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Abstract: Following the traditional total variational denoising model in removing medical image
noise with blurred image texture details, among other problems, an adaptive medical image fractional-
order total variational denoising model with an improved sparrow search algorithm is proposed in
this study. This algorithm combines the characteristics of fractional-order differential operators and
total variational models. The model preserves the weak texture region of the image improvement
based on the unique amplitude-frequency characteristics of the fractional-order differential operator.
The order of the fractional-order differential operator is adaptively determined by the improved
sparrow search algorithm using both the sine search strategy and the diversity variation processing
strategy, which can greatly improve the denoising ability of the fractional-order differential operator.
The experimental results reveal that the model not only achieves the adaptivity of fractional-order
total variable differential order, but also can effectively remove noise, preserve the texture structure
of the image to the maximum extent, and improve the peak signal-to-noise ratio of the image; it also
displays favorable prospects for applications in medical image denoising.

Keywords: medical image denoising; total variation; fractional order differentiation; sparrow
search algorithm

1. Introduction

In recent years, image denoising has become one of the important steps of image
processing in medical diagnosis. Denoised medical images can provide reliable analysis
data for clinicians who read large numbers of medical images daily [1,2]. Due to the
sophistication of medical imaging, which can be easily disturbed by many factors, such
as the complexity of the human body and the uneven density of the target medium,
it is difficult for traditional image denoising algorithms to achieve positive denoising
effects for medical images [3–5]. Among many algorithms for image denoising, this paper
adopts the total variational algorithm of interest to improve the effectiveness of medical
image denoising.

The Total Variational (TV) image denoising algorithm [6] was proposed by Rudin and
Osher in 1992. It is a well-known case of applying partial differential equations to image
denoising. The TV model suppresses image noise by minimizing the energy function. Yet,
the edge direction of the flat area does not exist, and diffusion only along the edge direction
will lead to insufficient noise suppression in the flat area. Currently, research scholars
have proposed some improved algorithms for medical images based on the traditional
variational method [7,8]. However, these improvements still cannot eliminate the “step
effect” that results from excessive image smoothing when noise is removed from the image
using the variational method. In the past few years, several advanced fractional image
processing methods have demonstrated that fractional-order differentiation can enhance
the texture details of images nonlinearly. Researchers such as Yan et al. [9] designed a
new edge-preserving filter for image decomposition using fractional-order differential
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operators and L1 regularization terms. Zhang et al. [10] applied fractional-order differential
masks to image fusion preprocessing. The gap between low- and high-frequency signals in
the source image was widened. This enabled the preservation of the image edges while
effectively reducing unreasonable hole tone inside the image. Many research scholars
have successfully applied fractional-order calculus theory, combined with TV theory, to
image processing. This allowed researchers to effectively alleviate the problem of excessive
smoothing in smooth areas of images by variational methods [11–13]. Zhang et al. [14]
defined a new space of fractional-order bounded variational functions to partition image
textures of different scales into different negative Sobolev space functions, and proposed
a class of fractional-order multiscale variational models for image denoising. The model
more effectively preserved the texture details with little grayscale variation in the smooth
region of the image. However, it was difficult to obtain the right order to generate the best
result from the denoising model. Numerous scholars have conducted numerous studies
on how to determine the fractional order, but all of them have only considered the local
features of the image [15–17]. Yu et al. [18] presented an approach to adaptively determine
the order of fractional-order differentiation by calculating the local variance to reflect the
local texture complexity of the image. Ullah et al. [19] proposed a trial-and-error method to
adaptively adjust the fractional order so that the fractional-order total variational denoising
model yields better denoising results.

Although the work of the above authors can adaptively determine the order of the
fractional-order variational model for different regions in an image, these methods are
used for specific metrics for a particular image and still have limitations for use in medical
imaging. In recent years, swarm intelligence optimization algorithms are gradually being
applied to medical image processing [20–23]. The simplicity of its implementation and
its ability to provide an adjustment to the global situation have attracted the attention of
an increasing number of scholars. Among them, the sparrow search algorithm is a new
swarm optimization method inspired by the foraging and anti-feeding behavior of sparrow
colonies [24]. The algorithm is significantly better than both the gray wolf optimization
algorithm and the particle swarm optimization algorithm in terms of accuracy, convergence
speed, stability, and robustness. Zhang et al. [25] proposed a semi-supervised integrated
classifier based on an improved sparrow search algorithm and applied it to lung computed
tomography image detection. Xiong et al. [26] proposed a fractional-order chaotic sparrow
search algorithm for the enhancement of long-range red film images. Therefore, using the
sparrow search algorithm for the denoising of medical images to retain their more detailed
information has potential application value.

