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Abstract: In this work, the fractional novel analytic method (FNAM) is successfully implemented
on some well-known, strongly nonlinear fractional partial differential equations (NFPDEs), and
the results show the approach’s efficiency. The main purpose is to show the method’s strength
on FPDEs by minimizing the calculation effort. The novel numerical approach has shown to be
the simplest technique for obtaining the numerical solution to any form of the fractional partial
differential equation (FPDE).
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1. Introduction

In the 18th century, the work of Euler, D’Alembert, Laplace, and Lagrange heavily
relied on the use of partial differential equations (PDEs) as a key tool for examining physical
models and describing the mechanics of continua. Similarly, PDEs were a crucial tool for
scientists throughout the middle of the nineteenth century, particularly in the work of
Riemann. They are now essential for characterizing dynamical systems in the physical
and mathematics sciences [1]. PDEs may be used to simulate many circumstances and
phenomena in Physics, Fluid Mechanics, Heat and Wave Analysis, Quantum Mechan-
ics, Engineering, Chemistry, and Electrodynamics [2,3]. In general, the dynamics of any
physical system can be addressed by either linear or nonlinear PDEs [4,5].

Since there are not really any strategies that work for all equation types and each
equation frequently needs to be addressed as a separate issue, it is challenging to solve
nonlinear EDPs in general. With analytic solutions to PDEs, we may test and compre-
hend the numerical methods as well as the physical processes under consideration [6].
Finding an exact solution for nonlinear PDEs is tricky. As a result, over several decades,
mathematicians and researchers have explored and presented novel numerical techniques
and approaches for solving Nonlinear PDEs. Haar Wavelet Method (HWM), Homotopy
Perturbation Method (HPM), Variational Iteration Method (VIM), Differential Transform
Method (DTM), Homotopy Analysis Method (HAM), Least Squares Finite Element Method,
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Chebyshev and Fourier Spectral Methods, and Perturbation-Iteration Algorithm (PIA), are
some recent numerical methods.

A robust technique is illustrated, and the Finite Approximation methodology is detailed
in depth in [7]. The study in [8] discusses the Differential Transform approach to the physical
application of electrical circuits. In [9], the Fishers Reaction Diffusion Equation is solved by
utilizing the Least Squares Finite Element Approximation approach, whereas the authors of [10]
applied the Haar Wavelet Method to the Fishers Reaction-Diffusion Equation.

The research in [11] contains a detailed description of how to solve Eigen Value
Problems and Boundary Value Problems using Fourier Spectral Methods, Galerkin Methods,
Chebyshev technique, Pseudospectral Methods, the Tau Method, Domain Decomposition
Methods, and methods for unbounded intervals. The Homotopy Perturbation approach is
used on both homogeneous and inhomogeneous PDE systems [12].

For semiconductor devices, the Poisson–Boltzmann Equation is discussed by Homo-
topy Analysis Method in [13]. In [14], the applicability of Adomain Decomposition Method
(ADM) is demonstrated by solving non-integer PDEs in infinite domains.

PDEs of Fractional Order have also piqued the interest of mathematicians and
physicists [15]. For example, in [16], a numerical approach known as PIA was used
for several highly nonlinear PDEs, and quick convergence of these equations to their
precise solutions was demonstrated. The interpolating element-free Galerkin method
was applied to 2D generalized Benjamin–Bona–Mahony–Burgers (BBMB) and regularized
Long-Wave Equations on non-rectangular domains in [17]. The Meshless approach using
radial basis functions was used in [18] to determine a numerical solution to the nonlinear,
high-dimensional, generalized BBMB problem. The test problems for different geometries
of the two-dimensional and three-dimensional cases of the generalized Benjamin–Bona–
Mahony–Burgers Equation (BBMBE) have been solved in this study.

