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Abstract: In this paper, we focus on the existence of Hilfer fractional stochastic differential systems
via almost sectorial operators. The main results are obtained by using the concepts and ideas from
fractional calculus, multivalued maps, semigroup theory, sectorial operators, and the fixed-point
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1. Introduction

Fractional calculus, which is a logical extension of conventional calculus, allows for the
definition of integrals and derivatives for any real order. Since the invention of fractional
calculus in the 17th century, a number of novel derivatives have been developed, including
R-L, Hadamard, Grunwald–Lenikov, and Caputo, to name just a few [1–4]. Many authors
described the fractional order models with the most common definitions of fractional
derivatives defined by Caputo and Riemann–Liouville sense. The Caputo derivative is
of use to modeling phenomena which takes account of interactions within the past and
also problems with nonlocal properties. As extensions of the classical integer order partial
differential equations [5], fractional order partial differential equations are increasingly
employed to describe issues in finance, fluid flow, and other areas of application. In a
diffusion or dispersion model, increased diffusion results when a fractional derivative
takes the place of the second derivative (also called super-diffusion). Laplace–Fourier
transform techniques can be used to acquire analytical solutions for fractional partial differ-
ential equations with constant coefficients. However, a model with variable coefficients
is necessary for many real-world issues [6]. Meerschaert and Tadjeran [7] used the finite
difference method to solve two-point boundary differential equations with fractional order
derivatives. The numerical solution for the initial boundary value time fractional partial
differential equations was provided by Podlubny [8]. Langlands and Henry [9] covered

the numerical approaches for the time-fractional diffusion equations ∂γu(x,t)
∂tγ = ∂2u(x,t)

∂x2 . The
suitable fractional derivative depends on the system under consideration, which is why
there are so many publications denoting different fractional operators. Scientific models
address a wide range of real-world behaviours, such as anomalous diffusion, ecological
impacts, blood circulation issues, disease propagation, control mechanisms, etc., by using
fractional order differential and integral operators, which are nonlocal in nature. Fractional
calculus offers a wide range of applications, which has prompted numerous scholars to
work on the theoretical elements of this branch of modern analysis. In fractional calculus,
there has been a great deal of progress [1–4,8,10–12]. In particular, the articles “Design,
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Analysis and Comparison of a Nonstandard Computational Method for the Solution of
a General Stochastic Fractional Epidemic Model” [13], “Structure Preserving Algorithm
for Fractional Order Mathematical Model of COVID-19,” and “Analysis of the fractional
diarrhea model with Mittag–Leffler kernel” [14,15], and “A Fractal Fractional Model for Cer-
vical Cancer due to Human Papillomavirus Infection,” and “Optimal existence of fractional
order computer virus epidemic model and numerical simulations” [16,17] are important.

Over the past ten years, fractional calculus has emerged as one of the most helpful
methods for comprehending lengthy operations. These models appeal to pure mathe-
maticians, scientists, and designers alike. The most effective fractional equations in these
models are those with fractional order derivatives. Academics are also concentrating on the
qualitative characteristics of fractional dynamical systems, such as their stability, existence,
and controllability. Recently, stochastic partial differential equations have attracted a great
deal of attention because they arise naturally in mathematical modeling of various phenom-
ena in the social and natural sciences [18]. Numerous writers [19,20] have looked at the
qualitative characteristics of stochastic partial differential equations in infinite dimensional
spaces, including existence, stability, controllability, and invariant measures, among others.
Because stochastic fluctuation cannot be avoided in real-world applications, computational
issues for stochastic differential equations must be researched [21]. The applicability of
stochastic differential equations in several scientific and engineering fields has attracted
attention. It should be remembered that noise or stochastic discomfort cannot be avoided in
nature and not even in artificial systems. Due to its widespread application in the modeling
of a variety of complex dynamical systems in the biological, physical, and medical areas,
stochastic differential systems have attracted attention; one can see [22–25] for examples.
Differential inclusions tools make it easier to investigate dynamical systems with velocities
that are not only governed by the system’s state.

In order to examine the almost sectorial operators, the authors in [26] created new
spaces and developed a functional calculus concept. As ℘ approached zero, they explored
the properties of both the mild and classic semigroups, as well as possible explanations for
their existence. In [27], the functional calculus was used to construct two sets of operators,
and the Caputo derivative was used to solve various fractional Cauchy problems. The exis-
tence of mild solutions for fractional differential evolution systems with impulse employing
sectorial operators was investigated by the authors of [28,29]. In [21,23], the existence of
almost periodic fractional differential equation solutions was investigated. In the context of
finite dimensional Banach spaces, the authors of [30] are concerned with a novel generic
class of nonlocal fractional differential systems with impulse via the Lipschitz multivalued
function and a linear sectorial operator. Researchers have made significant progress in the
field of sectorial operators in [26,31–34].

