1
[(θs− σ)(θr− σ)]2

|s− r|2H−2dsdr

= θ−2C
∫ ∞

t− σ
θ

∫ ∞

t− σ
θ

1
(xy)2 |x− y|2H−2dxdy

=
C(

t− σ
θ

)4−2H −→ 0

(28)
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as t tends to infinity for all 1
2 < H < 1. Combining this with Lemma 2, we show that XH

t
converges to XH

∞ in L2 for all 1
2 < H < 1 as t tends to infinity.

We now prove the convergence with probability one. According to the decomposi-
tion (25) and Lemma 2, we need to show that the convergence

QH
t −→ 0, (29)∫ ∞

t
hθ,σ(s)dBH

s −→ 0 (30)

holds almost surely as t tends to infinity.
First, on the grounds of (16), Lemma 3 and the fact that

BH
T

T
−→ 0 (T → ∞)

almost surely for all 1
2 ≤ H < 1 as T tends to infinity, we prove that∫ ∞

t
hθ,σ(s)dBH

s = −hθ,σ(t)BH
t −

∫ ∞

t
BH

s h′θ,σ(s)ds −→ 0

for all 1
2 ≤ H < 1 as t tends to infinity.

Now, we consider the convergence (29). When 1
2 < H < 1, for integer numbers n, k

with 0 ≤ k < n, we set MH
n,k = QH

n+ k
n

. Then, MH
n,k is Gaussian, and we have

σ2 := E
[(

MH
n,k

)2
]
= E

[(
QH

n+ k
n

)2
]
≤ C(

θ(n + k
n )− σ

)2H ≤
C

(θn− σ)2H (31)

with n ≥ (0∨ σ
θ ) and

P
(∣∣∣MH

n,k

∣∣∣ > ε
)
=
∫ ∞

ε

1√
2πσ

e−
x2

2σ2 dx ≤ 1
ε

∫ ∞

ε

x√
2πσ

e−
x2

2σ2 dx

=
σ

ε

∫ ∞

ε/σ

y√
2π

e−
y2
2 dy =

σ

ε
√

2π
e−

ε2

2σ2

≤
√

C

ε(θn− σ)H exp
{
−Cε2(θn− σ)2H

}
for all ε > 0 and n ≥ (0∨ σ

θ ). Furthermore, for s ∈ (0, 1), we denote Rn,k
s = QH

n+ k+s
n
−QH

n+ k
n

.

Then, {Rn,k
s , s ∈ (0, 1)} is a Gaussian process for any n and k, and, on the basis of Lemma 5,

we have

E
[(

Rn,k
s − Rn,k

s′

)2
]
≤ C

(θn− σ)2H |s− s′|2H

=
C

(θn− σ)2H E
[(

BH
s − BH

s′

)2
]

.

for all ε > 0 and n ≥ (0∨ σ
θ ). It follows from Slepian’s Lemma and Markov’s inequality that

P

(
sup

0≤s≤1

∣∣∣Rn,k
s

∣∣∣ > ε

)
≤ P

(
C

(θn− σ)2H sup
0≤s≤1

∣∣∣BH
s

∣∣∣ > ε

)

≤ C
ε2γ(θn− σ)2γH E

[
sup

0≤s≤1

∣∣∣BH
s

∣∣∣2γ
]
≤ C

ε2γ(θn− σ)2Hγ
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for any ε > 0, n ≥ (0∨ σ
θ ) and γ ≥ 1. Combining this with the Borel–Cantelli Lemma and

the inclusion relation, sup
n+ k

n <t<n+ k+1
n

∣∣∣QH
t

∣∣∣ > ε

 ⊆ {∣∣∣MH
n,k

∣∣∣ > ε

2

}
∪
{

sup
0≤s≤1

∣∣∣Rn,k
s

∣∣∣ > ε

2

}

for all k, n ≥ (0∨ σ
θ ), we show that the convergence (29) holds almost surely. Similarly, we

can also check the case H = 1
2 . This completes the proof.