The VIM and HPM are used to solve the Fornberg–Whitham Equation (FWE) in [19].
On Burgers Equation (BE), [20] implements a multi-symplectic box approach with two kinds
of box schemes. Three approaches, namely ADM, VIM, and HPM, are used for the Fitzhugh–
Nagumo problem in [21], and numerical results are produced. The material presented
in [16–21] contains thorough information about the PDEs described and piques the reader’s
curiosity. In [22,23], the authors have offered a full introduction to different types of
PDEs and their solutions; also, several numerical techniques with different examples are
offered in these two books. Several transformations are employed in the aforementioned
numerical procedures.

In this article, some highly nonlinear fractional partial differential equations (NF-
PDEs) will be solved by the Fractional Novel Analytic Method (FNAM), introduced
by [24–26]. In [26], this method was introduced as Novel Analytical Method. This approach
is simple to use and saves time over other approaches. This paper is organized as follows:
Section 3 discusses the mathematical formulation of this strategy, Section 4 contains the
convergence of this method, Section 5 illustrates numerical examples, and the conclusion is
presented in Section 6.

2. Preliminaries of Fractional Calculus

In this section, we introduce the fundamental concepts and features of fractional
calculus [27–29].

Definition 1. A real function G(τ), τ > 0 is considered to be in space Cυ, υ ∈ R if ∃ a real
number ρ > υ. s.t G(τ) = τρG1(τ) with G1(τ) ∈ C(0, ∞) and it is said to be in the space Cℵυ ,
ℵ ∈ N.

Definition 2. The Riemann–Liouville (RL) Fractional Integral (FI) operator of order α, of a function
G ∈ Cυ, υ > −1, is defined as:

JαG(τ) = 1
Γ[α]

∫ τ

0
(τ − ς)α−1G(ς)dς, α > 0
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J0G(τ) = G(τ).

Numerous scholars have recently researched various RL-FI inequalities; for more details,
see [27–29]. The features of operator Jα that we need in this study are: For G ∈ Cυ, υ ≥ −1,
α, β ≥ 0

Jα JβG(τ) = Jα+βG(τ),

Jατp =
Γ[p + 1]

Γ[p + α + 1]
τα+p.

Definition 3. The Fractional Derivative (FD) of G(τ) in the Caputo sense [30] is defined as:

DαG(τ) = Jm−αDmG(τ).

For m− 1 < α ≤ m, m ∈ N, τ > 0, and G ∈ Cm
−1. In Caputo FD, an ordinary derivative

is estimated, followed by a FI, to attain the desired order of FD. The RL-FI operator is a linear
operation, defined as:

Jα

(
h

∑
`=1

C`G`(τ)
)

=
h

∑
`=1

C` JαG`(τ),

where {C`}h
` are constants. The FDs are considered in the Caputo sense in this study.

Lemma 1. [31] If G(τ) ∈ Cn[a, b], then

(Jα
a+Dα

a+G)(τ) = G(τ)−
n−1

∑
l=0

G(l)(a)
l!

(τ − a)l ,

and (
Jα
b−Dα

b−G
)
(τ) = G(τ)−

n−1

∑
l=0

(−1)lG(l)(b)
l!

(b− τ)l .

In particular, if 0 < R(α) ≤ 1 and G(τ) ∈ Cn[a, b], then

(Jα
a+Dα

a+G)(τ) = G(τ)− G(a) and
(

Jα
b−Dα

b−G
)
(τ) = G(τ)− G(b).

3. Highly Nonlinear Partial Differential Equations of Fractional Order via Fractional
Novel Analytical Method

In this section, we will go through the fundamental ideas behind implementing an
FNAM for the NFPDE. Let us consider the following general Fractional Order PDE:

D2β
ξ v(τ, ξ) = F

(
Dβ

ξ v, v, Dβ
τ v, D2β

τ v, · · ·
)

, (1)

with initial condition

v(τ, 0) = ϕ0(τ), Dβ
ξ v(τ, 0) = ϕ1(τ). (2)

Taking the Fractional Integral (FI) for both sides of Equation (1) from 0 to ξ, we get