Hilfer introduced additional fractional order derivatives, including the R-L and Caputo
fractional derivatives [35–38]. Furthermore, the importance and applicability of the HF
derivative have been discovered in conceptual simulations of dielectric relaxation in crystal
materials, polymer science, rheological constitutive modeling, engineering, and other fields.
Gu and Trujillo [39] in particular used a MNC method and a fixed-point approach to
justify the existence of an integral solution to the evolution problem with the HF derivative.
He created the recent parameter ρ ∈ [0, 1] and a fractional parameter ν, in which ρ = 0
generates the R-L derivative and ν = 1 generates the Caputo derivative, to define the order
of the derivative. Numerous publications have been written about HF calculus [23,39–42].
In [43–45], investigators demonstrate the existence of the mild solution for Hilfer fractional
differential systems via almost sectorial operators by using the fixed-point method. By
using a fixed point method, refs. [46–48] investigated the solvability and controllability of
differential systems.
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The existence of HF stochastic differential systems with almost sectorial operators
is discussed in this article, which is prompted by the theory presented in the preceding
publications. In this manuscript, we will focus on the following subject: Hilfer fractional
stochastic differential inclusions contain almost sectorial operators:

Dν,ρ
0+ z(℘) ∈ Az(℘) +G(℘, z(℘))

dW(℘)

d℘
, ℘ ∈ J ′ = (0, b], (1)

I(1−ν)(1−ρ)
0+ z(0) = z0. (2)

In the above, z(·) accepts the value in a Hilbert space Z with 〈·, ·〉 and ‖ · ‖; Dν,ρ
0+

represents the HF derivative of sequence ν ∈ (0, 1) and type ρ ∈ [0, 1]. An almost sectorial
operator A is of the analytic semigroup {T(℘),℘ ≥ 0} on Z . Assume that U is a separable
Hilbert space with 〈·, ·〉 and ‖ · ‖. For a U-valued Wiener process with a finite trace nuclear
covariance operator Q ≥ 0, we have {W(℘)}℘≥0. The function G : J ×Z → L0

2(J ,Z) is a
nonempty, bounded, closed, and convex multivalued map with J = [0, b].

Our article is organised as follows: Section 2 covers fractional calculus, multivalued
maps, semigroup theory, and sectorial operators, which includes several important concepts
and well-known results. We present the existence of the mild solution in Section 3 and
give an example in Section 4 to explain our primary claims. In the end, some conclusions
are provided.

2. Preliminaries

We provide the required theorems and results in this section, which will be used
throughout the essay to get the new results.

The symbols (Z , ‖ · ‖) and (U, ‖ · ‖) signify two real Hilbert spaces. Consider that
(Ω, E , P) is a complete probability space associated to the whole family of right continuous
increasing sub σ-algebras {E℘ : ℘ ∈ J } fulfilling E℘ ⊂ E . Let W = (W℘)℘≥0 be a Q-Wiener
process with the covariance operator Q such that Tr(Q) < ∞ defined on (Ω, E , P). We as-
sume that U contains an orthonormal system {en}n≥1, a bounded sequence of nonnegative
real numbers βn such that Qen = βnen, n = 1, 2, · · · and {µn} of independent Brownian
motions such that

(W(℘), e)U =
∞

∑
k=1

√
βn(en, e)µn(℘), e ∈ U, ℘ ≥ 0.

Assume that L0
2 = L2(Q

1
2 U,Z) denotes for the space of all Q–Hilbert–Schmidt op-

erators Ψ : Q
1
2 U → Z with the inner product ‖Ψ‖2

Q = 〈Ψ, Ψ〉 = Tr(ΨQΨ) is a Hilbert
space. Assume 0 ∈ $(A), is the resolvent set of A, and S(·) is uniformly bounded, i.e.,
‖S(℘)‖ ≤ M, M ≤ 1, and ℘ ≥ 0. For η ∈ (0, 1], the fractional power operator Aη on its
domain D(Aη) can thus be determined. Furthermore, D(Aη) is dense in Z .

The essential characteristics of Aη are as follows.

Theorem 1.

1. Suppose 0 < η ≤ 1, accompanying Zη := D(Aη) is a Banach space with
‖z‖η = ‖Aηz‖, z ∈ Zη .

2. Suppose 0 < γ < η ≤ 1, corresponding D(Aη) → D(Aγ) and the implementation are
compact whenever A is compact.

3. For all 0 < η ≤ 1, there exists Cη > 0 such that

‖AηS(℘)‖ ≤
Cη

℘η , 0 < ℘ ≤ b.
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The collection of all strongly measurable, square-integrable, Z-valued random variables,
denoted by L2(Ω,Z), is a Hilbert space associated with ‖z(·)‖L2(Ω,Z) = (E‖z(., W)‖2)

1
2 , where

E is defined as E(z) =
∫

Ω z(W)dP. An important subspace of L2(Ω,Z) is given by

L0
2(Ω,Z) = {z ∈ L2(Ω,Z), z is E0 −measurable}.

For b > 0, let J = [0, b] and J ′ = (0, b]. Denote C(J ′, L2(Ω,Z)) = C as the Banach space
of all continuous functions fromJ ′ to L2(Ω,Z) that satisfy the condition sup℘∈J ′ E‖z(℘)‖2 < ∞.
Consider, ∆ =

{
z ∈ C(J ′, L2(Ω,Z)) : lim℘→0 ℘

1−ρ+ρν−νϑz(℘) exists and finite
}

, is a Hilbert

space with ‖ · ‖∆ and ‖z‖∆ = (sup℘∈J ′ E‖℘1−ρ+ρν−νϑz(℘)‖2)
1
2 .

We write

1. For ρ = 1, ∆ = C and ‖z‖∆ = sup℘∈J ′ ‖z(℘)‖.
2. For ρ = 0, ‖z‖∆ = sup℘∈J ′ ‖℘(1+νϑ)z(℘)‖.
3. Let z(℘) = ℘1−ρ+ρν−νϑu(℘), ℘ ∈ J ′, then u ∈ ∆ ⇐⇒ u ∈ C and ‖z‖∆ = ‖u‖.
Fix Br(J ) = {u ∈ C such that ‖u‖ ≤ r} and B∆

r (J ) = {z ∈ ∆ such that ‖z‖∆ ≤ r}.

