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Abstract: This paper proposes an accurate numerical approach for computing the solution of two-
dimensional fractional Volterra integral equations. The operational matrices of fractional integration
based on the Hybridization of block-pulse and Taylor polynomials are implemented to transform
these equations into a system of linear algebraic equations. The error analysis of the proposed
method is examined in detail. Numerical results highlight the robustness and accuracy of the
proposed strategy.
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1. Introduction

Fractional calculus (FC) generalizes the classical differential calculus [1,2]. The FC
has been applied to model several anomalous phenomena having nonlocal dynamics and
involving long memory [3,4]. Indeed, the models based on classical calculus often fail to
explain the genetic and inheritance properties of many complex systems having anomalous
dynamics, whereas the fractional derivatives and integrals allow for a simpler and more
accurate representation of their features. Due to the above-mentioned properties, fractional
order integral equations (FOIEs) have been used in many engineering and physics fields to
investigate complex systems, for instance, viscoelasticity and traffic models, temperature
and motor control, and solid mechanics [4–8]. However, FOIEs pose difficulties in achieving
their accurate analytical solution and numerical techniques have to be used in order to
derive useful result [9–19].

In this work, we study a robust computational scheme based on two-dimensional
(2D) Hybridization of block pulse and Taylor polynomials (2D-HBTs) for computing the
approximate solution of 2D fractional Volterra integral Equations (2DFVIEs) as

f (x , y)− 1
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0

f (s , t)k(x, y, s, t)
(y− t)1−λ2(x− s)1−λ1

dtds = g(x , y), (x , y) ∈ Ω, (1)

where (λ1, λ2) ∈ (0,+∞) × (0,+∞), f (s, t) is an unknown function to be calculated,
Ω = [0, 1]× [0, 1] denotes the spatial domain, and g(x , y) and k(x, y, s, t) represent pre-
scribed smooth functions. Over past years, for approximating 2D fractional integral Equa-
tions (2DFIEs) and 2D fractional integro-differential Equations (2DFIDEs), different basic
functions have been employed. For example, Najafalizadeh and Ezzati [20] used 2D block
pulse functions, while Jabari et al. [21] studied 2D orthogonal triangular functions for
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solving the 2DFIEs. Maleknejad et al. [22] used the Hybrid functions to simulate general
nonlinear 2DFIDEs. Maleknejad and Hoseingholipour [23] implemented Laguerre func-
tions for singular integral equation in unbounded domain. Kumar and Gupta [24] analyzed
an operational matrix based 2D fractional-order Lagrange polynomials for approximating
nonlinear 2DFIDEs. Mirzaee and Samadyar [25] obtained an operational matrix based on
2D hat basis functions for stochastic 2DFIEs. Asgari and Ezzati [26] employed the Bernstein
polynomials and Rashidinia et al. [27] implemented shifted Jacobi polynomials for approxi-
mating 2DFIEs. Heydari et al. [28] presented an iterative multistep kernel based scheme
for solving the 2DFIEs. Ardabili and Talaei [29] adopted a new Chelyshkov polynomials
collocation method to solve the 2DFIEs. Hesameddini and Shahbazi [30] applied 2D shifted
Legendre polynomials to estimate 2DFIEs. Asgari et al. [31] adopted the Bernstein polyno-
mials to approximate the 2DFVIEs. Abdollahi et al. [32] presented an operational matrix
scheme based 2D Haar wavelets, whereas Wang et al. [33] used 2D Euler polynomials
combined with Gauss-Jacobi quadrature technique to simulate the 2DFVIEs. Liu et al. [34]
employed the Bivariate barycentric rational interpolation for the 2DFVIEs. Khan et al. [35]
implemented 2D Bernstein’s approximation to approximate the 2DFVIEs. Wang et al. [33]
applied the modified block-by-block technique, while Mohammad et al. [36] proposed
an efficient approach based on Framelets for solving the 2DFVIEs. Ahsan et al. [37] used
optimal Homotopy asymptotic scheme and Fazeli et al. [38] considered the Chebyshev
polynomials for approximating the 2DFVIEs. Laib et al. [39] applied a numerical approach
based on Taylor polynomials for the 2DFVIEs.