Based on previous work, an adaptive fractional-order total variational medical image
denoising model based on an improved sparrow search algorithm is proposed to retain
more texture details of images while denoising. The main difficulties addressed this paper
include how to find the appropriate order of medical image denoising in the model and
how to avoid the sparrow search algorithm from falling into the local optimum. The main
contributions of this article are summarized as follows:

• For medical imaging, a new fractional-order total variational medical image denoising
algorithm is proposed, which combines the amplitude-frequency characteristics of the
fractional-order differential operators and the denoising advantages of the TV model,
effectively mitigating the “step effect” generated by the TV model when denoising;

• An improved sparrow search algorithm that incorporates a sine search strategy and
a diversity variation processing strategy is proposed to avoid the optimization algo-
rithm from falling into local optimal solutions. Additionally, a multi-objective fusion
maximization fitness function is proposed to comprehensively evaluate the denoising
effect of the optimization model;

• For the feature information of medical images, an optimized fractional-order total
variational medical image denoising model based on a fused multi-strategy improved
sparrow search algorithm is proposed. The optimization model not only possesses
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robust adaptivity, but also retains more detailed texture information of medical images
while denoising, which can provide more information to help clinicians in diagnosis.

The rest of the paper is structured as follows. In Section 2, the TV model and the
defined form of fractional-order differentiation are briefly introduced, and a fractional-
order total variational model for medical images is given. In Section 3, the main research of
this paper is given. In Section 4, the results of the denoising experiment comparison are
given. In Section 5, the conclusion is given.

2. Fractional-Order Total Variational Medical Image Denoising
2.1. Total Variational Denoising Model

The TV model preserves the edge information as much as possible. In general, it is
common to use unconstrained extreme value models by introducing Lagrange multipliers
λ, defining the minimized energy generalized form as follows:

minJ(u) =
λ

2

∫
Ω
|u− u0|2dxdy +

∫
Ω
|∇u|dxdy, (1)

where λ > 0 is the Lagrange weight parameter; u is the image after denoising at x, y ∈ Ω;
u0 is the original image at x, y ∈ Ω; J is the energy function of u; |∇u| is the image gradient

mode with |∇u| =
√
∇2

xu +∇2
yu; and∇xu and∇yu denote the gradients of u in the x and

y directions, respectively. The first term of Equation (1) is the residual, which guarantees
that the u retains the main features of the u0. The second term is the regularization term,
which serves to eliminate the noise in the image while maintaining the edge information as
far as possible.

By the gradient descent method [27], the partial differential equation of Equation (1)
is obtained:

∂u
∂t

= λ(u− u0)− div(
∇u
|∇u| ), (2)

where t is the time step, and div is the scatter of u. The local coordinate expression is

∂u
∂t

=
1
|∇u| uξξ , (3)

where uξξ denotes the tangential direction of the u. From the analysis in Equation (3), it
is obtained that the diffusion operator of this model diffuses only along the image edge
direction, which has the characteristic of anisotropic diffusion. When denoising flat areas
of an image, the “step effect” is caused.

2.2. Fractional-Order Total Variational Medical Image Denoising Model

Fractional-order calculus is an extension of integer-order calculus, which has been
in use for more than 300 years [28–30]. So far, there are three main expressions for the
definition of fractional order differentiation: Riemann–Liouville definition, Grünwald–
Letnikov definition, and Caputo definition [31]. For one-dimensional signals f (t), t ∈ [a, t],
the Riemann–Liouville definition is as follows:

R
a Dα

t =
1

Γ(n− α)

(
d
dt

)n∫ t

a

f (τ)

(t− τ)α−n+1 dτ, (4)

where D denotes fractional-order differentiation; α denotes fractional order differentiation
with n − 1 < α < n; and Γ(·) denotes the Gamma function. The Caputo is defined
as follows,

C
aDα

t =
1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1 dτ. (5)
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Both the Riemann–Liouville definition and the Caputo definition use the Cauchy
integral formula, which is computationally complex. The Grünwald–Letnikov definition
can be converted into convolutional form during numerical implementation, and is more
adaptable to image signal processing. Therefore, the definition of Grünwald–Letnikov
fractional-order differentiation is adopted in this paper. The Grünwald–Letnikov is defined
as follows,

aDα
t f (t) =

dα f (t)
dtα

= lim
h→0

h−α
[ t−a

h ]

∑
j=0

(−1)j
(

α
j

)
f (t− jh), (6)

where
(

α
j

)
= α(α+1)···(α+j−1)

j! is the combination parameter.