Definition 1. (See [4]). Thefractional integral of order ν for a function G (℘) is given by

Iν
0+G (℘) =

1
Γ(ν)

∫ ℘

0
G (`)(℘− `)ν−1d`, ℘ > 0, ν > 0.

The gamma function is represented by the aforementioned formula, Γ(·), and right side is defined
point-wise on [0, ∞).

Definition 2. (See [4]). The R-L fractional derivative of a function G (℘) : [0, ∞)→ R with order
ν may be expressed as

LDνG (℘) =
1

Γ(1− ν)

d
d℘

∫ ℘

0

G (`)

(℘− `)ν
d`, ℘ > 0, 0 < ν < 1.

Definition 3. (See [4]). For 0 < ν < 1, the Caputo fractional derivative of order ν for a function
G (℘) : [0, ∞)→ R is denoted by

CDνG (℘) =
1

Γ(1− ν)

∫ ℘

0

G ′(`)

(℘− `)ν
d`.

Definition 4. (See [39]). Let 0 < ν < 1 and 0 ≤ ρ ≤ 1. The HF derivative of order ν and type ρ
is denoted as

Dν,ρ
0+ G (℘) = Iν(1−ρ)

0+
d

d℘
I(1−ν)(1−ρ)
0+ G (℘).

Definition 5. (See [26,49]). Let 0 < δ < Ψ and 0 < ϑ < 1. We define S0
δ = {v ∈ C\{0} such

that |arg v| < δ} and its closure by Sδ,

i.e., Sδ = {v ∈ C\{0} such that |arg v| ≤ δ} ∪ {0}.

Consider 0 < ϑ < 1, 0 < v < π
2 , we determine Θ−ϑ

v is the set of all closed and linear
operators A : D(A) ⊂ Z → Z that fulfills

(a) σ(A) ⊆ Sv;
(b) R(v, A)L(Z) ≤ Mδ|v|−ϑ, given by f or all v < δ < π and ∃ Mδ be a constant ,

then A ∈ Θ−ϑ
v is identified as almost sectorial operator on Z .

Proposition 1. (See [49]). Let T(℘) be the compact semigroup defined in [26] and A ∈ Θ−ϑ
v for

0 < ϑ < 1 and 0 < v < π
2 . Then the proceeding outcomes are fulfilled:
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1. T(℘) is analytic and dn

d℘n T(℘) = (−A)nT(℘), ℘ ∈ S π
2 −v;

2. T(℘+ `) = T(℘)T(`), for all `,℘ ∈ S π
2 −v;

3. ‖T(℘)‖L(Z) ≤ β0℘
ϑ−1, ℘ > 0; where β0 > 0 be the constant;

4. If ΣT = {z ∈ Z : limt→0+ T(℘)z = z}. Then D(Aθ) ⊂ ΣT , if θ > 1 + ϑ;
5. (v− A)−1 =

∫ ∞
0 e−v`T(`)d`, v ∈ C and Re(v) > 0.

Definition 6. (See [50]). The Wright function Mν(β) is defined by

Mν(β) = ∑
n∈N

(−β)n−1

Γ(1− νn)(n− 1)!
, β ∈ C, (3)

with the following property ∫ ∞

0
θι Mν(θ)dθ =

Γ(1 + ι)

Γ(1 + νι)
.

Theorem 2. (See [4]). In the uniform operator topology, Sν,ρ(℘) and Qν(℘) are continuous for
℘ > 0, for all b > 0, and the continuity is uniform on [b, ∞).

Definition 7. An E℘-adapted stochastic process z(℘) ∈ C(J ′,Z) is called a mild solution of
the Cauchy problem (1) and (2), given I(1−ν)(1−ρ)

0 z(0) = z0; z0 ∈ L0
2(Ω,Z) and there exists

G ∈ L2(Ω,Z) such that G (℘) ∈ G(℘, z(℘)) on ℘ ∈ J ′ and that satisfied

z(℘) = Sν,ρ(℘)z0 +
∫ ℘

0
Kν(℘)(℘− `)G(`, z(`))dW(`), ℘ ∈ J ′, (4)

where Sν,ρ(℘) = Iρ(1−ν)
0 Kν(℘), Kν(℘) = ℘ν−1Qν(℘) and Qν(℘) =

∫ ∞
0 νξMν(ξ)T(℘νξ)dξ.

Lemma 1. (See [44]).

1. Kν(℘) and Sν,ρ(℘) are strongly continuous, for ℘ > 0.
2. The bounded linear operators on Z are Kν(℘) and Sν,ρ(℘), for all fixed ℘ ∈ S π

2 −v, and we
have

‖Kν(℘)z‖ ≤ L1℘
−1+νϑ‖z‖, ‖Qν(℘)z‖ ≤ L1℘

−ν+νϑ‖z‖,
‖Sν,ρ(℘)z‖ ≤ L2℘

−1+ρ−ρν+νϑ‖z‖,

where L1 =
βpΓ(ϑ)
Γ(νϑ)

, L2 =
βpΓ(ϑ)

Γ(ρ(1−ν)+νϑ)
.

Lemma 2. (See [51]). Let J be a compact real interval, and BCC(Z) is the family of all bounded,
closed, convex, and nonempty subset of Z . Let G be the L2-Caratheodory multivalued map that
fulfills

SG,z = {G ∈ L2(J , L(U,Z)) : G (℘) ∈ G(℘, z(℘)), ℘ ∈ J }, (5)

which is nonempty. Let Υ : L2(J ,Z)→ C be the linear continuous function, then

Υ ◦ SG : C → BCC(C), z→ (Υ ◦ SG)(z) = Υ(SG,z), (6)

is closed graph operator in C × C.