The main motivation of this paper is to propose an accurate numerical approach
for finding the approximate solution of 2DFVIEs. The operational matrices of fractional
integration based on the Hybridization of block-pulse and Taylor polynomials (2D-HBTs)
are adopted to transform 2DFVIEs into a system of linear algebraic equations. The er-
ror analysis of the proposed method is examined in detail. Numerical results show the
robustness and accuracy of the proposed method.

This paper includes seven sections as follows. Section 2 introduces the notation and
basic definitions of FC. Section 3 derives an operational matrix of fractional integration
of 2D-HBTs. Section 4 approximates the 2DFVIEs by employing the obtained operational
matrix of fractional integration. Section 5 performs convergence analysis of the proposed
strategy. Section 6 highlights the efficiency and accuracy of the proposed method by means
of the results of numerical experiments. Finally, Section 7 contains the concluding remarks.

2. Preliminaries and Notations

In this section, we provide the basic concepts and definitions [1,2] needed in the
follow-up.

Definition 1. The Riemann-Liouville fractional integration (RLFI) of order α ≥ 0 of a
function f (t) ∈ L1(I) is defined by

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)(α−1) f (τ)dτ α > 0, (2)

in which Γ(θ) represents the Euler’s gamma function described as Γ(θ) =
∫ +∞

0 sθ−1e−sds.

The RLFI has the following properties:

• I0 f (x) = f (x),
• Iα Iβ f (x) = Iβ Iα f (x) = Iα+β f (x),

• Iα(x− a)β = Γ(β+1)
Γ(α+β+1) (x− a)α+β.
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Definition 2. The left-sided mixed RLFI of order r of f can be represented as [1]

Ir
θ f (x , y) =

1
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0
(x− s)λ1−1(y− t)λ2−1 f (s , t)dtds, (3)

where θ = (0, 0) and r = (λ1, λ2) ∈ (0, ∞)× (0, ∞).

Here, we list some notations of the left-sided mixed RLFI [1,2] as follows:

• Iα
θ f (x , y) =

∫ x
0

∫ y
0 ( f (s , t)dtds, α = (1, 1), (x , y) ∈ Ω,

• Ir
θ xpyq = Γ(p+1)Γ(q+1)

Γ(p+1+λ1)Γ(q+1+λ2)
xp+λ1 yq+λ2 , −1 < p, q < ∞,

• Iθ
θ f (x , y) = f (x , y).

3. Hybrid Functions
3.1. The 2D-HBTs

First, we introduce the 1D-HBTs, hi,j(x), 1 ≤ i ≤ N, 0 ≤ j ≤ M, on the interval [0, 1]
as [40,41]

hi,j(x) =

{
Tj(Nx− i + 1) i−1

N ≤ x ≤ i
N ,

0 otherwise,
(4)

in which j and i represent the order of the Taylor polynomials and block-pulse functions,
respectively, and Tj(x) = xj.

We can approximate a function f (x) ∈ L2[0, 1] in the form of 1D-HBT by

f (x) '
N

∑
i=1

M−1

∑
j=0

fijhij(x) = CT H(x), (5)

in which
C = [ f10, . . . , f1(M−1), . . . , fN0, . . . , fN(M−1)]

T , (6)

and

H(x) = [h10(x), . . . , h1(M−1)(x), h20(x), . . . , h2(M−1)(x), . . . , hN0(x), . . . , hN(M−1)(x)]T . (7)

Obviously, we can obtain the hybrid coefficients fij computed by

fij =
〈 f (x), hij(x)〉
〈hij(x), hij(x)〉 =

1
j!N!

(
dj f (x)

dxj )|
x= j−1

M
, (8)

where 〈·, ·〉 denotes the inner product.
Orthogonal 2D-HBTs functions hi1 j1i2 j2(x , y), 0 ≤ j1, j2 ≤ M, 1 ≤ i1, i2 ≤ N, on the

region Ω = [0, 1]× [0, 1], are defined as

hi1i2 j1 j2(x , y) =

{
Tj1(Nx− i1 + 1)Tj2(Ny− i2 + 1)(x , y) ∈ [ i1−1

N , i1
N )× [ i2−1

N , i2
N )

0 otherwise.