According to Equation (6), if the period is divided by h = 1, n = [t− a/h] = [t− a].
Thus, the fractional differential expression is obtained [32]:

dα f (t)
dtα

≈ f (t) + (−α) f (t− 1) +
(−α)(−α + 1)

2
f (t− 2) + · · ·+ Γ(−α + 1)

n!Γ(−α + n + 1)
f (t− n). (7)

Only the case of 0 < α < 2 is considered in this paper. Under the Grünwald–Letnikov
definition, the amplitude-frequency characteristic curves with fractional-order differential
orders of 0.2, 0.4, 0.6, 0.8, 1, 1.2, and 1.4 are shown in Figure 1. The amplitude-frequency
characteristic is the curve of the amplitude of the system frequency response as a function of
frequency. As shown in Figure 1, the frequency response of the fractional-order differential
operator is equivalent to a nonlinear filter. Noise with high signal strength in the image will
be filtered out. Noise with weak signal strength is also suppressed by its nonlinearity. The
fractional-order differential operator enhances the texture details of images by denoising.
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As observed in Figure 1, there is some enhancement of the lowfrequency signal as
α < 0.4 and 1 < α < 2. However, the enhancement is relatively low compared to the case
of 0.4 < α < 1. Thus, different fractional orders have different effects on image denoising.
By changing the order of the fractional-order according to the different features of different
regions, the effective denoising of different regions can be achieved.

For medical images, the structural details and edges of the image are critical, and the
loss of important details may cause the doctor to make an incorrect diagnosis. Therefore,
distinguishing the details and noise of an image is crucial to medical image denoising
algorithms. The complete medical image is divided into detail regions and edge regions.
These regional features are represented by different signal values. Due to the fractional-
order differential operator enhancing the detail region of the signal with low frequency
effectively, the fractional-order differential operator is introduced in this paper and a new
fractional-order total variational model is proposed. To achieve better denoising result,
replace the first-order differential operator in the regular term of Equation (1) with a
fractional-order differential operator, as shown in the following equation:

|u|TV =
∫

Ω
|Dαu|dxdy. (8)

The new energy function of the TV model for medical image denoising is obtained by
introducing the fractional-order differential operatorDαu [33], which is the Fractional-order
Total Variational (FTV) model:

minJ(u) =
λ

2

∫
Ω
|u− u0|2dxdy +

∫
Ω
|Dαu|dxdy, (9)

where u is the denoised medical image; u0 is the original medical image; α is the X × Y

dimensional order matrix; Dαu = (Dα
xu, Dα

y u); |Dαu| =
√
(Dα

xu)2 + (Dα
y u)2; and Dα

xu and
Dα

y u denote the α-order differentiation of u in the x, y direction.
The fractional-order partial differential equation is obtained by generalizing the partial

differential Equation (2) as follows:

∂u
∂t

= λ(u− u0)− div
(
Dαu
|Dαu|

)
. (10)

From the fractional-order partial differential Equation (10), the model degenerates
to the TV model as α = 1. Therefore, to solve the model, there is need only to solve
for Dαu = (Dα

xu, Dα
y u). Ref. [10] defines fractional-order partial differentiation of digital

images u(x, y):

Dα
xu(x, y) = u(x, y) + (−α)u(x− 1, y) + (−α)(−α+1)

2 u(x− 2, y)

+ · · ·+ Γ(−α+1)
n!Γ(−α+n+1)u(x− n, y) + · · ·

(11)

Dα
y u(x, y) = u(x, y) + (−α)u(x, y− 1) + (−α)(−α+1)

2 u(x, y− 2)

+ · · ·+ Γ(−α+1)
n!Γ(−α+n+1)u(x, y− n) + · · ·

(12)

Equation (10) is solved using the difference method. Assuming that the image pixels
can be represented as an X×Y dimensional matrix, the time step is ∆t, the spatial grid size
is h, and time and space can be discrete as

t = n∆t, i = xh, j = yh, (13)
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where n = 0, 1, 2, · · · , x = 1, 2, · · · , X, y = 1, 2, · · · , Y. Then, the numerical solution of
the nonlinear FTV model (10) at pixel (x, y) after n + 1 iterations can be calculated by
Equation (14):

un+1
x, y = un

x, y + ∆t

(
λ(un

x, y − u0
x, y)−

(
Dα

x

(
Dα

xu
|Dαu|

))
x, y
−
(
Dα

y

( Dα
y u

|Dαu|

))
x, y

)
, (14)

where the initial condition is u0
x, y = u0(xh, yh) with x = 1, 2, · · · , X and y = 1, 2, · · · , Y.