Lemma 3. (Dhage fixed-point theorem) (See [52,53]). Let Z be a Hilbert space, and σ1 : Z →
BCC(Z) and σ2 : Z → BCC(Z) are any two multivalued operators that satisfy:

1. σ1 is contraction and
2. σ2 is completely continuous. Then either

(a) the operator inclusions µz ∈ σ1z + σ2z has a solution for µ = 1, or
(b) the set Λ = {z ∈ Z : µz ∈ σ1z + σ2z, µ > 1} is unbounded.
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3. Existence of Mild Solution

We are mostly interested in the existence of (1) and (2). Before we begin looking at the
key outcomes, we make the proceeding assumptions:

(H1) The operator {T(℘), ℘ ≥ 0} is compact.
(H2) The multivalued map G : J × Z → BCC(L(U,Z)) is measurable to ℘ for all fixed

z ∈ Z , u.s.c. to z for every ℘ ∈ J and for all z ∈ C the set

SG,z =
{
G ∈ L2(J , L(U,Z)) : G (℘) ∈ G(℘, z(℘)), ℘ ∈ J

}
is nonempty.

(H3) There exists a constant q1 ∈ (0, q) and LG,r(℘) ∈ L
1

q1 (J ′,R+) satisfying

lim
℘→0+

℘1−ρ+ρν−νϑ Iνϑ
0+ LG,r(℘) = 0 and sup

{
E‖G ‖2 : G (℘) ∈ G(℘, z(℘))

}
≤ LG,r(℘),

for all z(℘) ∈ B∆
r and a.e. ℘ ∈ J .

(H4) For the function ` → (℘− `)2(νϑ−1)LG,r(`) ∈ L1(J ,R+), there exists Mr > 0 such
that

lim
r→∞

inf
℘2(1−ρ+ρν−νϑ)

∫ ℘
0 (℘− `)2(νϑ−1)LG,r(`)d`

r
= Mr < ∞. (7)

Theorem 3. Assume the hypotheses (H1)–(H4) are fulfilled. Then the Hilfer fractional stochastic
differential systems (1) and (2) have a mild solution on J , provided 2Tr(Q)β2

p Mr < 1, and
z0 ∈ D(Aθ) with θ > 1 + ϑ.

Proof. We approach the operator Γ : C → 2C is denoted by Γz the set of Ψ ∈ C such that

Ψ(z(℘)) =

{
0, ℘ = 0,
℘1−ρ+ρν−νϑ

[
Sν,ρ(℘)z0 +

∫ ℘
0 (℘− `)ν−1Qν(℘− `)G (`)dW(`)

]
, ℘ ∈ (0, b],

(8)

where G ∈ SG,z. To prove that Ψ seems to have a fixed point. Now we’ll look at an operator
Ψ = Ψ1 + Ψ2, where Ψk : Br(J )→ Br(J ), k = 1, 2.

Ψ1z(℘) = ℘1−ρ+ρν−νϑSν,ρ(℘)z0,

Ψ2z(℘) = ℘1−ρ+ρν−νϑ
∫ ℘

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`).

Step 1: To show that Ψ1 is a closed, convex subset of C for all z ∈ Br(J ) we will now prove
Ψ1 has a bounded value in Br(J ).

E‖Ψ1z(℘)‖2 ≤ sup
℘∈[0,b]

{
℘2(1−ρ+ρν−νϑ)E‖Sν,ρ(℘)z0‖2

}

≤ sup
℘∈[0,b]

{
℘2(1−ρ+ρν−νϑ)

(
Γ(ϑ)

Γ(ρ(1− ν) + νϑ)

)2

β2
p℘

2(−1+ρ−ρν+νϑ)‖z0‖2
}

≤ b2(1−ρ+ρν−νϑ)

(
Γ(ϑ)

Γ(ρ(1− ν) + νϑ)

)2

β2
pb2(−1+ρ−ρν+νϑ)‖z0‖2

≤ b2(1−ρ+ρν−νϑ)L∗,

where L∗ =
(

Γ(ϑ)
Γ(ρ(1−ν)+νϑ)

)2

β2
pb2(−1+ρ−ρν+νϑ)‖z0‖2.

Hence Ψ1 is bounded.
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Step 2: To prove, Ψ1 is contraction on Br(J ).
Consider z1, z2 ∈ Br(J ),

E
∥∥Ψ1z1(℘)−Ψ1z2(℘)

∥∥2 ≤ ℘2(1−ρ+ρν−νϑ)E‖Sν,ρ(℘)z0 − Sν,ρ(℘)z0‖2.

We do not need to show anything because Ψ1 is a contraction.
Step 3: For the Ψ2 is completely continuous of Ψ2.
Claim 1: For all z ∈ Br(J ), Ψ2z is convex.

Let Ψ1, Ψ2 ∈ {Ψ2z(℘)} and G1, G2 ∈ SG,z such that ℘ ∈ J , and we know

Ψk = ℘1−ρ+ρν−νϑ
∫ ℘

0
(℘− `)ν−1Qν(℘− `)Gk(`)dW(`), k = 1, 2.

Consider χ ∈ [0, 1] then each of ℘ ∈ J , we obtain

χΨ1 + (1− χ)Ψ2(℘) = ℘1−ρ+ρν−νϑ
∫ ℘

0
(℘− `)ν−1Qν(℘− `)

[
χG1(`) + (1− χ)G2(`)

]
dW(`).