Dβ
ξ v(τ, ξ)− Dβ

ξ v(τ, 0) = Iβ
ξ F [v],

Dβ
ξ v(τ, ξ) = ϕ1(τ) + Iβ

ξ F [v], (3)
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where F [v] = F
(

Dβ
ξ v, v, Dβ

τ v, D2β
τ v, · · ·

)
. Then, again taking the FI from 0 to ξ, on both

sides of Equation (3). We obtain,

v(τ, ξ)−v(τ, 0) = ϕ1(τ)
ξβ

Γ(β + 1)
+ I2β

ξ F [v].

Thus,

v(τ, ξ) = ϕ0(τ) + ϕ1(τ)
ξβ

Γ(β + 1)
+ I2β

ξ F [v]. (4)

For F [v] the Fractional Taylor Series (FTS) is extended to about ξ = 0.

F [v] =
∞

∑
k=0

Dkβ
ξ F [v0]

Γ[kβ + 1]
ξkβ, β > 0

F [v] = F [v0] +
Dβ

ξF [v0]

Γ[β + 1]
ξβ +

D2β
ξ F [v0]

Γ[2β + 1]
ξ2β +

D3β
ξ F [v0]

Γ[3β + 1]
ξ3β + · · ·+

Dkβ
ξ F [v0]

Γ[kβ + 1]
ξkβ + · · · . (5)

Substituting Equation (5) with Equation (4), we obtain

v(τ, ξ) = ϕ0(τ) + ϕ1(τ)
ξβ

Γ(β + 1)
+ I2β

ξ

F [v0] +
Dβ

ξF [v0]

Γ[β + 1]
ξβ +

D2β
ξ F [v0]

Γ[2β + 1]
ξ2β + · · ·+

Dkβ
ξ F [v0]

Γ[kβ + 1]
ξkβ + · · ·

,

v(τ, ξ) = ϕ0(τ)+ ϕ1(τ)
ξβ

Γ(β + 1)
+
F [v0]

Γ(2β + 1)
ξ2β +

Dβ
ξF [v0]

Γ(3β + 1)
ξ3β +

D2β
ξ F [v0]

Γ(4β + 1)
ξ4β + · · ·+

Dkβ
ξ F [v0]

Γ((k + 2)β + 1)
ξ(k+2)β + · · · ,

v(τ, ξ) = a0 + a1
ξβ

Γ(β + 1)
+ a2

ξ2β

Γ(2β + 1)
+ a3

ξ3β

Γ(3β + 1)
+ a4

ξ4β

Γ(4β + 1)
+ · · ·+ ak

ξkβ

Γ(kβ + 1)
+ · · · , (6)

where

a0 = ϕ0(τ),

a1 = ϕ1(τ),

a2 = F [v0],

a3 = Dβ
ξF [v0],

a4 = D2β
ξ F [v0],

...

ak = D(k−2)β
ξ F [v0],

such that the highest derivative of v is k. The endorsement of Equation (6) is to extend FTS
for v about ξ = 0. It means that,
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a0 = v(τ, 0),

a1 = Dβ
ξ v(τ, 0),

a2 = D2β
ξ v(τ, 0),

a3 = D3β
ξ v(τ, 0),

a4 = D4β
ξ v(τ, 0),

...

ak = Dkβ
ξ v(τ, 0),

thus we simply obtain our wanted numerical solution.

4. Novel Analytical Method Convergence Analysis

Let us examine the following PDE

v(τ, ξ) = G(v(τ, ξ)), (7)

where a nonlinear operator is G. Using the approach outlined, the achieved solution is
identical to the following sequence

Sn =
n

∑
i=0

vi =
n

∑
i=0

σi
(∆t)i

i!
. (8)

Theorem 1. Let G be an operator from H 7→ H (Hilbert space) and v be the exact solution of
Equation (7). The estimated solution

n

∑
i=0

vi =
n

∑
i=0

σi
(∆t)i

i!

is converged to v, when ∃ a σ (0 ≤ σ < 1), ‖vi+1‖ ≤ σ‖vi‖ ∀i ∈ N∪ {0}.

