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Abstract: In this paper, the transverse vibration of a fractional viscoelastic beam is studied based
on the fractional calculus, and the corresponding scheme of a viscoelastic beam is established by
using the mixed finite volume element method. The stability and convergence of the algorithm are
analyzed. Numerical examples demonstrate the effectiveness of the algorithm. Finally, the values of
different parameter sets are tested, and the test results show that both the damping coefficient and
the fractional derivative have significant effects on the model. The results of this paper can be used
for the damping modeling of viscoelastic structures.
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1. Introduction

According to the definition of fractional derivative, the fractional partial differential
equation has more advantages than the integer equation in the study of some memory
processes, genetic properties and heterogeneous materials. Therefore, such equations are
widely applied to the fractal and dispersion in porous media [1,2], non-Newtonian fluid [3],
the anomalous diffusion [4], image and signal processing [5], electric conduction [6], oil
seepage and the piping of the boundary layer effect [7,8], etc.

Due to the particularity and complexity of viscoelastic materials, the traditional integer-
order model cannot describe the viscoelastic properties well, so the fractional-order operator
is introduced to construct the constitutive model of viscoelastic materials. Gement [9] first
proposed the fractional derivative constitutive model of viscoelastic materials in 1936.
In recent years, Demir et al. [10,11] studied the influence of the damping term modeled
by a fractional derivative on the dynamic analysis of beams with viscoelastic properties
under the action of harmonic external forces. Reza et al. [12] studied the forced vibration
of a fractional-order viscoelastic beam and discretized the equations into a set of linear
ordinary differential equations by the Galerkin method. The nonlocal fractional-order
viscoelastic model of a nanobeam resting on a viscoelastic foundation was studied by
Cajic et al. [13], where the solution of the fractional-order differential equation with two
fractional parameters and retardation times was given. Liu et al. [14] proposed a simple
and universal residual calculation method for the stochastic response behaviors of axially
moving viscoelastic beams under random noise excitation and fractional constitutive
relation. Yu et al. [15] analyzed the application of the fractional derivative in a damping
vibration analysis of a viscoelastic single-mass system. Faraji et al. [16] analyzed the
size-dependent geometrically nonlinear free vibrations of fractional viscoelastic simply
supported and clamped-free nanobeams. The Galerkin scheme was used to simplify the
fractional integral–partial differential governing equation into a time-dependent fractional
ordinary differential equation, which was then solved by the predictive correction method.
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Yang et al. [17] investigated the stability of an axially moving beam constituted by fractional-
order material under parametric resonances, where the governing equations of the beam
transverse vibration were derived and then the multi-scale method was used to analyze
the equation. Cao et al. [18] obtained a simple analytical expression for a free vibration
analysis of non-uniform and non-homogenous beams under different boundary conditions
by using the asymptotic perturbation approach. Liang et al. [19] utilized the Adomian
decomposition method to solve a linear differential equation with an arbitrary fractional
derivative order which can describe a fractionally damped beam structure. Sansit et al. [20]
used the fractional finite element model to study the nonlocal response of Euler–Bernoulli
beams under different loads and boundary conditions and provided analytical expressions
and finite element solutions for the nonlocal continuum model of the Euler–Bernoulli
beams. Stempin et al. [21] established a spatial fractional Timoshenko beam model with a
functionally graded material effect and gave the experimental verification.

In this article, we consider the time-fractional damping beam vibration problem
(a) µc

0Dα
t u + utt + a2uxxxx = g(x, t), (x, t) ∈ Ω× (0, T],

(b) u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω,
(c) u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0, t ∈ [0, T].

(1)

In the model, u(x, t) represents the transverse vibration displacement of the beam,
Ω = (0, L), 0 < T < ∞, a =

√
EI/(ρA), where EI, ρ and A indicate the bending stiffness,

density and cross-sectional area of the beam, respectively, and µ(>0) is the damping coeffi-
cient. In this paper, we assume that the parameters ρ, A, µ, E and I are constants. g(x, t)
represents the force exerted on the beam, and ϕ(x) and ψ(x) represent the displacement
and velocity of the beam at the initial time, respectively, and ϕ(x) ∈ C2(Ω), ψ(x) ∈ C1(Ω),
g(x, t) ∈ L1(0, T; L2(Ω)). c

0Dα
t u is the Caputo fractional derivative, which is defined as [22]

c
0Dα

t u(x, t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1 ∂nu(x, s)

∂sn ds n− 1 < α < n. (2)

It is difficult to find the analytical solution of fractional partial differential equations,
so the numerical method for solving fractional partial differential equations is widely con-
sidered. A great deal of work has been performed on the numerical solutions of fractional
partial differential equations, and different methods have been discussed. Guo et al. [23]
and Gao et al. [24] used the finite difference method to study fractional partial differential
equations. Li et al. [25] used the compact finite difference method to solve the 2D time-
fractional convection diffusion equation of groundwater pollution problems. Jin et al. [26]
gave an error estimate for the fractional parabolic equation semi-discrete finite element
method. Liu et al. [27] studied the H1-Galerkin mixed finite element method for the
time-fractional reaction–diffusion equation. Su et al. [28] studied higher-order compact
finite-volume schemes for two-dimensional multinomial time-fractional diffusion equa-
tions. Youssri [29,30] proposed the orthogonal ultraspherical operation matrix algorithm
for the fractal and fractional Riccati equation with generalized Caputo derivatives and
two Fibonacci operation matrix pseudo-spectral schemes for the nonlinear fractional Klein–
Gordon equation. Sabir et al. [31] studied the fractional mathematical model of breast cancer
immune–chemotherapy based on neural networks and designed a stochastic framework to
solve the fractional differential model.

In 1995, the mixed finite volume element (MFVE) method was proposed by Russell [32].
This scheme is widely used in practical problems because it can solve two unknowns at
the same time and keep the local conservation of a physical quantity. Up to now, there are
few papers that discuss the numerical methods of time-fractional damping beam vibration
problems. In this paper, we apply the MFVE method to the vibration problem (1).