Theorem 2. Let 1
2 ≤ H < 1, θ > 0 and σ, ν ∈ R. As t→ ∞, we have(

t− σ

θ

)H(
XH

t − XH
∞

)
→ N(0, ζ(H, θ)) (32)

in distribution, where N(0, σ) denotes a central normal random variable with the variance σ and

ζ(H, θ) = Hθ−2HΓ(2H).

Proof. Keep the notation of Theorem 1. From the decomposition (25), it follows that(
t− σ

θ

)H(
XH

t − XH
∞

)
=
(

t− σ

θ

)H
QH

t + ν
(

t− σ

θ

)H
∆θ(t)

−
(

t− σ

θ

)H ∫ ∞

t
hθ,σ(s)dBH

s

(33)

for all t ≥ (0∨ σ
θ ). Thus, according to the Slutsky theorem, we only need to check that the

following convergence: (
t− σ

θ

)H
QH

t −→ N(0, ζ(H, θ)) in distribution, (34)

ΛH
t :=

(
t− σ

θ

)H ∫ ∞

t
hθ,σ(s)dBH

s −→ 0 in probability, (35)(
t− σ

θ

)H
∆θ(t) −→ 0, (36)

as t tends to infinity. The convergence (36) is an immediate result of Lemma 2, and the
convergence (35) follows from (27) and (28). Finally, for (34), by the normality of QH

t , we
only need to calculate

ζ(H, θ) = lim
t→∞

(
t− σ

θ

)2H
E
[
(QH

t )2
]

= θ−2H lim
t→∞

e−θt2+2σt

(θt− σ)2−2H E
(∫ t

0
(θs− σ)e

1
2 θs2−σsdBH

s

)2

= Hθ−2HΓ(2H)

(37)

for all 1
2 ≤ H < 1. In accordance with the proof of Lemma 4, we can obtain (37), which

gives (34), and the theorem follows from the Slutsky theorem.

4. The Laws of Large Numbers

In this section, we check that convergence (5) and (6). In fact, these limits can be seen
as the laws of large numbers associated with the self-attracting diffusion. Denote B = BH

when H = 1
2 .

In Section 3, we have shown that the solution can be expressed as

XH
t =

∫ t

0
hθ,σ(t, s)dBH

s + ν
∫ t

0
hθ,σ(t, s)ds
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and
XH

t → XH
∞ =

∫ ∞

0
hθ,σ(s)dBH

s + ν
∫ ∞

0
hθ,σ(s)ds

in L2 and almost surely as t tends to infinity. Moreover, the solution XH
t admits the

following estimation.

Lemma 6. Let 1
2 ≤ H < 1 and θ > 0. Then, the solution XH

t satisfies

E
[(

XH
t − XH

s

)2
]
≤ C(t− s)2H + ν2(t− s)2

for all 0 ≤ s, t ≤ T.

Proof. Let 1
2 < H < 1. We have

XH
t − XH

s =
∫ t

s
hθ,σ(t, r)dBH

r +
∫ s

0
[hθ,σ(t, r)− hθ,σ(s, r)]dBH

r

+ ν
∫ t

s
hθ,σ(t, r)dr + ν

∫ s

0
[hθ,σ(t, r)− hθ,σ(s, r)]dr

≡
4

∑
j=1

ΛH
j (t, s)

for all 0 < s < t. Clearly, on the basis of (15), we have

E
[(

ΛH
1 (t, s)

)2
]
= E

(∫ t

s
hθ,σ(t, r)dBH

r

)2

= αH

∫ t

s

∫ t

s
hθ,σ(t, r)hθ,σ(t, v)|r− v|2H−2drdv

≤ αH

∫ t

s

∫ t

s
|r− v|2H−2drdv ≤ CH(t− s)2H

and

E
[(

ΛH
3 (t, s)

)2
]
= ν2

∫ t

s

∫ t

s
hθ,σ(t, r)hθ,σ(t, v)drdv ≤ ν2(t− s)2

for all 0 < s < t. The proof of Lemma 5 implies that

E
[(

ΛH
2 (t, s)

)2
]
= E

[(
QH(2)

)2
]
≤ C(t− s)2H

for all 0 < s < t. Finally, we have

E
[(

ΛH
4 (t, s)