Proof of Theorem 1. We seek to demonstrate that {Sn}∞
n=0 is a converged Cauchy Se-

quence,

‖Sn+1 −Sn‖ = ‖vn+1‖ ≤ σ‖vn‖ ≤ σ2‖vn−1‖ ≤ · · · ≤ σn‖v1‖ ≤ σn+1‖v0‖. (9)

Now for n, m ∈ N, n ≥ m, we obtain

‖Sn −Sm‖ = ‖(Sn −Sn−1) + (Sn−1 −Sn−2) + · · ·+ (Sm+1 −Sm)‖
≤ ‖Sn −Sn−1‖+ ‖Sn−1 −Sn−2‖+ · · ·+ ‖Sm+1 −Sm‖
≤ σn‖v0‖+ σn−1‖v0‖+ · · ·+ σm+1‖v0‖ (10)

≤
(

σm+1 + σm+2 + · · ·+ σn
)
‖v0‖ = σm+1 1− σn−m

1− σ
‖v0‖.

Hence lim
n,m→∞

‖Sn −Sm‖ = 0, i.e., {Sn}∞
n=0 is a Cauchy Sequence in the H. Thus, ∃ a

S ∈ H s.t lim
n→∞

Sn = S, where S = v.
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Definition 4. We define for every n ∈ N∪ {0},

σn =


‖vn+1‖
‖vn‖

‖vn‖ 6= 0

0 otherwise.
(11)

Corollary 1. From Theorem 1,

n

∑
i=0

vi =
n

∑
i=0

σi
(∆t)i

i!

is converged to v when 0 ≤ σi < 1, i = 0, 1, 2, 3, · · · for further details, see [22,23].

5. Numerical Application for Fractional Novel Analytical Method for Highly
Nonlinear Partial Differential Equations

Four problems are addressed in this section utilizing the suggested Fractional Novel
Analytical Method.

Example 1. The Gardner Equation, which is used to describe internal solitary waves in shallow
water, was generated by combining the KdV and modified KdV Equations [32]. Consider the
Nonlinear Time Fractional Gardner Equation [33],

Dα
ξ v(τ, ξ) = −2λv(τ, ξ)

∂v(τ, ξ)

∂τ
+ 3βv2(τ, ξ)

∂v(τ, ξ)

∂τ
− ∂3v(τ, ξ)

∂τ3 ,

v(τ, 0) =
λ

3β

(
1 + tanh

(
λτ

3
√

2β

))
,

where 0 < α ≤ 1. By carefully following the steps involved in the Fractional Novel Analytical
approach, we obtain,

v(τ, ξ) =
λ

3β
+

ξαλ4sech2

(
λτ

3
√

2β

)

27
√

2β

5
2 Γ(1 + α)

−

√
2ξαλ4sech2

(
λτ

3
√

2β

)

27β

5
2 Γ(1 + α)

+

ξαλ4sech4

(
λτ

3
√

2β

)

81
√

2β

5
2 Γ(1 + α)

+

ξ2αλ7sech4

(
λτ

3
√

2β

)
243β4Γ(1 + 2α)

+ · · · .

When α = 1, the exact solution of this problem is

v(τ, ξ) =
λ

3β

(
1 + tanh

(
λ

3
√

2β

(
τ − 2λ2ξ

9β

)))

where β, λ > 0. Comparisons between exact and numerical solutions are plotted in Figure 1 by
using the third terms of FNAM with τ ∈ [−10, 10] and τ ∈ [−100, 100] at ξ = 0.2, β = λ = 1.
The obtained numerical solutions at different values of α’s with τ ∈ [−1, 1] at ξ = 0.1 and ξ = 0.2
are shown in Figure 2. In Figure 3, 3D plots of the exact and obtained results at τ ∈ [−10, 10] and
ξ ∈ [0, 1] are plotted. Figures 4 and 5 show the Absolute Error 2D and 3D graphs of the obtained
result with τ ∈ [−10, 10] and τ ∈ [−100, 100] at β = λ = 1, respectively.
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(a) (b)

Figure 1. Comparison between the exact and numerical solutions by using FNAM verses (a) τ ∈
[−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.2 and β = λ = 1 for Example 1.