We know that SG,z is convex. So, χG1 + (1− χ)G2 ∈ SG,z.
Therefore,

χΨ1 + (1− χ)Ψ2 ∈ Ψ2z(℘),

and hence Ψ2 is convex.
Claim 2: In Br(J ), Ψ2 mapping bounded sets into bounded sets. It is sufficient to show
that there exists Λ > 0 such that for all z ∈ Br(J ), and that ‖Ψ2z‖2 ≤ Λ exists. Consider
that for all z ∈ Br(J ), we have

E
∥∥Ψ2z(℘)

∥∥2 ≤ sup
℘∈[0,b]

℘2(1−ρ+ρν−νϑ)E
∥∥ ∫ ℘

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`)

∥∥2

≤ Tr(Q) sup
℘∈[0,b]

℘2(1−ρ+ρν−νϑ)
∫ ℘

0
β2

p(℘− `)2(νϑ−1)E‖G (`)‖2d`

≤ Tr(Q) sup
℘∈[0,b]

℘2(1−ρ+ρν−νϑ)β2
p

LG,r(℘)

(2νϑ− 1)
℘2νϑ−1

≤ Tr(Q)b1−2ρ(1−ν)β2
p

LG,r(b)
(2νϑ− 1)

≤ Λ.

As a result, it is bounded.
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Claim 3: To show that Ψ2 mapping bounded set to equicontinuous set of Br(J ).
Consider 0 < ℘1 < ℘2 ≤ b and there exists G ∈ SG,z, we get

E
∥∥∥∥Ψ2z(℘2)−Ψ2z(℘1)

∥∥∥∥2

≤ E
∥∥∥∥℘1−ρ+ρν−νϑ

2

∫ ℘2

0
(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

− ℘
1−ρ+ρν−νϑ
1

∫ ℘1

0
(℘1 − `)ν−1Qν(℘1 − `)G (`)dW(`)

∥∥∥∥2

≤ E
∥∥∥∥℘1−ρ+ρν−νϑ

2

∫ ℘1

0
(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

+ ℘
1−ρ+ρν−νϑ
2

∫ ℘2

℘1

(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

− ℘
1−ρ+ρν−νϑ
1

∫ ℘1

0
(℘1 − `)ν−1Qν(℘1 − `)G (`)dW(`)

∥∥∥∥2

≤ 3E
∥∥∥∥℘1−ρ+ρν−νϑ

2

∫ ℘2

℘1

(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

∥∥∥∥2

+ 3E
∥∥∥∥℘1−ρ+ρν−νϑ

2

∫ ℘1

0
(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

− ℘
1−ρ+ρν−νϑ
1

∫ ℘1

0
(℘1 − `)ν−1Qν(℘2 − `)G (`)dW(`)

∥∥∥∥2

+ 3E
∥∥∥∥℘1−ρ+ρν−νϑ

1

∫ ℘1

0
(℘1 − `)ν−1Qν(℘2 − `)G (`)dW(`)

− ℘
1−ρ+ρν−νϑ
1

∫ ℘1

0
(℘1 − `)ν−1Qν(℘1 − `)G (`)dW(`)

∥∥∥∥2

= I1 + I2 + I3,

where

I1 = 3E
∥∥∥∥℘1−ρ+ρν−νϑ

2

∫ ℘2

℘1

(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

∥∥∥∥2

≤ 3Tr(Q)℘
2(1−ρ+ρν−νϑ)
2

∫ ℘2

℘1

(℘2 − `)2(ν−1)‖Qν(℘2 − `)‖2E‖G (`)‖2d`

≤ 3Tr(Q)β2
p℘

2(1−ρ+ρν−νϑ)
2

∫ ℘2

℘1

(℘2 − `)2(νϑ−1)LG,r(`)d`

≤ 3Tr(Q)β2
p

{[
℘

2(1−ρ+ρν−νϑ)
2

∫ ℘2

0
(℘2 − `)2(νϑ−1)LG,r(`)d`

− ℘
2(1−ρ+ρν−νϑ)
1

∫ ℘1

0
(℘1 − `)2(νϑ−1)LG,r(`)d`

]
+
∫ ℘1

0

[
℘

2(1−ρ+ρν−νϑ)
1 (℘1 − `)2(νϑ−1) − ℘

2(1−ρ+ρν−νϑ)
2 (℘2 − `)2(νϑ−1)

]
LG,r(`)d`

}
.

Then I1 → 0 as ℘2 → ℘1 by using (H2) and the Lebesgue dominated convergent theorem:
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I2 = 3E
∥∥∥∥℘(1−ρ+ρν−νϑ)

2

∫ ℘1

0
(℘2 − `)ν−1Qν(℘2 − `)G (`)dW(`)

− ℘
1−ρ+ρν−νϑ
1

∫ ℘1

0
(℘1 − `)ν−1Qν(℘2 − `)G (`)dW(`)

∥∥∥∥2

≤ 3E
∥∥∥∥ ∫ ℘1

0

[
℘

1−ρ+ρν−νϑ
2 (℘2 − `)ν−1 − ℘

1−ρ+ρν−νϑ
1 (℘1 − `)ν−1

]
Qν(℘2 − `)G (`)dW(`)