The arrangement of the article is as follows. In the second part, the vibration equation
of the damped beam (1) is transformed into second-order equations by introducing interme-
diate variables. Then, the spatial derivative term is discretized by the MFVE method, and
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the time-fractional derivative is approximated by the L1 interpolation formula to construct
the MFVE scheme of (1). The third part gives some lemmas required for proof. The stability
and convergence analysis for the MFVE scheme are analyzed in the fourth and fifth parts,
respectively. In the sixth part, the accuracy of the scheme is verified by two numerical
examples, and the parameter sets are tested to verify the influence of the parameters on the
model.

2. Fully Discrete MFVE Scheme

We establish the approximate format of MFVE by introducing two intermediate vari-
ables

v(x, t) = ut(x, t), w(x, t) = −auxx(x, t),

v(x, t) and w(x, t) have actual physical significance and represent the velocity and
bending moment of the beam during transverse vibration, respectively, then (1) can be
written as the following equation

(a) µc
0Dα−1

t v + vt − awxx = g(x, t) (x, t) ∈ Ω× (0, T],
(b) wt + avxx = 0 (x, t) ∈ Ω× (0, T],
(c) v(x, 0) = ψ(x), w(x, 0) = ϕ′′(x), x ∈ Ω,
(d) v(0, t) = v(L, t) = 0, w(0, t) = w(L, t) = 0, t ∈ [0, T].

(3)

Multiply Equation (3) (a) and (3) (b) by φ ∈ H1
0(Ω), then integrate over Ω to obtain

the weak form equivalent to (3): find (v, w) : [0, T]→ H1
0(Ω)× H1

0(Ω), such that
(a) µ(c

0Dα−1
t v, φ) + (vt, φ) + (awx, φx) = (g, φ), ∀φ ∈ H1

0(Ω),
(b) (wt, φ)− (avx, φx) = 0 ∀φ ∈ H1

0(Ω),
(c) v(x, 0) = ψ(x), w(x, 0) = ϕ′′(x), x ∈ Ω,
(d) v(0, t) = v(L, t) = 0, w(0, t) = w(L, t) = 0, t ∈ [0, T],

(4)

where H1
0(Ω) = { f | f ∈ H1(Ω), f |∂Ω = 0}.

Next, we introduce the semi-discrete MFVE scheme of (1). Let 0 = x0 < x1 < x2 <
· · · < xN = L be the primal partition of Ω, the matching dual partition is 0 = x0 < x 1

2
<

x 3
2
< · · · < xN− 1

2
< xN = L, where xi+ 1

2
=

xi+xi+1
2 , (i = 0, 1, 2, · · · , N − 1).

Give the primal partition <h = {Ai = [xi, xi+1]; i = 0, 1, 2 · · ·N − 1} of the region Ω,
the diameter of unit Ai is hi = xi+1 − xi, let h = max

0≤i≤N−1
hi. Suppose <h is a quasi-uniform

partition, that is, there exists some positive constant κ such that hi ≥ κh, (i = 1, 2, · · · , N− 1).
The dual subdivision is defined as <∗h = {A∗i = [xi− 1

2
, xi+ 1

2
]; i = 1, 2, · · · , N − 1}, where

A∗0 = [x0, x 1
2
], A∗N = [xN− 1

2
, xN ], A∗i forms the dual interval of node i. As for the boundary

nodes, its dual interval is revised accordingly.
Then, we define the finite element space

Uh = {uh ∈ C(Ω̄), uh|A ∈ P1, ∀A ∈ <h},
Vh = {vh ∈ L2(Ω), vh|A∗ ∈ P0, ∀A∗ ∈ <∗h},
U0h = {uh ∈ Uh, uh(0) = uh(L) = 0},
V0h = {vh ∈ Vh, vh(0) = vh(L) = 0}.

where Uh represent the linear finite element space corresponding to the primal subdivision
<h, Vh is the constant function space of corresponding dual subdivision <∗h.
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We define an interpolation operator Π∗h : Uh → Vh by

Π∗hwh =
N−1

∑
i=1

wh(xi)ℵA∗i
, ∀wh ∈ Uh.

ℵA∗i
represents the eigenfunction on A∗i , i.e.,

ℵA∗i
=

{
1 x ∈ A∗i ,
0 x /∈ A∗i .

By integrating (3) over A∗i , we obtainµ
∫

A∗i
c
0Dα−1

t v(x, t) dx +
∫

A∗i
vt(x, t) dx− a[wx(xi+ 1

2
, t)− wx(xi− 1

2
, t)] =

∫
A∗i

g(x, t) dx,∫
A∗i

wt(x, t) dx + a[vx(xi+ 1
2
, t)− vx(xi− 1

2
, t)] = 0.

(5)

Add all the elements together and notice that: for all w ∈ L2(Ω) and φh ∈ Uh

(w, Π∗hφh) =
N−1

∑
i=1

φh(xi)
∫

A∗i
wdx.

Define

B(w, Π∗hφh) = −
N−1
∑

i=1
φh(xi)a[wx(xi+ 1

2
, t)− wx(xi− 1

2
, t)].

Then, we have{
µ(c

0Dα−1
t v, Π∗hφh) + (vt, Π∗hφh) + B(w, Π∗hφh) = (g, Π∗hφh), ∀φh ∈ U0h,

(wt, Π∗hφh)− B(v, Π∗hφh) = 0, ∀φh ∈ U0h.
(6)

Then, the corresponding semi-discrete MFVE scheme of problem (1) is: find (vh, wh) ∈
U0h ×U0h, such that{

(a) µ(c
0Dα−1

t vh, Π∗hφh) + (vht, Π∗hφh) + B(wh, Π∗hφh) = (g, Π∗hφh), ∀φh ∈ U0h,
(b) (wht, Π∗hφh)− B(vh, Π∗hφh) = 0, ∀φh ∈ U0h.