Let S be a set of 2D-HBTs as follows:

S = {h1010(x , y), . . . , h101(M−1)(x , y), h1020(x , y), . . . ,

h102(M−1)(x , y), . . . , hN(M−1)N0(x , y), . . . , hN(M−1)N(M−1)(x , y)}.
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Since S is a finite dimensional subspace of L2(Ω) for an arbitrary f (x, y) ∈ L2(Ω), it has the
unique best approximation outside of S, therefore, there exist unique coefficients fi1 j1i2 j2 ,
0 ≤ j1, j2 ≤ M− 1, 1 ≤ i1, i2 ≤ N, so that

f (x , y) =
N

∑
i1=1

M−1

∑
j1=0

N

∑
i2=1

M−1

∑
j2=0

fi1 j1i2 j2 hi1i2 j1 j2(x , y) = FT H(x , y), (9)

in which

F = [ f1010, . . . , f101(M−1), f1020, . . . , f102(M−1), . . . , fN(M−1)N0, . . . , fN(M−1)N(M−1)]
T , (10)

and

H(x, y) = [h1010(x , y), . . . , h101(M−1)(x , y), h1020(x , y), . . . ,

h102(M−1)(x , y), . . . , hN(M−1)N0(x , y), . . . , hN(M−1)N(M−1)(x , y)]T = H(x)⊗ H(y),
(11)

in which the superscript T is transposition and ⊗ denotes the Kronecker product. Clearly
2D-HBTs coefficients, fi1 j1i2 j2 , can be determined by

fi1 j1i2 j2 =
〈hi1 j1(x), 〈 f (x , y), hi2 j2(y)〉〉

〈hi1 j1(x), hi1 j1(x)〉.〈hi2 j2(y), hi2 j2(y)〉

=
1

Ni1+j2 j1!j2!
(

∂i1+j2 f (x , y)
∂xj1 ∂yj2

)|
(x , y)=(

i1
N , i2

N )
.

Similarly, we expand the functions k(x, y, s, t) ∈ L2(Ω×Ω) in terms of the 2D-HBTs in the
following form:

K(x, y, s, t) = HT(x , y)KH(s , t), (12)

in which K represents a (MN)2 × (MN)2 matrix:

K =


K0000 . . . K000(MN−1) K0010 . . . K00(MN−1)(MN−1)
K0100 . . . K010(MN−1) K0110 . . . K01(MN−1)(MN−1)

...
... . . .

...
K(MN−1)(MN−1)00 . . . . K(MN−1)(MN−1)(MN−1)(MN−1)

,

in which

Ki1 j1i2 j2 =
1

Nz+u+v+wz!u!v!w!
(

∂z+u+v+wK(x, y, s, t)
∂xz∂yu∂sv∂tw )|

(x,y,s,t)=(
i1
M
N ,

j1
M
N ,

i2
M
N ,

j2
M
N )

,

i1, j1, i2, j2 = 0, 1, 2, . . . , (NM − 1), z = i1 − [ i1
M ]M, u = j1 − [ j1

M ]M, v = i2 − [ i2
M ]M,

w = j2 − [ j2
M ]M,

in which [·] represents the integer part of the number. We use the product of two vectors
H(x , y) and HT(x , y) as follows

H(x , y)HT(x , y)b = b̂H(x , y), (13)

in which b represents a (MN)2-vector, and b̂ is a (MN)2 × (MN)2 product operational
matrix given as

b̂ =


b̂10 0 . . . 0
0 b̂11 . . . 0
...

...
. . .

...
0 0 . . . b̂N(M−1)


(MN)2×(MN)2

,
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in which b̂ij, 1 ≤ i ≤ N, 0 ≤ j ≤ M, are NM× NM matrices given as

b̂ij =


bij10 bij11 . . . bijN(M−1)

0 bij10 . . . bij(N−1)(M−1)
...

...
. . .

...
0 0 . . . bij10

.

3.2. Operational Matrix of Fractional Integration of 2D-HBTs

Here, we construct an operational matrix for fractional integration of the 2D-HBTs.
Following [42], the operational matrix of fractional integration of 1D-HBT can be derived
as follows:

Iα H(x) ' Pα H(x), (14)

in which H(x) is a vector of 1D-HBT defined in (11), and Pα represents an operational
matrix of 1D-HBT. It is proved that [42]:

Pα = ΦFαΦ−1, (15)

where Φ represents the projection matrix which converts the hybrid functions onto block
pulse functions and

Fα =
1

Γ(α + 2)NMα



1 ξ1 ξ2 ξ3 . . . ξNM−1
0 1 ξ1 ξ2 . . . ξNM−2
0 0 1 ξ1 . . . ξNM−3
...