3. Fractional-Order Total Variational Model Optimization

In this paper, the framework of the proposed model is presented in Figure 2. An
Improved Sparrow Search Algorithm (ISSA) is first designed, which integrates a sinusoidal
search strategy and diversity variation processing strategy to avoid falling into local optima
during the individual search. Then, the algorithm is introduced into the FTV model, and an
adaptive FTV medical image denoising algorithm is proposed to address the problem that
the order of the FTV denoising model cannot be determined, and to further improve the
adaptivity of the FTV model and to preserve the edges and smoothed areas of the images
to a greater extent.
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3.1. Improve Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) was proposed by Xue and Shen in 2020 for
solving optimization problems. The algorithm has a high merit-seeking ability and fast
convergence [24]. In the standard SSA, a set of sparrows that may represent the optimal
solution in the solvable space is first initialized, and the ratio of producers and predators is
set. The fitness value is calculated and ranked according to the fitness function. Then, the
producers and predators update their positions according to the predation rules. Each time
the sparrow’s position is updated, the adaptation value is calculated at that time. Iteration is
continued until the optimal value is found or the maximum number of iterations is reached.
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The updates of producers’ and predators’ positions in the standard SSA adopt the
same update formula with the problem of slow search speed. Therefore, the sinusoidal
search strategy is introduced in the optimization algorithm of this paper. It enables the
individuals with better adaptation in the original population to search near their original
positions, reinforcing the local search ability of the algorithm; the individuals with poor
adaptation in the original population can explore far from their positions, strengthening
the global search capability of the algorithm. The formula for changing the weight of the
sine search strategy is as follows [34]:

w = wmin + (wmax− wmin)×
(

sin

((
f t
i − f t

best
f t
worst − f t

best
+ 1

)
× π

2
+ π

)
+ 1

)
(15)

where wmin is the minimum value of the weight variation range; wmax is the maximum
value of the weight variation range; f t

i is the fitness value of the i-th sparrow in the t-th
iteration of the population; f t

best is the optimal fitness value of the population in the t-th
iteration; and f t

worst is the worst fitness value of the population in the t-th iteration.
Applying the values w in the sinusoidal search algorithm strategy to the SSA, assuming

that the number of sparrows is n and the dimensionality of the medical image denoising
model of order α to be optimized is d, the update formulae for producers and predators of
the improved algorithm are obtained as follows:

xt+1
i, j =

{
xt

i, j · exp(− 1
α·it ) R2 < ST

xt
i, j + w ·Q · L R2 ≥ ST

(16)

xt+1
i, j =


Q · exp

(
xworst−xt

i, j
i2

)
i > n/2

xt+1
P + w ·

∣∣∣xt
i, j − xt+1

P

∣∣∣ · A+ · L i ≤ n/2
(17)

xt+1
i, j =


xt

best + w · β
∣∣∣xt

i, j − xt
best

∣∣∣ fi > fg

xt
i,j + w · K

∣∣∣xt
i, j−xt

best

∣∣∣
( fi− fw)+ε

fi = fg

(18)

where t denotes the number of iterations and xt+1
i,j denotes the individual position informa-

tion of the i-th sparrow in the j-th dimension.
Equation (16) represents the location update of the explorer, where it is the maximum

number of iterations, R2 is the warning value issued after the predator is detected, ST is
the preset safety threshold, α ∈ [0, 1] is a random number, Q is a random number obeying
a normal distribution, L is a 1× d matrix, and each element is 1.

Equation (17) is the location update of the predator, where xworst denotes the cur-
rent location with the lowest adaptation, xp is the location of the predator, A is a 1× d
matrix with each element of the matrix being assigned a random value of 1 or −1, and
A+ = AT(AAT)

−1.
Equation (18) expresses the position update of a sparrow aware of the danger, where

xt
best is the optimal position of the population; β is the random number of step control

parameters obeying a mean of 0 and a variance of 1 in normal steps; K ∈ [−1, 1] is the
stochastic number; fi denotes the current individual fitness value; fg and fw denote the
current global optimal fitness value and the global worst fitness value, respectively; and ε
is the smallest constant.