(7)

Now, let 0 = t0 < t1 < · · · < tM = T be the subdivision of time interval [0, T] with
step length τ = T/M, tn = nτ, n = 0, 1, · · · , M. For a smooth function φ on [0, T], we
denote φn = φ(tn), ∂tφ

n = (φn − φn−1)/τ. We can use L1-formula [33] to approximate the
time-fractional derivative at t = tn as follows

c
0Dα

t un = c
0Dα−1

t vn =
τ1−α

Γ(3− α)
[vn −

n−1

∑
k=1

(a(α−1)
n−k−1 − a(α−1)

n−k )vk − a(α−1)
n−1 v0] + R.

where a(α)l = (l + 1)(1−α) − l(1−α), |R| ≤ 1
2Γ(2−α)

[ 1
4 + α−1

(2−α)(3−α)
max

t0≤t≤tn
|v′′(t)|τ(3−α)].

Denote δ = Γ(3 − α)τα−1, Dα−1
τ vn = 1

δ [v
n −

n−1
∑

k=1
(a(α−1)

n−k−1 − a(α−1)
n−k )vk − a(α−1)

n−1 v0],

we have

c
0Dα−1

t v(tn) = Dα−1
τ vn + R.

Then, we obtain the fully discrete MFVE scheme to find {vn
h , wn

h} ∈ U0h × U0h,
n = 1, 2, · · · , M, such that
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{
(a) µ(Dα−1

τ vn
h , Π∗hφh) + (∂tvn

h , Π∗hφh) + B(wn
h , Π∗hφh) = (gn, Π∗hφh), ∀φh ∈ U0h,

(b) (∂twn
h , Π∗hφh)− B(vn

h , Π∗hφh) = 0, ∀φh ∈ U0h.
(8)

3. Some Lemmas

In this part, we will give some necessary lemmas. Let uh ∈ U0h, we define the
following norms

‖uh‖2
0,h =

N−1

∑
i=1

hu2
i ,

‖uh‖2
1,h = ‖uh‖2

0,h + |uh|21,h,

|uh|21,h =
N

∑
i=1

h(
ui − ui−1

h
)2.

Lemma 1 ([34]). On Uh, the norms | · |1,h and | · |1 ; ‖ · ‖0,h and ‖ · ‖ ; ‖ · ‖1,h and ‖ · ‖1 are
equivalent, respectively. That is,

C1‖vh‖0,h ≤ ‖vh‖ ≤ C2‖vh‖0,h, ∀vh ∈ U0h,

C3‖vh‖1,h ≤ ‖vh‖1 ≤ C4‖vh‖1,h, ∀vh ∈ U0h.

where C1, · · · , C4 are positive constants independent of Uh.

Lemma 2 ([35]). For the bilinear form B(·, Π∗h·), it holds that

B(vh, Π∗hwh) = B(wh, Π∗hvh), ∀vh, wh ∈ Uh,

B(vh, Π∗hvh) ≥
1
2
|vh|21, ∀vh ∈ U0h,

Lemma 3 ([35]). (·, Π∗h·) satisfies

(vh, Π∗hwh) = (wh, Π∗hvh), ∀vh, wh ∈ Uh,

(vh, Π∗hvh) ≥
1
4
‖ vh ‖2, ∀vh ∈ Uh,

(w, Π∗hvh) ≤ 3 ‖ w ‖ · ‖ vh ‖, ∀w ∈ H1(Ω), ∀vh ∈ Uh.

4. Stability Analysis for Fully Discrete MFVE Scheme

Theorem 1 ([36]). For the scheme (8), the following stable inequality holds, for sufficiently small τ

‖ vn
h ‖

2 + ‖ un
h ‖

2≤ C[
t2−α
n

Γ(3− α)
‖ ψ ‖2 + ‖ ϕ′′ ‖2 +Γ(2− α)tα−1

n τ
n

∑
k=1
‖ gk ‖2],

where C > 0 is a constant free of two mesh parameters τ and h.

Proof. Take φh = vh in (8)(a), φh = wh in (8)(b), we have

(∂twn
h , Π∗hwn

h) + (∂tvn
h , Π∗hvn

h) + µ(Dα−1
τ vn

h , Π∗hvn
h) = (gn, Π∗hvn

h). (9)

Note the fact that
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(∂twn
h , Π∗hwn

h) ≥
1

2τ
[(wn

h , Π∗hwn
h)− (wn−1

h , Π∗hwn−1
h )], (10)

(∂tvn
h , Π∗hvn

h) ≥
1

2τ
[(vn

h , Π∗hvn
h)− (vn−1

h , Π∗hvn−1
h )], (11)

(D(α−1)
τ vn

h , Π∗hvn
h) ≥

1
δ
[
1
4
‖ vn

h ‖
2 −

n−1

∑
k=1

(a(α−1)
n−k−1 − a(α−1)

n−k )(vk
h, Π∗hvn

h)− a(α−1)
n−1 (v0

h, Π∗hvn
h)]

≥ 1
δ
[
1
4
‖ vn

h ‖
2 −

n−1

∑
k=1

(a(α−1)
n−k−1 − a(α−1)

n−k )(
1
4
‖ vk

h ‖
2 +9 ‖ vn

h ‖
2)− a(α−1)

n−1 (
1
4
‖ v0

h ‖
2 +9 ‖ vn

h ‖
2]. (12)

Using (10)–(12), we rewrite (9) as

1
2τ

[(wn
h , Π∗hwn

h)− (wn−1
h , Π∗hwn−1

h )] +
1

2τ
[(vn

h , Π∗hvn
h)− (vn−1

h , Π∗hvn−1
h )] +

µ

4δ
‖ vn

h ‖
2

≤ µ

δ

n−1

∑
k=1

(a(α−1)
n−k−1 − a(α−1)

n−k )(
1
4
‖ vk

h ‖
2 +9 ‖ vn

h ‖
2) +

µ

δ
a(α−1)

n−1 (
1
4
‖ v0

h ‖
2 +9 ‖ vn

h ‖
2) + (gn, Π∗hvn

h).