(a) (b)

Figure 2. Two-dimensional plots of the numerical solu-
tion at different α’s values by using FNAM verses τ at time
(a) ξ = 0.1 and (b) ξ = 0.2 for Example 1.

(a) (b)

Figure 3. Three-dimensional plots of (a) the exact solution and (b) FNAM solution at τ ∈ [−10, 10]
and ξ ∈ [0, 1] for Example 1.
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(a) (b)

Figure 4. Absolute Error (AE) 2D graph of obtained numerical solutions using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.1 and β = λ = 1 for Example 1.

(a) (b)

Figure 5. Absolute Error (AE) 3D graph of obtained numerical solutions using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.1 and β = λ = 1 for Example 1.

Example 2. Whitham first presented the Fornberg–Whitham Equation in 1967. It is a fluid
velocity function of independent variables τ and ξ. The equation served as an explanation for the
qualitative aspect of the wave-breaking investigation and produced an exact solution that is a wave-
like solution [34]. Consider the Nonlinear Time Fractional Fornberg–Whitham Equation [35,36],

Dα
ξ v(τ, ξ)− ∂2v(τ, ξ)

∂ξ∂τ2 +
∂v(τ, ξ)

∂τ
= v(τ, ξ)

∂3v(τ, ξ)

∂τ3 −v(τ, ξ)
∂v(τ, ξ)

∂τ
+ 3

∂v(τ, ξ)

∂τ

∂2v(τ, ξ)

∂τ2 ,

v(τ, 0) = e
τ

2 ,

where 0 < α ≤ 1. By carefully following the steps involved in the Fractional Novel Analytical
approach, we obtain,

v(τ, ξ) = e
τ

2 − ξαe
τ

2
2Γ(1 + α)

+
ξ2αe

τ

2
4Γ(1 + 2α)

− ξ3αe
τ

2
8Γ(1 + 3α)

+
ξ4αe

τ

2
16Γ(1 + 4α)

− ξ5αe
τ

2
32Γ(1 + 5α)

+ · · · .

When α = 1, the exact solution of this problem is v(τ, ξ) = e

(
τ

2
−

2ξ

3

)
.

Figures 6 and 7 show the 2D and 3D absolute error graphs of the obtained numerical solution
with τ ∈ [−10, 1] and τ ∈ [−100, 1] at ξ, respectively. The simulation is realized by using the fifth
terms of FNAM with τ ∈ [−10, 10] and τ ∈ [−100, 100] at ξ = 0.1, as shown in Figure 8. The
obtained solutions are plotted in Figure 9 at different values of α’s with τ at ξ = 0.1 and ξ = 0.2.
Three-dimensional plots of the exact and obtained results with τ ∈ [−10, 10] at ξ ∈ [0, 1] are shown
in Figure 10.
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-10 -8 -6 -4 -2 0
0

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

2.5×10-7

τ

A
E

(a) (b)

Figure 6. Absolute Error (AE) 2D graphs of obtained numerical solutions by using FNAM verses
(a) τ ∈ [−10, 1] and (b) τ ∈ [−100, 1] at time ξ = 10−6 for Example 2.

(a) (b)

Figure 7. Absolute Error (AE) 3D graph of obtained numerical solutions by using FNAM verses
(a) τ ∈ [−10, 1] and (b) τ ∈ [−100, 1] and ξ ∈ [0, 10−6] for Example 2.