To solve the problem that the optimization algorithm is prone to fall into local optimum,
the index A, which indicates population aggregation in biology, is introduced along with
the sinusoidal search strategy. The expression of an indicator A is as follows [35]:

A =
δ− x

x2 , (19)
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where δ denotes the variance of sparrow population fitness and x denotes the mean of
sparrow population fitness. The population exhibits an aggregated state as A� 0; when
A tends to 0, the population exhibits a random state. To avoid the initial appearance of
iterations in the aggregated state, the population is treated using the Cauchy variation.

When the value A is greater than the preset threshold with t ≤ it/2, the global optimal
solution is mutated using Equation (20):

x = xbest + xbest ·Cauchy(0, 0.5). (20)

3.2. Fitness Function

To consider both the quality of the medical image and the similarity with the original
image, differentiating from the previous single-objective fitness function, a multi-objective
maximization equation is designed as the fitness function of the ISSA algorithm in this
paper. In the ISSA algorithm, the value of the fitness function for each sparrow is used to
evaluate the denoising effect of medical images. The medical images processed by the ISSA
algorithm should filter out most of the noise while retaining the texture structure of the
original image. The fitness function is as follows:

Fit = w1P + w2S, (21)

where w1 and w2 are constants with w1 + w2 = 1 and are used to represent the weights of
the relative importance of the objective function. Take w1 = w2 = 1/2 to ensure a balanced
denoising result in this paper.

P in Equation (21) represents the peak signal-to-noise ratio (PSNR) [36], and a higher
value of PSNR indicates better denoising of the image. The expression formula is as follows:

PSNR = 10× log10
d2

1
X×Y

x
∑

x=1

y
∑

y=1
(u0(x, y)− u(x, y))2

, (22)

where d denotes the maximum value of the image grayscale; x and y denote the length
and width of the medical image, respectively; X× Y denotes the number of pixel points
in the medical image; u0(x, y) denotes the original medical image; and u(x, y) denotes the
denoised medical image.

S denotes structural similarity (SSIM) [37], and the higher the SSIM value, the more
similar the structure is. The SSIM expression is as follows:

SSIM = L(u, u0)× C(u, u0)× H(u, u0), (23)

where L, C, and H are defined as:

L(u, u0) =
2µuµu0 + C1

µu2 + µu0
2 + C1

, (24)

C(u, u0) =
2σuσu0 + C2

σu2 + σu0
2 + C2

, (25)

H(u, u0) =
σu0u + C3

σuσu0 + C3
, (26)

where µu and µu0 denote the mean values of images u and u0, respectively; σu and σu0

denote the standard deviation of images u and u0, respectively; σ2
u and σ2

u0
denote the

variance of images u and u0, respectively; σu0u denotes the covariance of images u and u0;
C1, C2, C3 are constants; and C3 = C2/2.
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3.3. Steps of the Proposed Denoising Algorithm

A FTV medical image denoising method based on an ISSA is proposed to better
filter out medical image noise. Unlike the FTV model with a constant order matrix, the
adaptive FTV model proposed in this paper adaptively adjusts the order of each pixel point
according to the edge region and detail region of medical images.

The first step is to input the medical image; n sparrows are randomly selected and
divided into producers and predators in a certain proportion. The fitness value of each spar-
row is calculated and ranked according to the objective function (21). Secondly, the location
information of each producer and predator is updated according to Equations (16)–(18),
and the fitness value of each sparrow is updated according to Equation (21). At the end
of the iteration, the order matrix α suitable for denoising different features in different
regions of the input image is obtained. Finally, the order matrix α is substituted into the
FTV model (14) to obtain the denoised medical image u.

To express the proposed algorithm more clearly, the specific steps of the proposed
algorithm are described using a grayscale image of size 70× 70 in Figure 3a as an example.
The steps of the ISSA-based Fractional-order Total Variational (ISAFTV) medical image
algorithm are as follows:
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Step 1: Initialize the FTV model. Input noisy image u0 as shown in Figure 3a. After
several tests, the ideal experimental parameters were obtained, where the maximum
number of model iterations K = 50, step size ∆t = 0.2, and weight coefficient λ = 5.