which leads to

1
2τ

(wn
h , Π∗hwn

h) +
1

2τ
(vn

h , Π∗hvn
h) +

µ

4δ

n

∑
k=1

a(α−1)
n−k ‖ vk

h ‖
2

≤ 1
2τ

(wn−1
h , Π∗hwn−1

h ) +
1

2τ
(vn−1

h , Π∗hvn−1
h ) +

µ

4δ

n−1

∑
k=1

a(α−1)
n−k−1 ‖ vk

h ‖
2

+
9µ

δ
‖ vn

h ‖
2 +

µ

4δ
a(α−1)

n−1 ‖ v0
h ‖

2 +(gn, Π∗hvn
h). (13)

Denote

Fn = (wn
h , Π∗hwn

h) + (vn
h , Π∗hvn

h) +
τµ

2δ

n

∑
k=1

a(α−1)
n−k ‖ vk

h ‖
2 .

Multiplying (13) by 2τ and using Young inequality, we obtain

Fn ≤ Fn−1 +
τµ

2δ
a(α−1)

n−1 ‖ v0
h ‖

2 +
18τµ

δ
‖ vn

h ‖
2 +2τ | (gn, Π∗hvn

h) |

≤ F0 +
τµ

2δ

n

∑
k=1

a(α−1)
k−1 ‖ v0

h ‖
2 +

18τµ

δ

n

∑
k=1
‖ vk

h ‖
2 +2τ

n

∑
k=1
| (gk, Π∗hvk

h) |

≤‖ v0
h ‖

2 + ‖ w0
h ‖

2 +
τµ

2δ

n

∑
k=1

a(α−1)
k−1 ‖ v0

h ‖
2 +

18τµ

δ

n−1

∑
k=1
‖ vk

h ‖
2 +

18τµ

δ
‖ vn

h ‖
2

+ 2τ
n

∑
k=1

(
δ

µa(α−1)
n−k

‖ gk ‖2 +
µa(α−1)

n−k
4δ

‖ vk
h ‖

2).

Choosing τ to satisfy 18τµ
δ < 1

4 , and using the discrete Gronwall’s lemma and Lemma 3,
we have

‖ vn
h ‖

2 + ‖ wn
h ‖

2≤ C[‖ v0
h ‖

2 + ‖ w0
h ‖

2 +
τµ

2δ

n

∑
k=1

a(α−1)
k−1 ‖ v0

h ‖
2 +

n

∑
k=1

2τδ

µa(α−1)
n−k

‖ gk ‖2]. (14)
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Noting that a(α−1)
n−k ≥ (2− α)(n− k + 1)1−α ≥ (2− α)n1−α when 1 ≤ k ≤ n, we derive

a(α−1)
n−k

δ
=

a(α−1)
n−k

Γ(3− α)τα−1 ≥
(2− α)n1−α

Γ(3− α)τα−1 =
t1−α
n

Γ(2− α)
.

Thus, we find that

n

∑
k=1

2τδ

µa(α−1)
n−k

‖ gk ‖2≤ 2Γ(2− α)tα−1
n

τ

µ

n

∑
k=1
‖ gk ‖2 . (15)

From
n
∑

k=1
a(α−1)

k−1 = n2−α, the following estimate holds

τµ

2δ

n

∑
k=1

a(α−1)
k−1 ‖ v0

h ‖
2=

µt2−α
n

2Γ(3− α)
‖ v0

h ‖
2 . (16)

Collecting from (15), (16) to (14), it holds that

‖ vn
h ‖

2 + ‖ wn
h ‖

2≤ C[
t2−α
n

Γ(3− α)
‖ ψ ‖2 + ‖ ϕ′′ ‖2 +Γ(2− α)tα−1

n τ
n

∑
k=1
‖ gk ‖2].

We complete the proof.

5. Convergence Analysis for Fully Discrete MFVE Scheme

In this section, we will estimate the error for the fully discrete MFVE scheme. Firstly,
we introduce the MFVE elliptic projection to analyze the error of the scheme: find (ṽn

h , w̃n
h) :

[0, T]→ U0h ×U0h, satisfies:{
B(w̃n

h − wn, Π∗hφh) = 0, ∀φh ∈ U0h,
B(ṽn

h − vn, Π∗hφh) = −(w̃n
h − wn, Π∗hφh), ∀φh ∈ U0h.

(17)

On the condition that <h is C-uniform subdivision, the MFVE elliptic projection is
unique and satisfies [34,35]:

| vn − ṽn
h |1 + ‖ wn − w̃n

h ‖≤ Ch(‖ vn ‖3 + ‖ wn ‖2),
‖ vn − ṽn

h ‖≤ Ch(‖ vn ‖3 + ‖ wn ‖2).
(18)

We split the errors

vn
h − vn = (vn

h − ṽn
h) + (ṽn

h − vn) = ξn + ηn,

wn
h − wn = (wn

h − w̃n
h) + (w̃n

h − wn) = ρn + θn.

Differentiating (18) on t, the estimate of ηn
t and θn

t can be obtained by the same method
as employed in Refs. [34,35].

‖ ηn
t ‖ =‖ ṽn

ht − vn
t ‖≤ Ch(‖ vn

t ‖3 + ‖ wn
t ‖2),

‖ θn
t ‖ =‖ w̃n

ht − wn
t ‖≤ Ch(‖ vn

t ‖3 + ‖ wn
t ‖2).

From (6), (8) and combining with the elliptic projection (17), we obtain the following
error equations

(a)(∂tρ
n, Π∗hφh) + (∂tθ

n, Π∗hφh) + B(ξn, Π∗hφh)− (θn, Π∗hφh)

= (Rn
w, Π∗hφh), ∀φh ∈ U0h,

(b)µ(Dα−1
τ ξn, Π∗hφh) + µ(Dα−1

τ ηn, Π∗hφh) + (∂tξ
n, Π∗hφh) + (∂tη

n, Π∗hφh)− B(ρn, Π∗hφh)

= (Rn
v , Π∗hφh) + µ(Rn, Π∗hφh), ∀φh ∈ U0h,

(19)
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where

Rn
w = ∂twn − wn

t =
1
τ

∫ tn

tn−1
(tn−1 − s)wtt(s)ds, Rn

v = ∂tvn − vn
t =

1
τ

∫ tn

tn−1
(tn−1 − s)vtt(s)ds.