∥∥∥∥2

≤ 3Tr(Q)
∫ ℘1

0
E
∥∥∥∥℘1−ρ+ρν−νϑ

2 (℘2 − `)ν−1 − ℘
1−ρ+ρν−νϑ
1 (℘1 − `)ν−1

∥∥∥∥2

‖Qν(℘2 − `)‖2E‖G (`)‖2d`

≤ 3Tr(Q)β2
p

∫ ℘1

0
(℘2 − `)2ν(ϑ−1)E

∥∥∥∥℘1−ρ+ρν−νϑ
2 (℘2 − `)ν−1

− ℘
1−ρ+ρν−νϑ
1 (℘1 − `)ν−1

∥∥∥∥2

LG,r(`)d`,

consider

(℘2 − `)2ν(ϑ−1)E
∥∥∥∥℘1−ρ+ρν−νϑ

2 (℘2 − `)ν−1 − ℘
1−ρ+ρν−νϑ
1 (℘1 − `)ν−1

∥∥∥∥2

LG,r(`)

≤
[

2℘2(1−ρ+ρν−νϑ)
2 (℘2 − `)2ν(ϑ−1)

+ 2℘2(1−ρ+ρν−νϑ)
1 (℘1 − `)2ν−2(℘2 − `)2ν(ϑ−1)

]
LG,r(`)

≤
[

2℘2(1−ρ+ρν−νϑ)
2 (℘2 − `)2ν(ϑ−1) + 2℘2(1−ρ+ρν−νϑ)

1 (℘1 − `)2ν(ϑ−1)
]

LG,r(`)

≤ 4℘2(1−ρ+ρν−νϑ)
1 (℘1 − `)2ν(ϑ−1)LG,r(`),

and
∫ ℘1

0 4℘2(1−ρ+ρν−νϑ)
1 (℘1 − `)2ν(ϑ−1)LG,r(`)d` exists ` ∈ (0,℘1], so by Lebesgue’s domi-

nated convergence theorem, we have∫ ℘1

0
(℘2 − `)2ν(ϑ−1)E

∥∥∥∥℘1−ρ+ρν−νϑ
2 (℘2 − `)ν−1 − ℘

1−ρ+ρν−νϑ
1 (℘1 − `)ν−1

∥∥∥∥2

LG,r(`)d`→ 0

as ℘2 → ℘1, so we conclude lim℘2→℘1 I2 = 0.
For all ε > 0, we have
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I3 = 3E
∥∥∥∥ ∫ ℘1

0
℘

1−ρ+ρν−νϑ
1

[
Qν(℘2 − `)−Qν(℘1 − `)

]
(℘1 − `)ν−1G (`)dW(`)

∥∥∥∥2

≤ 3Tr(Q)
∫ ℘1

0
℘

2(1−ρ+ρν−νϑ)
1

∥∥Qν(℘2 − `)−Qν(℘1 − `)
∥∥2
(℘1 − `)2(ν−1)E‖G (`)‖2d`

≤ 3Tr(Q)
∫ ℘1

0
℘

2(1−ρ+ρν−νϑ)
1

∥∥Qν(℘2 − `)−Qν(℘1 − `)
∥∥2
(℘1 − `)2(ν−1)LG,r(`)d`

≤ 3Tr(Q)

{ ∫ ℘1−ε

0
℘

2(1−ρ+ρν−νϑ)
1

∥∥Qν(℘2 − `)−Qν(℘1 − `)
∥∥2
(℘1 − `)2(ν−1)LG,r(`)d`

+
∫ ℘1

℘1−ε
℘

2(1−ρ+ρν−νϑ)
1

∥∥Qν(℘2 − `)−Qν(℘1 − `)
∥∥2
(℘1 − `)2(ν−1)LG,r(`)d`

}
≤ 3Tr(Q)

{
℘

2(1−ρ+ρν−νϑ)
1

∫ ℘1−ε

0
(℘1 − `)2(ν−1)LG,r(`)d`

sup
`∈[0,℘1−ε]

∥∥Qν(℘2 − `)−Qν(℘1 − `)
∥∥2

+ β2
p

∫ ℘1

℘1−ε
℘

2(1−ρ+ρν−νϑ)
1 [2(℘2 − `)2ν(ϑ−1) + 2(℘1 − `)2ν(ϑ−1)]LG,r(`)d`

}
≤ 3Tr(Q)

{
℘

2(1−ρ+ρν−νϑ)−2ν(ϑ−1)
1

∫ ℘1−ε

0
(℘1 − `)2(νϑ−1)LG,r(`)d` sup

`∈[0,℘1−ε]

∥∥Qν(℘2 − `)

−Qν(℘1 − `)
∥∥2

+ 4β2
p

∫ ℘1

℘1−ε
℘

2(1−ρ+ρν−νϑ)
1 (℘1 − `)2(νϑ−1)LG,r(`)d`

}
.

From Theorem 2 and lim℘2→℘1 I1 = 0, we obtain I3 → 0 independently of z ∈ Br(J )
as ℘2 → ℘1, ε → 0. Hence ‖Ψ2z(℘2)− Ψ2z(℘1)‖2 → 0 independently of z ∈ Br(J ) as
℘2 → ℘1. This implies that {Ψ2z(℘) : z ∈ Br(J )} is equicontinuous on J .
Claim 4: To prove, Ψ2 is completely continuous.

For α ∈ (0,℘) and η > 0, assume the operator Ψ′2 on Br(J ) by

(Ψ2)α,ηz(℘) = ℘1−ρ+ρν−νϑ
∫ ℘−α

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`)

= ν℘1−ρ+ρν−νϑ
∫ ℘−α

0

∫ ∞

η
θMν(θ)(℘− `)ν−1T((℘− `)νθ)G (`)dθdW(`)

= ν℘1−ρ+ρν−νϑT(ανη)
∫ ℘−η

0

∫ ∞

η
θMν(θ)(℘− `)ν−1T((℘− `)νθ − ανη)

G (`)dθdW(`).