(a) (b)

Figure 8. Comparison 2D Plots of exact and numerical solutions by using FNAM verses (a) τ ∈
[−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.1 for Example 2.

Example 3. Burger’s equation develops as a model equation for the viscosity-induced smoothing of
a shock wave. Consider the following Nonlinear Burger’s Equation of fractional order [37,38],

Dα
ξ v(τ, ξ) = −av(τ, ξ)

∂v(τ, ξ)

∂τ
+ c

∂2v(τ, ξ)

∂τ2 ,

v(τ, 0) = 2τ,

where 0 < α ≤ 1. By carefully following the steps elaborate in the FNAM, the approximate solution
is then,

v(τ, ξ) = 2τ − 4aτξα

Γ(1 + α)
+

16a2τξ2α

Γ(1 + 2α)
− 96a3τξ3α

Γ(1 + 3α)
+

768a4τξ4α

Γ(1 + 4α)
− 7680a5τξ5α

Γ(1 + 5α)
+ · · · .
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When α = 1 the exact solution of this problem is v(τ, ξ) =
2τ

1 + 2ξ
.

(a) (b)

Figure 9. Two-dimensional plots of numerical solutions
at different α’s values by using FNAM verses τ at time
(a) ξ = 0.1 and (b) ξ = 0.2 for Example 2.

Comparisons among the exact and obtained numerical solutions by using the fifth terms of
FNAM with τ ∈ [−10, 10] and τ ∈ [−100, 100] at ξ = 0.2 and a = c = 1 are shown in Figure 11.
Three-dimensional plots of the exact and obtained numerical result with τ ∈ [−10, 10] at ξ ∈ [0, 0.1]
are shown in Figure 12. The obtained solutions are plotted in Figure 13 at different values of α’s
with τ ∈ [−2, 2] and a = c = 1 at ξ = 0.1 and ξ = 0.2. Figure 14 shows the AE 2D graph of
the obtained numerical solutions with τ ∈ [−10, 10] and τ ∈ [−100, 100] at time ξ = 0.01 and
a = c = 1. AE 3D graphs are shown in Figure 15 with τ ∈ [−10, 10] and τ ∈ [−100, 100] at time
ξ ∈ [0, 0.1] and a = c = 1.

(a) (b)

Figure 10. Three-dimensional plots of (a) the exact and (b) FNAM solutions at τ ∈ [−10, 10] and
ξ ∈ [0, 1] for Example 2.

(a) (b)

Figure 11. Comparison 2D plots of numerical and exact solutions by using FNAM verses (a) τ ∈
[−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.2 and a = c = 1 for Example 3.
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(a) (b)

Figure 12. Three-dimensional plots of (a) the exact and (b) FNAM solutions at τ ∈ [−10, 10],
ξ ∈ [0, 0.1] and a = c = 1 for Example 3.

(a) (b)

Figure 13. Three-dimensional plots of (a) the exact and (b) FNAM solutions at τ ∈ [−10, 10],
ξ ∈ [0, 0.1] and a = c = 1 for Example 3.

Example 4. Consider the following Time Fractional Nonlinear KdV-Burger’s Equation [37]

Dα
ξ v(τ, ξ) = 6v(τ, ξ)

∂v(τ, ξ)

∂τ
− ∂3v(τ, ξ)

∂τ3 ,

v(τ, 0) =
−2kekτ

(1 + ekτ)2 ,

where 0 < α ≤ 1. By carefully following the steps elaborate in the FNAM, the approximate solution
is then,

v(τ, ξ) =
−2kekτ

(1 + ekτ)2 +

ξα

(
−48k3e3kτ

(1 + ekτ)5 +
24k3e2kτ

(1 + ekτ)4 −
48k4e4kτ

(1 + ekτ)5 +
72k4e3kτ

(1 + ekτ)4 −
28k4e2kτ

(1 + ekτ)3 +
2k4ekτ

(1 + ekτ)2

)
Γ(1 + α)

+

ξ2α

(
−4032k5e5kτ

(1 + ekτ)8 +
4032k5e4kτ

(1 + ekτ)7 −
864k5e3kτ

(1 + ekτ)6 −
14112k6e6kτ

(1 + ekτ)8 +
28224k6e5kτ

(1 + ekτ)7 −
18336k6e4kτ

(1 + ekτ)6 + · · ·
)

Γ(1 + 2α)
+ · · · .