Theorem 2. On the condition that <h is quasi-uniform subdivision, if (vn, wn) is a solution to
problem (3) and v, w satisfies the required regularity condition. Then, the solution (vn

h , wn
h) ∈

U0h ×U0h of the fully discrete MFVE scheme (8) converges to (vn, wn), and there exists a positive
constant C which does not depend on the subdivision of <h meeting the following estimation

max
0≤n≤T/N

‖ vn
h − vn ‖ + max

0≤n≤T/N
‖ wn

h − wn ‖≤ C(h + τ),

max
0≤n≤T/N

| vn
h − vn |1≤ C(h + τ).

Proof. Choosing φh = ρn in (19) (a) and φh = ξn in (19) (b) to obtain

µ(Dα−1
τ ξn, Π∗hξn) + µ(Dα−1

τ ηn, Π∗hξn) + (∂tξ
n, Π∗hξn) + (∂tη

n, Π∗hξn) + (∂tρ
n, Π∗hρn) + (∂tθ

n, Π∗hρn)

= (θn, Π∗hρn) + (Rn
v , Π∗hξn) + (Rn

w, Π∗hρn) + µ(Rn, Π∗hξn). (20)

Note the fact that

(∂tξ
n, Π∗ξn) ≥ 1

2τ
[(ξn, Π∗hξn)− (ξn−1, Π∗hξn−1)], (21)

(∂tρ
n, Π∗ρn) ≥ 1

2τ
[(ρn, Π∗hρn)− (ρn−1, Π∗hρn−1)]. (22)

Substituting (21) and (22) into (20) and using L1-formula, we can obtain

1
2τ

[(ξn, Π∗hξn)− (ξn−1, Π∗hξn−1)] +
1

2τ
[(ρn, Π∗hρn)− (ρn−1, Π∗hρn−1)] +

µ

δ
(ξn, Π∗hξn)

≤ µ

δ

n−1

∑
k=1

(a(α−1)
n−k−1 − a(α−1)

n−k )(ξk, Π∗hξn) +
µ

δ
a(α−1)

n−1 (ξ0, Π∗hξn)− [(∂tη
n, Π∗hξn) + µ(Dα−1

τ ηn, Π∗hξn)

+ (∂tθ
n, Π∗hρn)] + (θn, Π∗hρn) + (Rn

v , Π∗hξn) + (Rn
w, Π∗hρn) + µ(Rn, Π∗hξn). (23)

Multiplying (23) by 2τ, then using Lemma 3 and Young inequality, we obtain

[(ξn, Π∗hξn)− (ξn−1, Π∗hξn−1)] + [(ρn, Π∗hρn)− (ρn−1, Π∗hρn−1)] +
τµ

2δ
‖ ξn ‖2

≤ 2τµ

δ

n−1

∑
k=1

(a(α−1)
n−k−1 − a(α−1)

n−k )(
1
4
‖ ξk ‖2 +9 ‖ ξn ‖2) +

2τµ

δ
a(α−1)

n−1 (
1
4
‖ ξ0 ‖2 +9 ‖ ξn ‖2)

− 2τ[(∂tη
n, Π∗hξn) + µ(Dα−1

τ ηn, Π∗hξn) + (∂tθ
n, Π∗hρn)] + 2τ(θn, Π∗hρn)

+ 2τ(Rn
v , Π∗hξn) + 2τ(Rn

w, Π∗hρn) + 2τµ(Rn, Π∗hξn).

which leads to

(ξn, Π∗hξn) + (ρn, Π∗hρn) +
τµ

2δ

n

∑
k=1

a(α−1)
n−k ‖ ξk ‖2

≤ (ξn−1, Π∗hξn−1) + (ρn−1, Π∗hρn−1) +
τµ

2δ

n−1

∑
k=1

a(α−1)
n−k−1 ‖ ξk ‖2 +

τµ

2δ
a(α−1)

n−1 ‖ ξ0 ‖2 +
18τµ

δ
‖ ξn ‖2

− 2τ[(∂tη
n, Π∗hξn) + µ(Dα−1

τ ηn, Π∗hξn) + (∂tθ
n, Π∗hρn)] + 2τ(θn, Π∗hρn)

+ 2τ(Rn
v , Π∗hξn) + 2τ(Rn

w, Π∗hρn) + 2τµ(Rn, Π∗hξn). (24)
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Choosing Gn = (ξn, Π∗hξn) + (ρn, Π∗hρn) + τµ
2δ

n
∑

k=1
a(α−1)

n−k ‖ ξk ‖2, and substituting into

(24), we have

Gn ≤ Gn−1 +
τµ

2δ
a(α−1)

n−1 ‖ ξ0 ‖2 +
18τµ

δ
‖ ξn ‖2 −2τ[(∂tη

n, Π∗hξn) + µ(Dα−1
τ ηn, Π∗hξn)

+ (∂tθ
n, Π∗hρn)] + 2τ(θn, Π∗hρn) + 2τ(Rn

v , Π∗hξn) + 2τ(Rn
w, Π∗hρn) + 2τµ(Rn, Π∗hξn)

≤ G0 +
τµ

2δ

n

∑
k=1

a(α−1)
k−1 ‖ ξ0 ‖2 +

n

∑
k=1

18τµ

δ
‖ ξk ‖2 +

7

∑
j=1

Mj. (25)

To analyze the right-hand terms of (25) in turn, we have

M1 = −2τ
n

∑
k=1

(∂tη
k, ξk) ≤

n

∑
k=1

(
18δ

τµa(α−1)
n−k

‖
∫ tk

tk−1

ηtds ‖2 +
τµa(α−1)

n−k
8δ

‖ ξk ‖2)

≤
n

∑
k=1

(
18δ

µa(α−1)
n−k

∫ tk

tk−1

‖ ηt ‖2 ds +
τµa(α−1)

n−k
8δ

‖ ξk ‖2).