...
...

...
. . .

...
0 0 0 0 . . . ξ1
0 0 0 0 . . . 1


,

with ξk = (k + 1)α+1 − 2k(α+1) + (k− 1)α+1. By means of Equations (3) and (14), we have:

1
Γ(λ1)Γ(λ2)

∫ x
0

∫ y
0 (x− s)λ1−1(y− t)λ2−1H(s , t)dtds

= 1
Γ(λ1)Γ(λ2)

∫ x
0

∫ y
0 (x− s)λ1−1(y− t)λ2−1H(s)⊗ H(t)dtds

= 1
Γ(λ1)

∫ x
0 (x− s)λ1−1H(s)ds⊗ 1

Γ(λ2)

∫ y
0 (y− t)λ2−1H(t)dt

= pλ1 H(x)⊗ pλ2 H(y)
= (pλ1 ⊗ pλ2)(H(x)⊗ H(y))
= (pλ1 ⊗ pλ2)H(x , y) = pλ1,λ2 H(x , y).

Hence,

I(λ1,λ2)H(x , y) =
1

Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0
(x− s)λ1−1(y− t)λ2−1H(s , t)dtds = pλ1,λ2 H(x , y), (16)

in which pλ1,λ2 is called the operational matrix of fractional integration of the 2D-HBTs,
that is,

pλ1,λ2 = (pλ1 ⊗ pλ2).

4. Numerical Solution of the 2DFVIEs

This section employs the 2D-HBTs to approximate the 2DFVIEs (1). For this pur-
pose, we expand g(x , y), k(x, y, s, t), and f (x , y) functions in terms of 2D-HBTs in the
following forms

g(x , y) = GT H(x , y),
k(x, y, s, t) = H(x , y)TKH(x , y)),
f (x , y) = FT H(x , y),

(17)

in which H(x , y) is introduced in Equation (11), and vector g, and matrix G and vector F
denote 2D-HBTs coefficients of g(x , y), k(x, y, s, t), and f (x , y), respectively.
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Meanwhile, substituting relation (17) into relation (1), we arrive at

FT H(x , y)− 1
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0

HT(x , y)KH(s , t)HT(s , t)F
(x− s)1−λ1(y− t)1−λ2

dtds ' HT(x , y)G. (18)

With the help of Equation (13), we can obtain

HT(x , y)F− HT(x , y)KF̂
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0
(y− t)λ2−1(x− s)λ1−1H(s , t)dtds ' HT(x , y)G. (19)

Applying Equation (16), we arrive at

HT(x , y)F− HT(x , y)KF̂Pλ1,λ2 H(x , y) = HT(x , y)G. (20)

In order to find F, we collocate the relation (20) in (MN)2 Newton-Cotes points as

(xi, yj) = (
2i− 1

2(MN)2 ,
2j− 1

2(MN)2 ), i = j = 1, 2, . . . , (MN)2. (21)

Therefore, we obtain a system of (MN)2 linear equations. After solving this system, we can
determine F. Consequently, the approximate solution of (1) can be represented as below:

f (x , y) = FT H(x , y). (22)

5. Convergence Analysis

In this section, we discuss the convergence of the proposed strategy based on 2D-HBTs.
For this aim, suppose that (C[Ω], ‖.‖) is the Banach space of all continuous functions in the
region Ω, including norm ‖ f ‖ = max

(x , y)∈Ω
| f (x , y)|, and let ‖K‖ = C. Moreover, the functions

f (x , y) and fMN(x , y) represent the analytic and numerical solutions, respectively.

Theorem 1. For 0 < α < 1 the numerical solution of (1) in terms of 2D-HBTs is convergent so
that α = C

Γ(λ1+1)Γ(λ2+1) .

Proof.