Step 2: Initialize the ISSA algorithm. The pixel size of the noisy image is X × Y, i.e.,
the dimension of the optimization problem is X×Y and the order matrix to be solved is
X × Y. The number of sparrows in the population is n = 200; the search range is [0, 2];
the maximum iteration is set as it = 100; the weights in the sinusoidal search strategy are
set as wmax = 3 and wmin = 0; the threshold ST = 0.8 for sparrows to raise alarm; and
the producers and predators are classified according to the 20% of the total proportion
of producers.

Step 3: Calculate the PSNR and SSIM of the noisy image. Obtain the fitness values of
each sparrow according to the maximum objective function (21) and rank them.

Step 4: Update the location formulae. For producers and predators, update the location
information according to Equations (16)–(18).

Step 5: Introduce the diversification variation processing operation and perturb the
optimal position using Equation (20) when the aggregation of individuals reaches a speci-
fied value.

Step 6: Output ISSA algorithm results. At the end of the loop, the maximum fitness
function value is obtained, which is used to find the fractional order α for medical image
denoising; the visualization of the order matrix α is shown in Figure 3b.

Step 7: Output the processed image. The obtained order matrix α is substituted into
the FTV model (14) to obtain the denoised image u as in Figure 3c.
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The pseudo-code of the ISAFTV algorithm is shown in Algorithm 1.

Algorithm 1. Pseudocode for ISAFTV algorithm, ISAFTV

Input: Medical image u0; FTV model parameters: K, ∆t, λ; ISSA algorithm parameters: order
limit range, ST, it, n, number of explorers, wmax and wmin.
Output: Model order matrix α; denoised image u.

1: Read denoised image information;
2: Initialize the population;
3: for i = 1 to it do
4: Calculate the PSNR and SSIM of the denoised image according to Equations (22) and (23);
5: Calculate the fitness value for each sparrow;
6: Sort by fitness value;
7: Update explorer and predator locations with Equations (16)–(18);
8: Calculate population aggregation index A;
9: if A� 0 then

10: Perturb of the optimal position according to Equation (20);
11: end
12: Obtain the current position;
13: If the new position is better than the previous one, update the optimal position;
14: end
15: Obtain the model order matrix α;
16: for n = 1 to K do
17: Denoising the image according to the fractional order total variational model (14);
18: end
19: Output denoised image u.

4. Simulation Experiments and Results Analysis

In this section, Experiment 1 is designed to verify the effect of fractional order on
medical image denoising by comparing different orders of the FTV model. Experiment 2
demonstrates that for medical images, the ISAFTV model proposed in the paper retains
more detailed information during denoising by comparing it with various denoising
models. Experiments were performed with Matlab R2018b on a Windows 10 (64-bit)
desktop computer with an Intel Core i5, a 2.90 GHz processor, and 4.0 GB of RAM (Dell,
Xiamen, China).

Real images of ophthalmic diseases (vitreous hemorrhage and vitreous mechanization)
provided by the hospitals cooperating with the project are selected as the experimental
objects. Figure 4a shows the image of vitreous hemorrhage. Due to blood vessel rupture,
blood pools in the vitreous cavity, causing blood to escape and collect in the vitreous
cavity. Figure 4b shows the vitreous mechanization image. The blood in the vitreous is not
absorbed for a long time, and the fibrous membrane is formed by intravitreal mechanization.
The experimental images are all 128× 128 in size. Due to the aging of the machine and
equipment, the images contain a large quantity of noise, making it difficult for clinicians to
form judgments.

4.1. Different Order Comparison Experiment

Different orders of FTV models bring different results for medical image denoising.
Fractional-order differentiation can nonlinearly enhance the detailed regions of medical
images. Compared to α < 0.4 and 1 < α < 2, the fractional order enhances the detail areas
of the image more significantly as 0.4 < α < 1. In Experiment 1, the results of typical
1-order, 0.4-order, 0.8-order, 1.2-order, and 1.6-order models after denoising the vitreous
hemorrhage and vitreous mechanization images are presented in Figures 5 and 6.
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Figures 5 and 6 are similar, rendering it difficult to distinguish the denoising effect of
different orders, except that the images become blurred after the 1-order model processing.
Thus, a quantitative analysis of Table 1 is also needed. Table 1 details the PSNR and SSIM
values of vitreous hemorrhage and vitreous mechanization images after processing at
different orders α in the range of 0 to 2.