)2
]
= ν2

(∫ t

s
e−

1
2 θu2+σudu

)2

·
(∫ s

0

∫ s

0
(θr− σ)(θv− σ)e

1
2 θ(r2+v2)−σ(r+v)drdv

)
≤ ν2(t− s)2e−θs2+2σs

(
e

1
2 θs2−σs − 1

)2
≤ ν2(t− s)2

for all 0 < s < t. Thus, we complete the proof for 1
2 < H < 1. Similarly, we can obtain the

case H = 1
2 .
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As an immediate corollary, we assert that the process t 7→ XH
t is a Hölder function of

order H. Thus, the Young integral ∫ t

0
usdXH

s

is well-defined as a limit in probability of a Riemann sum and∫ t

0
usdXH

s = utXH
t −

∫ t

0
XH

s dus,

if u admits a bounded p-variation with 1 ≤ p < 1
1−H .

Consider the process

YH
t =

∫ t

0

(
r− σ

θ

)
dXH

r , t ≥ 0, (38)

where XH
t is the self-attracting diffusion defined by (9). Then, we have

XH
t = BH

t + σ
∫ t

0
XH

s ds− θ
∫ t

0

(∫ s

0
XH

s − XH
r

)
drds + νt

= BH
t − θ

∫ t

0

(∫ s

0

(
r− σ

θ

)
dXH

r

)
ds + νt

= BH
t − θ

∫ t

0
YH

s ds + νt

(39)

for all t ≥ 0.

Lemma 7. Let 1
2 ≤ H < 1 and θ > 0. Then, we have

YH
t = e−

1
2 θt2+σt

∫ t

0

(
s− σ

θ

)
e

1
2 θs2−σsdBH

s +
ν

θ

(
1− e−

1
2 θt2+σt

)
(40)

for all t ≥ 0.

Proof. By the definition of YH
t and (39), we have

dYH
t =

(
t− σ

θ

)
dXH

t

= −θ
(

t− σ

θ

)
YH

t dt +
(

t− σ

θ

)
dBH

t + ν
(

t− σ

θ

)
dt

(41)

for all t ≥ 0. Through the variation of constants method, we can assume that the process

YH
t = CH

t e−
1
2 θt2+σt

is the solution of (41) with CH
0 = YH

0 = 0. Then, according to (41), we have

e−
1
2 θt2+σtdCH

t =
(

t− σ

θ

)
dBH

t + ν
(

t− σ

θ

)
dt

for all t ≥ 0, which implies that

CH
t =

∫ t

0

(
s− σ

θ

)
e

1
2 θs2−σsdBH

s + ν
∫ t

0

(
s− σ

θ

)
e

1
2 θs2−σsds

=
∫ t

0

(
s− σ

θ

)
e

1
2 θs2−σsdBH

s +
ν

θ

(
e

1
2 θt2+σt − 1

)
for all t ≥ 0. This gives (40).
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Lemma 8. Let 1
2 ≤ H < 1 and θ > 0. As T → ∞, we have

1
T

∫ T

0
YH

t dt −→ ν

θ

in L2 and almost surely.

Proof. The theorem is clear. In fact, according to (39) and Theorem 1, we have

1
T

∫ T

0
YH

t dt =
BH

T
θT
−

XH
T

θT
+

ν

θ
−→ ν

θ

in L2 and almost surely as T tends to infinity.

Lemma 9. Let 1
2 ≤ H < 1 and θ > 0. Define the process η = {ηt, t ≥ 0} by

ηt = e−
1
2 θt2+σt

∫ t

0

(
s− σ

θ

)
e

1
2 θs2−σsdBH

s .

Then, we have

lim
T→∞

T2H−2E
(

η2
T

)
= Hθ−2HΓ(2H).

Proof. This Lemma follows from (37).

Lemma 10. Let 1
2 < H < 1 and θ > 0. We have

E[ηtηs] ≤ C(t− s)2H−2
∣∣∣∣(t− σ

θ

)2
−
(

s− σ

θ

)2
∣∣∣∣γ + C (42)

for all t > s ≥ 0 and 0 ≤ γ ≤ 2− 2H. In particular, we have

E[ηtηs] ≤ C(t− s)2H−2 + C, (43)

for all t > s ≥ 0.