M2 = −2τµ
n

∑
k=1

(Dα−1
τ ηk, ξk) ≤

n

∑
k=1

18τµδ

a(α−1)
n−k

‖ D(α−1)
t ηk ‖2 +

n

∑
k=1

τµa(α−1)
n−k

8δ
‖ ξk ‖2 .

M3 = −2τ
n

∑
k=1

(∂tθ
k, ρk) ≤

n

∑
k=1

(9 ‖
∫ tk

tk−1

θtds ‖2 +
1
4
‖ ρk ‖2)

≤
n

∑
k=1

(9τ
∫ tk

tk−1

‖ θt ‖2 ds +
1
4
‖ ρk ‖2).

M4 = 2τ
n

∑
k=1

(θk, ρk) ≤
n

∑
k=1

(36τ2 ‖ θk ‖2 +
1
4
‖ ρk ‖2).

M5 = 2τ
n

∑
k=1

(Rk
v, ξk) ≤

n

∑
k=1

(
72τδ

µa(α−1)
n−k

‖ Rk
v ‖2 +

τµa(α−1)
n−k

8δ
‖ ξk ‖2)

≤
n

∑
k=1

72τ2δ

µa(α−1)
n−k

∫ tk

tk−1

‖ vtt ‖2 ds +
n

∑
k=1

τµa(α−1)
n−k

8δ
‖ ξk ‖2 .

M6 = 2τ
n

∑
k=1

(Rk
w, ρk) ≤ 36τ2

n

∑
k=1
‖ Rk

w ‖2 +
1
4

n

∑
k=1
‖ ρk ‖2

≤ 36τ3
n

∑
k=1

∫ tk

tk−1

‖ wtt ‖2 ds +
n

∑
k=1

1
4
‖ ρk ‖2 .

M7 = 2τµ
n

∑
k=1

(Rk, ξk) ≤
n

∑
k=1

72δτµ

a(α−1)
n−k

‖ Rk ‖2 +
τµ

8δ

n

∑
k=1

a(α−1)
n−k ‖ ξk ‖2

≤
n

∑
k=1

72τµδ

a(α−1)
n−k

τ6−2α( max
0≤s≤T

‖ vtt(s) ‖)2 +
n

∑
k=1

τµa(α−1)
n−k

8δ
‖ ξk ‖2 .
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Substitute all the above estimates into (25), we obtain

Gn ≤ G0 +
τµ

2δ

n

∑
k=1

a(α−1)
n−1 ‖ ξ0 ‖2 +

18tα−1
n Γ(2− α)

µ

∫ T

0
‖ ηt ‖2 ds + 18µτtα−1

n Γ(2− α) ‖ Dα−1
τ ηk ‖2

+ 36τ
∫ T

0
‖ θt ‖2 ds + 36τ2

n

∑
k=1
‖ θk ‖2 +

72τ2tα−1
n Γ(2− α)

µ

∫ T

0
‖ vtt ‖2 ds + 36τ3

∫ T

0
‖ wtt ‖2 ds

+ 72µτ6−2αTtα−1
n ( max

0≤s≤T
‖ vtt(s) ‖)2 +

n

∑
k=1

τµa(α−1)
n−k

2δ
‖ ξk ‖2 +

n

∑
k=1

18τµ

δ
‖ ξk ‖2 +

3
4

n

∑
k=1
‖ ρk ‖2 .

Noticing ρ0 = ξ0 = 0, and the following inequality [37]

|Dα−1
τ vk| ≤ |Dα−1

τ vk − c
0Dα−1

t vk|+ | c
0Dα−1

t vk|
≤ O(τ3−α) + max

0≤s≤T
| c

0Dα−1
t v(s)|.

Choosing τ to satisfy 18τµ
δ < 1

4 , by the error estimation of elliptic projection and using
the discrete Gronwall’s Lemma, we obtain

‖ ρn ‖2 + ‖ ξn ‖2 ≤ C[h2
∫ T

0
(‖ vt ‖3 + ‖ wt ‖2)

2ds + τ2
n

∑
k=1
‖ θk ‖2

+ h2(O(τ3−α) + max
0≤s≤T

‖ c
0Dα−1

t v(s) ‖3 + max
0≤s≤T

‖ c
0Dα−1

t w(s) ‖2)
2

+ τ2
∫ T

0
‖ vtt ‖2 ds + τ3

∫ T

0
‖ wtt ‖2 ds + τ6−2α( max

0≤s≤T
‖ vtt(s) ‖)2]. (26)

Next, we estimate | vn
h − vn |1, choosing φh = ξn in (19)(a)

(∂tρ
n, Π∗hξn) + (∂tθ

n, Π∗hξn)− (θn, Π∗hξn) + B(ξn, Π∗hξn) = (Rn
w, Π∗hξn).

Using Lemmas 2 and 3 and Young inequality

1
2
|ξn|21 ≤ C‖∂tρ

n‖2 + C‖∂tθ
n‖2 + C‖θn‖2 + C‖Rn

w‖2 +
1
C
‖ξn‖2. (27)

To estimate the right-hand side of (27), we have

‖∂tρ
n‖2 = ‖ 1

τ

∫ tn

tn−1

ρt(s)ds‖2 ≤ 1
τ

∫ tn

tn−1

‖ρt(s)‖2ds.

‖∂tθ
n‖2 = ‖ 1

τ

∫ tn

tn−1

θt(s)ds‖2 ≤ 1
τ

∫ tn

tn−1

‖θt(s)‖2ds.

‖Rn
w‖2 = ‖wn − wn−1

τ
− wn

t ‖2 = ‖ 1
τ

∫ tn

tn−1

(tn−1 − s)wtt(s)ds‖2 ≤ τ
∫ tn

tn−1

‖wtt(s)‖2ds.