From Table 1, it is evident that the results are often not the most desirable with α = 1.
Overall, the PSNR and SSIM values first increase and then decrease. The optimal denoising
effect is α = 0.8. It is further shown that a suitable order helps to improve the denoising
effect of the FTV model, as well as to better preserve the textile features of the image.
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Table 1. Evaluation index of the image after denoising of different orders α.

Order
Vitreous Hemorrhage Vitreous Mechanization

PSNR SSIM PSNR SSIM

0.2 30.2744 0.9806 32.7779 0.9655
0.4 31.0549 0.9904 33.5478 0.9934
0.6 31.0656 0.9841 33.6727 0.9838
0.8 31.6578 0.9978 34.9359 0.9920
1.0 25.1980 0.7818 26.6687 0.7953
1.2 31.5042 0.9967 34.6754 0.9943
1.4 31.4595 0.9935 34.5923 0.9904
1.6 31.4362 0.9941 34.1148 0.9871
1.8 31.1416 0.9976 33.7817 0.9715

4.2. Different Model Comparison Experiments

In Experiment 2, the model proposed in this paper is analyzed in a series of compar-
isons with the TV mode [6], the 0.8-FTV model, the AFOTV model [16], the FNM model [3],
and the F-DSG-NLM model [38]. The comparison results reveal that this model retains
more details in medical images and provides better assistance to clinicians.

Figures 7–10 show the comparative effects of the six denoising models on the denoising
of ophthalmic images with the addition of Gaussian noise, with a standard deviation of 15.
Figure 7a–g are images of vitreous hemorrhage and Figure 8a–g are magnified views of
the portion of the lesion in the red box of Figure 7a, which is a detailed area of the medical
image. Figure 9a–g show the vitreous mechanization images and Figure 10a–g show the
portion of the lesion within the red box in Figure 9a, which belongs to the marginal area of
the medical image. Tables 2 and 3 show the performance indexes of the images of vitreous
hemorrhage and vitreous mechanization corrupted by different degrees of noise after being
processed by six denoising models.
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NLM model, run 0.0747 s. (f) FNM model, run 14.4760 s. (g) Our model, run 391.6041 s.
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F-DSG-NLM model, run 0.3067 s. (f) FNM model, run 14.2753 s. (g) Our model, run 358.1444 s.
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Figure 10. Magnified image of vitreous mechanization in part of the lesion. (a) Noise image. (b) TV
model. (c) FTV model. (d) AFOTV model. (e) F-DSG-NLM model. (f) FNM model. (g) Our model.

Table 2. Objective evaluation criteria of different models for the denoising effect of vitreous hemor-
rhage images.

Standard Deviation
10 15 20

PSNR SSIM PSNR SSIM PSNR SSIM

Noise image 28.1391 0.6574 24.5870 0.4819 22.1206 0.3670
TV model 25.6914 0.7989 26.1665 0.7995 25.9783 0.7579

FTV model 29.0345 0.8836 27.8864 0.7957 26.0211 0.6750
AFOTV model 29.7141 0.8131 27.8282 0.8051 26.6172 0.7236

F-DSG-NLM model 29.7963 0.8376 29.3433 0.8160 28.9241 0.7897
FNM model 29.8856 0.8388 29.2419 0.8163 28.8017 0.7898
Our model 30.4862 0.8857 29.7705 0.8331 28.9800 0.7995

Figures 7–10 show that all six denoising models can remove the noise from the images
to a certain extent. The contours of the lesion portion of the image became sharper after
the TV model denoised the vitreous hemorrhage image, as shown in Figure 8b. The
image became overall more blurred, as shown in Figure 7b. This is due to the diffusion
operator of the TV model only diffusing along the orthogonal direction of the gradient. In
processing the vitreous hemorrhage image, there is no edge in the flat area of the image
(the hemorrhage portion of the red area in Figure 7a). The TV model over-smoothed the
image, resulting in false edges in the blood contour, also known as the “step effect.” The
denoising effect of vitreous mechanization images located at the edge is better than that of
vitreous hematopoietic images. The PSNR values of vitreous mechanization after the TV
model treatment in Table 3 are also higher than those of the vitreous hemorrhage images in
Table 2.
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Table 3. Objective evaluation criteria of different models for the denoising effect of vitreous mecha-
nization images.