Proof. When 1
2 < H < 1, consider the decomposition

E(ηtηs) = αHe−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]

·
∫ t

0

∫ s

0
(u− σ

θ
)(v− σ

θ
)e

θ
2 [(u−

σ
θ )

2+(v− σ
θ )

2]|u− v|2H−2dvdu

= αHe−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]

·
∫ t

s
(u− σ

θ
)e

θ
2 (u−

σ
θ )

2
(∫ s

0
(v− σ

θ
)e

θ
2 (v−

σ
θ )

2
(u− v)2H−2dv

)
du

+ αHe−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]

·
∫ s

0

∫ s

0
(u− σ

θ
)(v− σ

θ
)e

θ
2 [(u−

σ
θ )

2+(v− σ
θ )

2]|u− v|2H−2dvdu

≡ Ψ1(H; t, s) + Ψ2(H; t, s)

for all t > s > 0. Now, we estimate the above terms Ψ1(H; t, s) and Ψ2(H; t, s) by using a
method similar to proving Lemma 5.
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Case I: σ ≤ 0 or σ
θ ≤ s < t. We have that

Ψ1(H; t, s) ≤ αHe−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]

·
∫ t

s
(u− σ

θ
)(u− s)2H−2e

θ
2 (u−

σ
θ )

2
(∫ s

0
(v− σ

θ
)e

θ
2 (v−

σ
θ )

2
dv
)

du

≤ αH
θ

e−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]
(

e
θ
2 (s−

σ
θ )

2 − 1
) ∫ t

s
(u− σ

θ
)(u− s)2H−2e

θ
2 (u−

σ
θ )

2
du

≤ αH
θ

e−
θ
2 [(t−

σ
θ )

2−(s− σ
θ )

2]
∫ t

s
(u− σ

θ
)(u− s)2H−2e

θ
2 [(u−

σ
θ )

2−(s− σ
θ )

2]du

for all σ
θ ≤ s < t. Making the substitution

(u− σ

θ
)2 − (s− σ

θ
)2 = x,

to obtain∫ t

s
(u− σ

θ
)(u− s)2H−2e

θ
2 [(u−

σ
θ )

2−(s− σ
θ )

2]du

=
∫ (t− σ

θ )
2−(s− σ

θ )
2

0
e

1
2 θx
[√

(s− σ

θ
)2 + x− (s− σ

θ
)

]2H−2

dx

=
1
2

∫ (t− σ
θ )

2−(s− σ
θ )

2

0
e

1
2 θxx2H−2

[√
(s− σ

θ
)2 + x + (s− σ

θ
)

]2−2H

dx

≤ 1
2

((
t− σ

θ

)
+
(

s− σ

θ

))2−2H ∫ (t− σ
θ )

2−(s− σ
θ )

2

0
e

1
2 θxx2H−2dx

for all σ
θ ≤ s < t. It follows from the fact∫ x

0
yβeydy � xβ(1∧ x)ex (44)

with x ≥ 0 and β > −1 that

Ψ1(H; t, s) ≤ C
((

t− σ

θ

)
+
(

s− σ

θ

))2−2H

·
((

t− σ

θ

)2
−
(

s− σ

θ

)2
)2H−2{

1∧
((

t− σ

θ

)2
−
(

s− σ

θ

)2
)}

= C(t− s)2H−2
(

1∧
((

t− σ

θ

)2
−
(

s− σ

θ

)2
))

.