Hence Vα,η(℘) = {(Ψ2)α,ηz(℘) : z ∈ Br(J )} is precompact in Z for all α ∈ (0,℘) and
η > 0 because of the compactness of T(ανη). For all z ∈ Br(J ), we get
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E
∥∥∥∥Ψ2z(℘)− (Ψ2)α,ηz(℘)

∥∥∥∥2

≤ E
∥∥∥∥℘1−ρ+ρν−νϑ

∫ ℘

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`)

− ℘1−ρ+ρν−νϑ
∫ ℘−α

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`)

∥∥∥∥2

≤ 2E
∥∥∥∥ν℘1−ρ+ρν−νϑ

∫ ℘

0

∫ η

0
θMν(θ)(℘− `)ν−1T((℘− `)νθ)

G (`)dθdW(`)

∥∥∥∥2

+ 2E
∥∥∥∥ν℘1−ρ+ρν−νϑ

∫ ℘

℘−α

∫ ∞

η
(℘− `)ν−1θMν(θ)T((℘− `)νθ)

G (`)dθdW(`)

∥∥∥∥2

≤ 2Tr(Q)ν2℘2(1−ρ+ρν−νϑ)
∫ ℘

0

∫ η

0
θ2M2

ν(θ)(℘− `)2(ν−1)

‖T((℘− `)νθ)‖2E‖G (`)‖2dθd`

+ 2Tr(Q)ν2℘2(1−ρ+ρν−νϑ)
∫ ℘

℘−α

∫ ∞

η
(℘− `)2(ν−1)θ2M2

ν(θ)

‖T((℘− `)νθ)‖2E‖G (`)‖2dθd`

≤ 2Tr(Q)ν2β2
0℘

2(1−ρ+ρν−νϑ)
∫ ℘

0

∫ η

0
θ2M2

ν(θ)(℘− `)2(ν−1)

(℘− `)2ν(ϑ−1)θ2(ϑ−1)LG,r(`)dθd`

+ 2Tr(Q)ν2β2
0℘

2(1−ρ+ρν−νϑ)
∫ ℘

℘−α

∫ ∞

η
(℘− `)2(ν−1)θ2M2

ν(θ)

(℘− `)2ν(ϑ−1)θ2(ϑ−1)LG,r(`)dθd`

≤ 2Tr(Q)ν2β2
0℘

2(1−ρ+ρν−νϑ)
∫ ℘

0
(℘− `)2(νϑ−1)LG,r(`)d`∫ η

0
θ2ϑ M2

ν(θ)dθ

+ 2Tr(Q)ν2β2
0℘

2(1−ρ+ρν−νϑ)
∫ ℘

℘−α
(℘− `)2(νϑ−1)LG,r(`)d`∫ ∞

0
θ2ϑ M2

ν(θ)dθ

≤ 2Tr(Q)ν2β2
0℘

2(1−ρ+ρν−νϑ)
∫ ℘

0
(℘− `)2(νϑ−1)LG,r(`)d`∫ η

0
θ2ϑ M2

ν(θ)dθ

+ 2Tr(Q)ν2β2
0

(
Γ(1 + ϑ)

Γ(1 + νϑ)

)2

℘2(1−ρ+ρν−νϑ)
∫ ℘

℘−α
(℘− `)2(νϑ−1)

LG,r(`)d`

→ 0 as α→ 0,℘→ 0.

Because Vα,η(℘) =
{
(Ψ2)α,ηz(℘) : z ∈ Br(J )

}
are arbitrary closed to{

Ψ2z(℘) : ℘ ∈ Br(J )
}

. Due to the Arzela–Ascoli Theorem, {Ψ2z(℘) : ℘ ∈ Br(J )}
is relatively compact. Hence, Ψ2 is a perfectly continuous operator, as evidenced by the
connectedness of Ψ2 and relatively compactness of {Ψ2z(℘) : ℘ ∈ Br(J )} imply this fact.
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Claim 5: Ψ2 is closed graph.
Assume zn → z∗ as n→ ∞, Ψn

2 ∈ Γ(zn) and Ψn
2 → Ψ∗2 as n→ ∞, we must demonstrate

that Ψ∗2 ∈ Γ(z∗). Because Ψn
2 ∈ Γ(zn) then there exists a function Gn ∈ SG,zn such that

Ψn
2 z(℘) = ℘1−ρ+ρν−νϑ

∫ ℘

0
(℘− `)ν−1Qν(℘− `)Gn(`)dW(`).

We have to prove there exists G0 ∈ SG,z0 such that

Ψ∗2z(℘) = ℘1−ρ+ρν−νϑ
∫ ℘

0
(℘− `)ν−1Qν(℘− `)G∗(℘)dW(`).

Clearly,∥∥∥∥(Ψn
2 z(℘)−

∫ ℘

0
(℘− `)ν−1Qν(℘− `)Gn(`)dW(`)

)
−
(
Ψ∗2z(℘)−

∫ ℘

0
(℘− `)ν−1Qν(℘− `)G∗(`)dW(`)

)∥∥∥∥→ 0 as n→ ∞.

Now, we will examine an operator Υ : L2(J ,Z)→ C(J ,Z),

Υ(G )(℘) =
∫ ℘

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`).