Standard Deviation
10 15 20

PSNR SSIM PSNR SSIM PSNR SSIM

Noise image 28.1928 0.6497 24.6366 0.4825 22.1240 0.3658
TV model 25.9562 0.8034 26.4000 0.8007 26.2366 0.7586

FTV model 28.9670 0.8582 27.4736 0.7478 26.6295 0.7266
AFOTV model 29.8894 0.8290 28.0774 0.8212 26.9852 0.7449

F-DSG-NLM model 32.7222 0.8790 29.0509 0.8594 27.3167 0.7348
FNM model 32.7744 0.8796 29.0377 0.8595 27.2980 0.7349
Our model 33.8371 0.9532 30.7497 0.8614 27.7744 0.7635

The denoising results of the 0.8-FTV model are shown in Figures 7c and 9c. Compared
with the TV model, the 0.8-order differentiation preserves the detailed areas of the image
nonlinearly, which alleviates the “step effect” caused by the integer differentiation in the
TV model by over-smoothing the flat areas of the image. Therefore, it better preserves the
detailed information of the blood accumulation in the part of the lesion in the vitreous
hemorrhage image, as in Figure 8c. Tables 2 and 3 show that the PSNR values as well as
the SSIM values of the images processed by the 0.8-FTV model are higher than those of the
TV model, but the order of the fractional order often requires many experiments to obtain,
and the artificially selected order is only a constant, which cannot adapt to different feature
points of different images, resulting in incomplete image noise removal and incomplete
detail retention.

The AFOTV model achieves order adaptation by Bregman iteration according to
the features of the image compared to the 0.8-FTV model. However, Figures 7d and 9d
show that the denoising effect of this model is not significantly different from that of the
0.8-FTV model.

Figures 7e and 9e show the denoising results of the F-DSG-NLM model for two
diseases, and Figures 7f and 9f show the denoising results of the FNM model. Both
models are improvements to the non-local denoising algorithm. It can be observed from
the denoising result plots that the images become more blurred after the denoising of
the ophthalmic ultrasound images for both types of images, which destroys the detailed
information inside the vitreous in the images. It is proven that traditional image denoising
methods do not apply to medical images.

The denoising results of the model in this paper for two disease images are shown
in Figures 7g and 9g. The noise in the image is largely eliminated in both the detailed
area of vitreous hemorrhage and the edge area of vitreous mechanization. The detailed
information in the image is also retained. This is because the adaptive search for the optimal
order of fractional-order for different regions of the whole image using the ISSA algorithm
improves the denoising ability of the fractional-order differential operator and overcomes
the loss of image detail information, thus obtaining better visual results and helping doctors
to diagnose diseases more efficiently and correctly.

In the numerical analysis of two disease images with Tables 2 and 3, six denoising
models outperform medical image denoising for medical images with low noise intensity
than those with high noise intensity. The PSNR values of the proposed model for medical
image denoising are better than other models regardless of the variation of noise inten-
sity. Experiments prove that the proposed model in this paper has a positive denoising
effect. Meanwhile, the SSIM values of the TV model and the FTV model for the two
disease images after denoising are generally kept above 0.7, and the SSIM values of the
AFOTV model, FNM model, and F-DSG-NLM model for image denoising generally remain
around 0.8, while the SSIM values of this model for the medical images with a standard
deviation of 10 added remain above 0.85 overall, and the SSIM values of the images with
standard deviations of 15 and 20 added are always kept around 0.8, indicating that the
details of the image structure after denoising of this model remain intact. The combined
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Tables 2 and 3 demonstrate the effectiveness of the proposed model for ophthalmic ultra-
sound image denoising.

5. Conclusions

The adaptive FTV medical image denoising model better protects the sharp edges of
the image, highlights the focal part of the patient, has a better balance between removing
noise and protecting image features, and compensates for the shortcomings of the TV
model in processing images. Meanwhile, the introduction of the ISSA algorithm avoids the
artificial selection of a fractional-order differential order, improves the denoising ability
of a fractional-order differential operator, and realizes the adaptiveness of a fractional-
order differential operator. Finally, this paper verifies the effectiveness of this model by
comparing the denoising effect of ultrasound images of two ophthalmic diseases.

In future research, we will focus on Ref. [9] to accurately distinguish the detailed
regions as well as the edge regions of medical images by use of a fractional-order differential
Sobel edge operator so that more detailed information can be retained in the process of the
denoising of medical images to provide more help for clinicians. In addition, the additional
term added to the regular term in Ref. [9] is able to attenuate the effect of the infrared
background and provide us with new research ideas. Later, we will also consider the
application of the proposed model with the additional term in Ref. [9] to the denoising of
complex infrared images, and thus seek to improve the utility of the proposed model.
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