For the term Ψ2(H; t, s), according to Lemma 4 and the facts∫ ∞

t
e−θs2+2σsds � 1

1∨ (t− σ
θ )

e−θt2+2σt

and e−x ≤ 1
1+x ≤

1
x$ with 0 < $ < 1 and x ≥ 0, we obtain
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Ψ2(H; t, s) = 2αHe−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]
∫ s− σ

θ

− σ
θ

∫ x

− σ
θ

xye
θ
2 (x2+y2)(x− y)2H−2dydx

≤ Ce−
θ
2 [(t−

σ
θ )

2−(s− σ
θ )

2]
(

s− σ

θ

)2−2H

≤
C(s− σ

θ )
2−2H((

t− σ
θ

)2 −
(
s− σ

θ

)2
)2−2H−γ

≤ C(t− s)2H−2
((

t− σ

θ

)2
−
(

s− σ

θ

)2
)γ

for all t > s ≥ σ
θ , σ ≤ 0 and 0 ≤ γ ≤ 2− 2H.

Case II: σ > 0 and 0 < s < t ≤ σ
θ . From the forms of Ψ1(H; t, s) and Ψ2(H; t, s), it is

easy to find that they are bounded uniformly in t and s.
Case III: σ > 0 and 0 < s < σ

θ ≤ t. Clearly, Ψ2(H; t, s) is bounded uniformly in t and
s. For Ψ1(H; t, s), based on the following estimates

Ψ11(H; t, s) : = e−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]
∫ t− σ

θ

0

∫ σ
θ

σ
θ−s

xy(x + y)2H−2e
1
2 θ(x2+y2)dxdy

≤ 1
2H

(
σ

θ
)2He−

θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]e
σ2
2θ

∫ t− σ
θ

0
xe

1
2 θx2

dx

≤ 1
2θH

(
σ

θ
)2He

σ2
2θ

and

Ψ12(H; t, s) := e−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]
∫ 0

s− σ
θ

∫ s− σ
θ

− σ
θ

uv(u− v)2H−2e
1
2 θ(u2+v2)dvdu ≤ C

for all 0 < s < σ
θ ≤ t, we have found that

|Ψ1(H; t, s)| = e−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]

·
∣∣∣∣∫ t

s

∫ s

0
(u− σ

θ
)(v− σ

θ
)(u− v)2H−2e

θ
2 [(u−

σ
θ )

2+(v− σ
θ )

2]dvdu
∣∣∣∣

= e−
θ
2 [(t−

σ
θ )

2+(s− σ
θ )

2]
∣∣∣∣∫ t− σ

θ

s− σ
θ

∫ s− σ
θ

− σ
θ

uv(u− v)2H−2e
1
2 θ(u2+v2)dvdu

∣∣∣∣
≤ Ψ11(H; t, s) + Ψ12(H; t, s)

is bounded uniformly in t and s. Thus, we have completed the proof.

Theorem 3. Let 1
2 ≤ H < 1 and θ > 0. Then, we have

1
T3−2H

∫ T

0

(
YH

t

)2
dt −→ Hθ−2H

3− 2H
Γ(2H) (45)

in L2 and almost surely as T tends to infinity.

Let 1
2 ≤ H < 1 and denote

∆t =
v
θ

(
1− e−

1
2 θt2+σt

)
for all t ≥ 0. Then, according to YH

t = ηt + ∆t and

lim
T→∞

1
T3−2H

∫ T

0
(∆t)

2dt = 0,
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the convergence (45) is equivalent to

1
T3−2H

∫ T

0
(ηt)

2dt −→ Hθ−2H

3− 2H
Γ(2H) (46)

in L2 and almost surely as T tends to infinity. We now verify that the convergence (46)
holds in L2 and almost surely, respectively.

Proof of the L2-convergence. We first show that the convergence (46) holds in L2. This is
equivalent to

4T(H, θ, σ) : =
1

T6−4H E
(∫ T

0

(
(ηt)

2 − E(ηt)
2
)

dt
)2

=
1

T6−4H

∫ T

0

∫ T

0

{
E
[
(ηt)

2(ηs)
2
]
− E(ηt)

2E(ηs)
2
}

dsdt

=
2

T6−4H

∫ T

0

∫ T

0
(Eηtηs)

2dsdt −→ 0 (47)

as T tends to infinity, according to the fact that

E
(

η2
t η2

s

)
= E

(
η2

t

)
E
(

η2
s

)
+ 2(Eηtηs)