The above inequality leads to

|ξn|21 ≤ C(
1
τ

∫ tn

tn−1

‖ρt(s)‖2ds +
1
τ

∫ tn

tn−1

‖θt(s)‖2dτ + τ
∫ tn

tn−1

‖wtt(s)‖2ds) +
1
C
‖ξn‖2.

Combining (26) and the error estimation of MFVE elliptic projection, we obtain

|ξn|1 ≤ C(h + τ). (28)

Finally, by applying (27), (28) and triangle inequality, the theorem is concluded.
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6. Numerical Examples

In this section, we will present two numerical examples to verify our MFVE method.
The numerical results show the efficiency and accuracy order of the proposed scheme. The
time-fractional damping beam vibration equation is considered as follows

(a) µc
0Dα

t u + utt + a2uxxxx = g(x, t), (x, t) ∈ (0, L)× (0, T],
(b) u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ (0, L),
(c) u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0, t ∈ [0, T].

(29)

Here, we consider steel material with uniform cross section and uniform mass, a =
√

EI/(ρA),
where the material density ρ = 7850 kg/m2, the elastic modulus E = 1.96× 1011 Pa, the cross-
section area A = 1.5× 10−2 m2 and the cross-section moment of inertia I = 1.25× 10−5 m−2.

Example 1. We choose T = 1, L = 1, µ = 1 in (29), the external force applied on the
beam is g(x, t) = (12t2 + a2π4t4 + Γ(5)

Γ(5−α)
t4−α)sin(πx), then we can obtain the exact solu-

tion u(x, t) = t4sin(πx). vh, wh are solved by MFVE scheme, uh can be obtained by vh using
the backward Euler method. We fix the spatial step size h = 1/1000, select the time-step length
τ = 1/10, 1/20, 1/40, 1/80 and give the error results of u, v, w in Tables 1 and 2. The results
show that the order of time convergence is approximately 1, which is consistent with the theoretical
results in Theorem 2.

Table 1. L2-norm errors and temporal convergence order of MFVE method.

α τ ‖u− uh‖0,h Order ‖v− vh‖0,h Order ‖w−wh‖0,h Order

α = 1.3

1/10 3.0223×10−1 − 4.0686×10−1 − 6.3215 −
1/20 1.4641×10−1 1.046 2.0832×10−1 0.965 3.1727 0.995
1/40 7.1948×10−2 1.025 1.0506×10−1 0.988 1.5877 0.999
1/80 3.5650×10−2 1.013 5.2749×10−2 0.994 7.9404×10−1 1.000

α = 1.7

1/10 3.0233×10−1 − 4.0756×10−1 − 6.3245 −
1/20 1.4641×10−1 1.046 2.0820×10−1 0.979 3.1726 0.995
1/40 7.1945×10−2 1.025 1.0505×10−1 0.991 1.5877 0.999
1/80 3.5648×10−2 1.013 5.2763×10−2 0.996 7.9393×10−1 1.000

Table 2. H1-harf-norm errors and temporal convergence order of MFVE method.

α τ |u− uh|1,h Order |v− vh|1,h Order |w−wh|1,h Order

α = 1.3

1/10 9.4947×10−1 − 1.2782 − 1.9859×10 −
1/20 4.5997×10−1 1.046 6.5446×10−1 0.966 9.9673 0.995
1/40 2.2603×10−1 1.025 3.3004×10−1 0.988 4.9881 0.999
1/80 1.1200×10−1 1.013 1.6572×10−1 0.994 2.4946 1.000

α = 1.7

1/10 9.4979×10−1 − 1.2804 − 1.9869×10 −
1/20 4.5996×10−1 1.046 6.5407×10−1 0.969 9.9672 0.995
1/40 2.2602×10−1 1.025 3.3001×10−1 0.987 4.9878 0.999
1/80 1.1200×10−1 1.013 1.6576×10−1 0.993 2.4942 1.000

Next, we chose the spatial step h = 1
N , time step τ = 1

M . When M = N2, the errors
and spatial convergence orders are shown in Tables 3 and 4, respectively. The above table
shows that the displacement, bending moment and velocity of the vibration beam in the
sense of L2 norm and H1-harf norm are more approximate than the theoretical estimates,
which proves the effectiveness of the MFVE scheme.
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Table 3. L2-norm errors and spatial convergence order of MFVE method.

α h ‖u− uh‖0,h Order ‖v− vh‖0,h Order ‖w−wh‖0,h Order

α = 1.3

1/8 4.4899×10−1 − 6.6632×10−2 − 1.2098 −
1/16 1.1115×10−2 2.014 1.6676×10−2 1.999 3.0108×10−1 2.007
1/32 2.7719×10−3 2.004 4.1700×10−3 2.000 7.5184×10−2 2.002
1/64 6.9254×10−4 2.001 1.0426×10−3 2.000 1.8790×10−2 2.000

α = 1.7

1/8 4.4911×10−2 − 6.6675×10−2 − 1.2104 −
1/16 1.1117×10−3 2.014 1.6683×10−2 1.999 3.0118×10−1 2.007
1/32 2.7722×10−3 2.004 4.1717×10−3 2.000 7.5200×10−2 2.002
1/64 6.9260×10−4 2.001 1.0430×10−3 2.000 1.8793×10−2 2.001

Table 4. H1-harf-norm errors and spatial convergence order of MFVE method.

α h |u− uh|1,h Order |v− vh|1,h Order |w−wh|1,h Order

α = 1.3

1/8 1.4015×10−1 − 2.0800×10−1 − 3.7764 −
1/16 3.4863×10−2 2.007 5.2305×10−2 1.992 9.4436×10−1 2.000
1/32 8.7046×10−3 2.002 1.3095×10−2 1.998 2.3610×10−1 2.000
1/64 2.1755×10−3 2.001 3.2750×10−3 2.000 5.9026×10−2 2.000

α = 1.7

1/8 1.4019×10−1 − 2.0812×10−1 − 3.7781 −
1/16 3.4869×10−2 2.007 5.2328×10−2 1.992 9.4465×10−1 2.000
1/32 8.7057×10−3 2.002 1.3101×10−2 1.998 2.3615×10−1 2.000
1/64 2.1756×10−3 2.001 3.2762×10−3 2.000 5.9035×10−2 2.000

Figures 1 and 2 show the function images of the numerical solution and the exact
solution at the last time point. It is proved that the numerical solution fits the exact solution
effectively.