When α = 1 the Exact solution of this problem is v(τ, ξ) =
−2k2ek(τ−k2ξ)(
1 + ek(τ−k2ξ)

)2 .
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Figure 14. Absolute Error (AE) 2D graphs of obtained numerical solutions by using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.01 and a = c = 1 for Example 3.

Comparisons between the exact and numerical solutions are plotted in Figure 16 by using
the third terms of FNAM with τ ∈ [−10, 10] and τ ∈ [−100, 100] at ξ = 0.1, k = 1. The
obtained numerical solutions at different values of α’s with τ ∈ [−2, 2] and τ ∈ [−10, 10] at
ξ = 0.1 and ξ = 0.2 are shown in Figure 17. In Figure 18, 3D plots of the exact and obtained
results at τ ∈ [−10, 10] and ξ ∈ [0, 1] are plotted. Figure 19 shows the Absolute Error 2D graphs
of the obtained result with τ ∈ [−10, 10] and τ ∈ [−100, 100] at ξ = 0.1, k = 1. A three-
dimensional graph of the Absolute Error of the obtained numerical solution with τ ∈ [−10, 10] and
τ ∈ [−100, 100] at ξ ∈ [0, 0.1], k = 1 is illustrated in Figure 20.

(a) (b)

Figure 15. Absolute Error (AE) 3D graph of the obtained numerical solutions by using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ ∈ [0, 0.01] and a = c = 1 for Example 3.

(a) (b)

Figure 16. Comparison between the exact and numerical solutions by using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.1 and k = 1 for Example 4.
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(a) (b)

(c) (d)

Figure 17. Two-dimensional plots of the numerical solu-
tion at different α’s values by using FNAM verses τ at time
(a) ξ = 0.1 and τ ∈ [−2, 2], (b) ξ = 0.1 and τ ∈ [−10, 10], (c) ξ = 0.2 and τ ∈ [−2, 2] and
(d) ξ = 0.2 and τ ∈ [−10, 10] for Example 4.

(a) (b)

Figure 18. Plots of (a) the exact solution and (b) FNAM solution at k = 1, τ ∈ [−10, 10] and ξ ∈ [0, 1]
for Example 4.

(a) (b)

Figure 19. Absolute Error (AE) 2D graphs of obtained numerical solutions by using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ = 0.1 and k = 1 for Example 4.
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(a) (b)

Figure 20. Absolute Error (AE) 3D graph of the obtained numerical solutions by using FNAM verses
(a) τ ∈ [−10, 10] and (b) τ ∈ [−100, 100] at time ξ ∈ [0, 0.1] and k = 1 for Example 4.

6. Conclusions

The numerical approach provided here has been utilized to solve highly nonlinear frac-
tional partial differential equations. The purposed method is very efficient at finding and
comparing the results of nonlinear FPDEs with the exact solution. Based on the numerical
solutions obtained, we can affirm that there is an excellent agreement with the existing so-
lutions and demonstrate that this technique can be utilized to tackle the proposed problems
effectively. By adding appropriate terms to the solution’s series, the error can be reduced.
The solution obtained at each fractional order is found to be converging to the integer order.
We have compared the provided numerical solutions with exact solutions to demonstrate
the validity and vast potential of the suggested numerical approach. The proposed tech-
nique is more reliable, efficient, and easy to use; it is also less computationally intense
to find the solution to the nonlinear partial differential equation of the non-integer order.
This method could be applied to a system of fractional differential equations, fractional
oscillators, fractional integro-differential equations, etc.
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