2

for all t, s > 0. We now check convergence (47) in the four cases.
Case 1: H = 1

2 . On the basis of the fact that∫ s

0
xαex2

dx ≤ Cαsα−1es2
(48)

for all s ≥ 0 and α > −1, we have

E(ηtηs) = e−
1
2 θ(t2+s2)+σ(t+s)E

(∫ s

0

(
v− σ

θ

)
e

1
2 θv2−σvdBv

)2

= e−
1
2 θ(t2+s2)+σ(t+s)

∫ s

0

(
v− σ

θ

)2
eθv2−2σvdv

= e−
1
2 θ
[
(t− σ

θ )
2
+(s− σ

θ )
2] ∫ s

0

(
v− σ

θ

)2
eθ(v− σ

θ )
2
dv

≤
∣∣∣s− σ

θ

∣∣∣e− 1
2 θ
[
(t− σ

θ )
2−(s− σ

θ )
2]

(49)

for all t > s > 0. It follows from (48) that

4T(
1
2

, θ, σ) ≤ 1
T4

∫ T

0

∫ t

0

(
s− σ

θ

)2
e−θ

[
(t− σ

θ )
2−(s− σ

θ )
2]

dsdt

≤ Cθ,σ

T4

∫ T

0

(
t− σ

θ

)
dt −→ 0,

as T tends to infinity.
Case 2: 3

4 < H < 1. According to (43), we have

lim
T→∞

4T(H, θ, σ) ≤ lim
T→∞

C
T6−4H

∫ T

0

∫ t

0

(
(t− s)4H−4 + 1

)
dsdt

≤ lim
T→∞

C
(

T8H−8 + T4H−4
)
= 0.
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Case 3: 1
2 < H < 3

4 . According to (42) with α = γ and 3
2 − 2H < α < 2 − 2H,

we obtain ∫ T

1

∫ t
√

t2−1
[E(ηtηs)]

2dsdt

≤ C
∫ T

1

∫ t
√

t2−1

(
(t− s)4H−4+2α

((
t− σ

θ

)
+
(

s− σ

θ

))2α
+ 1
)

dsdt

≤ 2C
∫ T

1

∫ t
√

t2−1

(
(t− s)4H−4+2α

(
t− σ

θ

)2α
+ 1
)

dsdt

≤ C
∫ T

1

(
t− σ

θ

)2α(
t +
√

t2 − 1
)4H−3+2α

dt + CT ≤ C
(

T − σ

θ

)4−4H
+ CT

for all T > 1 and 1
2 < H < 3

4 since 0 < t2 − s2 < 1 for

(s, t) ∈
{
(s, t) | t ≤ T,

√
t2 − 1 < s < t

}
.

Similarly, according to (43), we also have

∫ T

1

∫ √t2−1

0
[E(ηtηs)]

2dsdt ≤ C
∫ T

1

∫ √t2−1

0

(
(t− s)4H−4 + 1

)
dsdt ≤ C

(
T4H−2 + T2

)
for all T > 1. It follows from the fact∫ 1

0

∫ t

0
[E(ηtηs)]

2dsdt ≤
∫ 1

0

∫ t

0
E(ηt)

2E(ηs)
2dsdt ≤ C

for all 1
2 < H < 3

4 that

4T(H, θ, σ) =
1

T6−4H

∫ 1

0

∫ t

0
[E(ηtηs)]

2dsdt

+
1

T6−4H

∫ T

1

∫ √t2−1

0
[E(ηtηs)]

2dsdt

+
1

T6−4H

∫ T

1

∫ t
√

t2−1
[E(ηtηs)]

2dsdt

≤ C
T6−4H +

C
T4−4H +

C
T6−4H

(
T − σ

θ

)4−4H
−→ 0,

as T tends to infinity.
Case 4: H = 3

4 . According to (43), we have

∫ T

1

∫ √t2−1

0
[E(ηtηs)]

2dsdt ≤ C
∫ T

1

∫ √t2−1

0

(
1

t− s
+ 1
)

dsdt

≤ CT log(T) + CT2

for all T > 1. It follows from the proof of Case 3 that4T(H, θ, σ)→ 0 as T tends to infinity.
Thus, we have obtained the convergence in L2.