‖ f − fMN‖∞ = max
(x , y)∈Ω

| f (x , y)− fMN(x , y)|

= max
(x , y)∈Ω

| 1
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0

k(x, y, s, t)( f (s , t)− fMN(s , t))
(x− s)1−λ1(y− t)1−λ2

dtds|

≤ max
(x , y)∈Ω

1
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0
| k(x, y, s, t)( f (s , t)− fMN(s , t))

(x− s)1−λ1(y− t)1−λ2
|dtds

≤ max
(x , y)∈Ω

C
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0
| ( f (s , t)− fMN(s , t))
(y− t)1−λ2(x− s)1−λ1

|dtds

≤ C
Γ(λ1)Γ(λ2)

‖ f − fMN‖∞

∫ x

0

ds
(x− s)1−λ1

∫ y

0

dt
(y− t)1−λ2

=C‖ f − fMN‖∞ Iλ1(1)Iλ2(1)

=C‖ f − fMN‖∞
xλ1 yλ2

Γ(λ1 + 1)Γ(λ2 + 1)

≤ C‖ f − fMN‖∞

Γ(λ1 + 1)Γ(λ2 + 1)

=α‖ f − fMN‖∞

⇒‖ f − fMN‖∞ ≤ α‖ f − fMN‖∞.
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Since 0 < α < 1, we conclude that:

lim
MN→∞

‖ f − fMN‖∞ = 0. (23)

6. Numerical Experiments

This section provides four numerical test problems to illustrate that the proposed
strategy is more accurate, applicable and effective than other techniques reported in
the literature.

Example 1. First, we consider the 2DFVIE [20] as

f (x , y)− 1
Γ( 7

2 )Γ(
7
2 )

∫ x

0

∫ y

0
(x− s)

5
2 (y− t)

5
2 xy
√

t f (s , t)dtds =
2362
4725

xy.

The theoretical solution of the above problem is f (x , y) = 1
2 yx.

Table 1 reports the exact and the approximate solutions by using selected nodes in
the computational region Ω = [0, 1] × [0, 1] and compares the results with the scheme
described in [20]. Numerical results indicate that the proposed strategy based on 2D-HBTs
is considerably more accurate than the technique presented in [20].

Table 1. Numerical results of Example 1.

2D-HBTs Ref. [20] Exact Solution

x = y M = 5, N = 5 M = 16

0 0.000011 0.0011458 0
0.1 0.005072 −0.011725 0.005
0.2 0.195430 0.030901 0.02
0.3 0.043278 0.02872 0.045
0.4 0.080007 0.0892319 0.08
0.5 0.127394 0.99179 0.125
0.6 0.180027 0.187449 0.18
0.7 0.244633 0.219189 0.245
0.8 0.319782 0.329976 0.32
0.9 0.406851 0.381779 0.405

Example 2. We consider the 2DFVIE [26] as:

f (x , y)− 1
Γ( 7

2 )Γ(
5
2 )

∫ x

0

∫ y

0
(x− s)

5
2 (y− t)

3
2 (y2 + s)e−t f (s , t)dtds

= x2ey − 1024x
11
2 y

5
2 (6x + 13y2)

2027025π
.

This example has the theoretical solution f (x , y) = x2ey.
Table 2 exhibits the maximum norm errors of f (x, y) by the proposed strategy based

on 2D-HBTs and compares the results with the technique described in [26].
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Table 2. The maximum norm errors of Example 2.

2D-HBTs Ref. [26]

x = y M = N = 3 M = N = 4 M = N = 3 M = N = 4

0.0 5.466× 10−6 7.023× 10−6 3.046× 10−4 4.086× 10−4

0.1 5.604× 10−6 6.886× 10−6 3.157× 10−4 4.181× 10−4

0.2 3.673× 10−7 7.509× 10−6 3.509× 10−4 4.471× 10−4

0.3 3.701× 10−6 7.006× 10−6 3.834× 10−4 4.970× 10−4

0.4 4.778× 10−6 5.756× 10−6 3.912× 10−4 5.656× 10−4

0.5 2.425× 10−6 4.613× 10−6 4.001× 10−4 6.474× 10−4

0.6 7.164× 10−6 4.092× 10−6 4.698× 10−4 7.316× 10−4

0.7 3.425× 10−5 4.416× 10−6 6.143× 10−4 7.086× 10−4

0.8 3.371× 10−5 4.867× 10−6 6.501× 10−4 6.788× 10−4

0.9 1.483× 10−5 7.554× 10−6 3.592× 10−5 1.004× 10−4

Example 3. Finally, we consider the following 2DFVIE:

f (x , y)− 1
Γ( 1

2 )Γ(
1
2 )

∫ x

0

∫ y

0
(x− s)−

1
2 (y− t)−

1
2 f (s , t)dtds = (x2 − y2)(1− 32

15
√

xy).