We know that Υ ◦ SG,z is closed graph operator because of Lemma 2. From Υ, we have

Ψn
2 z(℘)− ℘1−ρ+ρν−νϑ

∫ ℘

0
(℘− `)ν−1Qν(℘− `)Gn(`)dW(`) ∈ Υ(SG,zn),

because Gn → G∗, follows from Lemma 2, indicating that

Ψ∗2z(℘)− ℘1−ρ+ρν−νϑ
∫ ℘

0
(℘− `)ν−1Qν(℘− `)G∗(`)dW(`) ∈ Υ(SG,z∗).

Therefore, Ψ2 is a closed graph. As a result, from Step 1–3, we finalise (1) and (2) of
Lemma 3.
Step 4: Consider the case where Br(J ) = {z ∈ C such that ‖z‖2 ≤ r}. We must demon-
strate that a number r such that Ψ(Br(J )) ⊆ Br(J ) exists. Suppose there is a function
zr ∈ Br(J ) that does not belong to Ψ(Br(J )),

E
∥∥∥∥Ψzr(℘)

∥∥∥∥2

= E
∥∥∥∥℘1−ρ+ρν−νϑSν,ρ(℘)z0

+ ℘1−ρ+ρν−νϑ
∫ ℘

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`)

∥∥∥∥2

> r,
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from the hypotheses (H3)–(H4), we get

r ≤ 2E
∥∥∥∥℘1−ρ+ρν−νϑSν,ρ(℘)z0

∥∥∥∥2

+ 2E
∥∥∥∥℘1−ρ+ρν−νϑ

∫ ℘

0
(℘− `)ν−1Qν(℘− `)G (`)dW(`)

∥∥∥∥2

≤ 2℘2(1−ρ+ρν−νϑ)

∥∥∥∥Sν,ρ(℘)z0

∥∥∥∥2

+ 2Tr(Q)℘2(1−ρ+ρν−νϑ)
∫ ℘

0
(℘− `)2(ν−1)

∥∥∥∥Qν(℘− `)

∥∥∥∥2

E
∥∥∥∥G (`)

∥∥∥∥2

d`

≤ 2℘2(1−ρ+ρν−νϑ)

(
Γ(ϑ)

Γ(ρ(1− ν) + νϑ)

)2

β2
p℘

2(−1+ρ−ρν+νϑ)‖z0‖2

+ 2Tr(Q)℘2(1−ρ+ρν−νϑ)β2
p

∫ ℘

0
(℘− `)2(νϑ−1)LG,r(`)d`.

Both sides are divided by r and r → ∞, and we have

1 ≤ lim
r→∞

inf
2Tr(Q)℘2(1−ρ+ρν−νϑ)β2

p
∫ ℘

0 (℘− `)2(νϑ−1)LG,r(`)d`
r

= 2Tr(Q)β2
p Mr.

This is a contradiction to our assumption. As a result, for every z ∈ Br(J ),
∥∥Ψz(℘)

∥∥2 ≤ r.
As a result, z(℘) is a fixed point of Ψ, the mild solution.

Hence, we have completed the proof.

4. Example

Let us assume that the proceeding HF stochastic differential inclusions

D
1
2 , 1

3
0+ z(℘, `) ∈ ∂2

`z(℘, `) +G(℘, z(℘))
dW(℘)

d℘
, ℘ ∈ (0, b], ` ∈ [0, π],

z(℘, 0) = z(℘, π) = 0, ℘ ≥ 0, (9)

I(1−
1
2 )(1−

1
3 )

0+ = z0(`), ` ∈ [0, π],

in the Hilbert space Z = Cν([0, π])(0 < ν < 1) of all Hölder continuous functions, and
ν = 1

2 , ρ = 1
3 , G(℘, z(℘)) = ℘

−1
3 sin z(℘) is a multivalued function fulfills the hypothesis

(H1)–(H4). Assume U = Z = L2([0, π],R) is a space. The one-dimensional conventional
Brownian motion W(℘) stands on the filtered probability space (Ω, E , P). From [9], we
have the abstract expression

Dν,ρ
0+z(℘) ∈Az(℘) +G(℘, z(℘))

dW(℘)

d℘
, ℘ ∈ (0, b],

I(1−ν)(1−ρ)
0+ z(0) = z0.

The almost sectorial operator A = ∂2
` is used here, and D(A) = {z ∈ C2+ν([0, π]), such that

z(℘, 0) = z(℘, π) = 0}. From [26] δ, ε > 0 be the constants, we write A + δ ∈ Θ
ν
2−1
π
2 −ε

(Z).
We have D(A) ⊂ C2+p([0, π]) and C2+p([0, π]) is compactly connected in the Hilbert space
Z . According to [4] (Lemma 4.66), the operator R(p,−(A + δ)) is compact for all p > 0, so
the semigroup operator T(℘) is compact for all ℘ > 0. We choose LG,r(`) = `

−1
3 and

Mr = lim
r→∞

inf

∫ ℘
0 (℘− `)

1
2−1`

2
3−1d`

r

= lim
r→∞

inf℘
1
6

Γ( 2
3 )Γ(

1
2 )

Γ( 7
6 )

r
.
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Then, the hypotheses (H1)–(H4) are fulfilled. According to Theorem 3, the systems (1) and (2)
have the mild solution on J .

5. Conclusions

The existence of HF stochastic differential systems with almost sectorial operators
was the subject of our research. The major conclusions are established by utilising the
concepts and ideas from fractional calculus, multivalued maps, semigroup theory, sectorial
operators, and fixed-point technique. We started by confirming the existence of the mild
solution. Then, an illustration is given to explain the principle. The exact and approximate
controllability of HF stochastic differential systems via almost sectorial operators will be
examined by using a fixed-point method, as well as we can develop with the reference
of [13–17].
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