Proof of the convergence with probability one. Denote Tn = 2nn for integer number n ≥ 0.
Then, we have

Υn(H) = sup
Tn≤T≤Tn+1

∣∣∣∣ 1
T3−2H

∫ T

0
η2

t dt− 1
T3−2H

∫ T

0
E(η2

t )dt
∣∣∣∣

≤ 1
T3−2H

n
sup

Tn≤T≤Tn+1

∣∣∣∣∫ T

0

(
η2

t − E(η2
t )
)

dt
∣∣∣∣
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for all n ≥ 1. In order to prove the convergence with probability one, based on the
Borel–Cantelli Lemma, it is sufficient to check that

∞

∑
n=0

P(Υn(H) > ε) < ∞ (50)

for all ε > 0. Let

β(x, y) =
∫ 1

0
(1− u)x−1uy−1du, x, y > 0

be the classical Beta function; then,

β(1− α, α) =
∫ T

t
(s− t)−α(T − s)α−1ds

for all 0 ≤ t < T and α ∈ (0, 1), and∫ T

0

(
η2

t − E(η2
t )
)

dt

=
1

β(1− α, α)

∫ T

0

(
η2

t − E(η2
t )
)(∫ T

t
(s− t)−α(T − s)α−1ds

)
dt

=
1

β(1− α, α)

∫ T

0
(T − s)α−1

(∫ s

0

(
η2

t − E(η2
t )
)
(s− t)−αdt

)
ds

=
1

β(1− α, α)

∫ T

0
(T − s)α−1s

1
2−α

(
sα− 1

2

∫ s

0

(
η2

t − E(η2
t )
)
(s− t)−αdt

)
ds

for all α ∈ (0, 1). It follows from Cauchy’s inequality that∣∣∣∣∫ T

0

(
η2

t − E(η2
t )
)

dt
∣∣∣∣2 ≤ β(2α− 1, 2− 2α)

β(1− α, α)2

·
∫ T

0
s2α−1

(∫ s

0

(
η2

t − E(η2
t )
)
(s− t)−αdt

)2
ds

for all α ∈ ( 1
2 , 1). An elementary calculation may check that

∫ Tn

u
(s− u)−α(s− v)−αds = (u− v)1−2α

∫ Tn−u
u−v

0
x−α(1 + x)−αdx

≤ (u− v)1−2α
∫ ∞

0
x−α(1 + x)−αdx = C(u− v)1−2α

for all 0 < v < u < Tn and α ∈ ( 1
2 , 1). Combining this with the fact that

E
[(

η2
t − E(η2

t )
)(

η2
s − E(η2

s )
)]

= E
(

η2
t η2

s

)
− E

(
η2

t

)
E
(

η2
s

)
= 2(Eηtηs)

2,

we see that
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E|Υn(H)|2 ≤ C
T6−4H

n

∫ Tn+1

0
s2α−1E

(∫ s

0

(
η2

t − E(η2
t )
)
(s− t)−αdt

)2
ds

=
C

T6−4H
n

∫ Tn+1

0
s2α−1

(∫ s

0

∫ s

0
(s− v)−α(s− u)−α[E(ηuηv)]

2dvdu
)

ds

≤ C(Tn+1)
2α−1

T6−4H
n

·
∫ Tn+1

0

∫ Tn+1

0
[E(ηuηv)]

2
(∫ Tn+1

u∨v
(s− v)−α(s− u)−αds

)
dvdu

≤ C(Tn+1)
2α−1

T6−4H
n

∫ Tn+1

0

∫ u

0
[E(ηuηv)]

2(u− v)1−2αdvdu

for all n ≥ 1 and α ∈ ( 1
2 , 1). According to Lemma 10 and (49), one may verify that there

exists a constant γ > 0 depending only on H and α such that

E|Υn(H)|2 ≤ C
(Tn)γ

=
C

nγ(2γ)n

for all n ≥ 1 and 1
2 ≤ H < 1. This shows that

∞

∑
n=0

P(Υn(H) > ε) < ∞ (51)

for all ε > 0 and 1
2 ≤ H < 1, and the convergence with probability one follows.
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