The analytic solution of the aforesaid problem is f (x , y) = x2 − y2.
Table 3 reports the maximum norm errors for various values of N and M with the help of
the proposed strategy based on 2D-HBTs.

Table 3. The maximum norm errors of Example 3.

y = x N = 3, M = 3 N = 4, M = 4

0.1 0 9.8482 ×10−19

0.2 1.9745 ×10−19 8.9765 ×10−18

0.3 7.6763×10−19 7.6538×10−18

0.4 5.7461×10−16 5.7461×10−17

0.5 4.8877×10−16 3.5534×10−16

0.6 4.5511×10−17 4.8549×10−17

0.7 1.6695×10−16 5.9879×10−16

0.8 2.3340×10−16 2.3340×10−16

0.9 8.4997×10−16 8.2781×10−16

Example 4. Finally, we consider the following 2DFIE studied in [26]:

f (x, y)− 1
Γ(λ1)Γ(λ2)

∫ x

0

∫ y

0
(x− s)λ1−1(y− t)λ2−1√xyst f (s, t)dtds

= x3(y2 − y)− 1
60

x
11
2 y

7
2 (3y− 4).

We adopt the proposed method for various values of M, N for solving this example.
For λ1 = λ2 = 1, the exact solution is given as f (x, y) = x3(y2 − y). Tables 4 and 5 show
the maximum absolute errors of f (x, y) by the proposed method and compare the results
with the method reported in [26].
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Table 4. The maximum absolute errors for λ1 = λ2 = 0.8 in Example 4.

2D-HBTs Ref. [26]

x = y M = N = 2 M = N = 3 M = N = 2 M = N = 3

0.1 8.355× 10−4 6.084× 10−5 1.388× 10−3 1.440× 10−3

0.2 9.734× 10−5 4.746× 10−5 8.772× 10−4 3.097× 10−3

0.3 4.230× 10−4 5.449× 10−5 1.407× 10−3 4.872× 10−3

0.4 6.328× 10−4 7.149× 10−5 1.153× 10−3 6.606× 10−3

0.5 8.036× 10−4 9.043× 10−6 5.673× 10−3 8.179× 10−3

0.6 9.301× 10−4 6.643× 10−5 9.748× 10−3 9.379× 10−3

0.7 2.731× 10−4 5.708× 10−5 1.089× 10−2 9.822× 10−3

0.8 4.550× 10−4 3.531× 10−5 7.730× 10−3 8.922× 10−3

0.9 2.936× 10−4 3.892× 10−5 1.222× 10−3 5.918× 10−3

Table 5. The maximum absolute errors for λ1 = λ2 = 0.95 in Example 4.

2D-HBTs Ref. [26]

x = y M = N = 2 M = N = 3 M = N = 2 M = N = 3

0.1 2.480× 10−4 4.913× 10−5 1.021× 10−3 9.073× 10−4

0.2 4.609× 10−4 3.320× 10−6 1.592× 10−3 1.950× 10−3

0.3 5.002× 10−4 7.049× 10−6 2.535× 10−3 3.065× 10−3

0.4 2.436× 10−4 5.819× 10−5 4.268× 10−4 4.161× 10−3

0.5 5.712× 10−4 4.007× 10−5 3.633× 10−3 5.143× 10−3

0.6 6.913× 10−4 4.573× 10−5 7.262× 10−3 5.794× 10−3

0.7 4.320× 10−4 6.413× 10−5 7.991× 10−2 5.704× 10−3

0.8 3.651× 10−4 8.472× 10−5 4.471× 10−3 4.241× 10−3

0.9 3.825× 10−4 2.732× 10−5 2.332× 10−3 5.881× 10−4

7. Conclusions

This work derived a general technique for computing the solution of 2DFVIEs (1).
The operational matrices of 2D-HBTs and their properties were employed to convert the
2DFVIEs into a system of algebraic equations that can be solved. It was shown that the
proposed strategy is convergent. Numerical experiments illustrated its superior efficiency
and performance when compared with other alternative methods found in the literature.
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