0 0.5 1 1.5 2
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numerical solution
exact solution

Figure 1. Graph of the displacement at t = 2 when α = 1.3, T = 2, L = 2, M = N = 32.
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Figure 2. Graph of the bending moment at t = 2 when α = 1.3, T = 2, L = 2, M = N = 32.

Figures 3 and 4 show the contour plots of the numerical solution and the exact solution
of displacement, respectively, and Figures 5 and 6 show the contour plots of the numerical
solution and the exact solution of bending moment, respectively. It can be seen from the
figure that the numerical solution approximates the exact solution at different grid points,
which proves the effectiveness of the MFVE method.

Figure 3. Contour plot of uh(x, t) when α = 1.3, T = 2, L = 2, M = N = 256.
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Figure 4. Contour plot of u(x, t) when α = 1.3, T = 2, L = 2, M = N = 256.

Figure 5. Contour plot of wh(x, t) for α = 1.3, T = 2, L = 2, M = N = 256.
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Figure 6. Contour plot of w(x, t) when α = 1.3, T = 2, L = 2, M = N = 256.

Example 2. We choose ϕ(x) = sin(πx), ψ(x) = 0, T = 5, L = 1, α = 1.3 and x = 0.5 in (29).
Suppose that the beam is in free vibration, that is, g(x, t) = 0, different µ values were taken to verify
the influence of material damping on beam vibration. The obtained results are shown in Figure 7,
from which it can be concluded that the greater the damping coefficient of the material, the faster the
vibration attenuation rate of the beam.

0 0.2 0.4 0.6 0.8 1

t

-1

-0.5

0

0.5

1

u h(x
,t)

 µ =1
 µ =2
 µ =3

Figure 7. Graph of uh(x, t) at the midpoint over time for different values of µ.

Next, we fixed µ = 3, changed the value of α and observed the vibration curve at the
midpoint of the damping beam. It can be seen from Figure 8 that the attenuation rate of
the beam vibration decreases with the increase in the order of the fractional derivative. In
addition, it is generally shown that the peaks of these curves gradually increase and shift
to the right as the order of the fractional derivatives increases.
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Figure 8. Graph of uh(x, t) at the midpoint over time for different values of α.

7. Conclusions and Suggestions

In this paper, a mixed finite volume element method is proposed to solve the fractal-
order damped beam vibration equation. By introducing two auxiliary variables with
practical significance, the original fourth-order problem is transformed into a second-order
equation system. The stability and convergence of the scheme are analyzed. The numerical
examples demonstrate the effectiveness of the proposed method, and it can be seen that the
larger the damping coefficient and the smaller the order of the fractional derivative, the
faster the attenuation frequency of the beam vibration.

Although there are some other methods which can be used to solve such problems, the
MFVE method shows its advantages: (i) The feature of the finite volume element scheme is
retained, so the local conservation of physical quantities can be preserved. (ii) Two physical
quantities with practical significance can be solved at the same time; thus, the computing
cost is reduced. (iii) Compared with the finite element method, the space smoothness
requirement is lower.

In the future work, we can apply this method to other types of beam vibration equa-
tions, such as beam vibration equations with structural damping, non-uniform beam
vibration equations, etc. At the same time, other methods can be used to discretize the time
derivatives to improve the accuracy of the method.

Author Contributions: Conceptualization, Z.J., A.Z. and Z.Y.; Writing—original draft, T.W.; Writing—
review & editing, T.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by the National Natural Science Foundation of China
(contract grant number: 12171287, 11501335) and the Natural Science Foundation of Shandong
Province (contract grant number: ZR2021MA063). The authors thank the reviewers for their helpful
and valuable suggestions and comments on this paper.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this paper.



Fractal Fract. 2022, 6, 523 17 of 18

References
1. Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (b)

1986, 133, 425–430. [CrossRef]
2. Nikan, O.; Avazzadeh, Z.; Tenreiro Machado, J. Numerical approach for modeling fractional heat conduction in porous medium

with the generalized Cattaneo model. Appl. Math. Model. 2021, 100, 107–124. [CrossRef]
3. SHAN, L.; TONG, D.; XUE, L. Unsteady Flow of Non-Newtonian Visco-Elastic Fluid in Dual-Porosity Media with The Fractional

Derivative. J. Hydrodyn. Ser. B 2009, 21, 705–713. [CrossRef]
4. Luchko, Y.; Punzi, A. Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM—Int.

J. Geomath. 2010, 1, 257–276. [CrossRef]
5. Wang, W.; Xia, X.G.; Zhang, S.; He, C.; Chen, L. Vector total fractional-order variation and its applications for color image

denoising and decomposition. Appl. Math. Model. 2019, 72, 155–175. [CrossRef]
6. Carlson, G.E.; Halijak, C. Approximation of Fractional Capacitors by a Regular Newton Process. IEEE Trans. Circuit Theory 1964,

11, 210–213. [CrossRef]
7. Tong, D.; Wang, R. Analysis of the flow of non-Newtonian visco-elastic fluids in fractal reservoir with the fractional derivative.

Sci. China Phys. Mech. Astron. 2004, 47, 424–441. [CrossRef]
8. Sugimoto, N. Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 1991,

225, 631–653. [CrossRef]
9. Gemant, A. A Method of Analyzing Experimental Results Obtained from Elasto-viscous Bodies. Physics 1936, 7, 311–317.

[CrossRef]
10. Demir, D.; Bildik, N.; SINIR, B. Application of fractional calculus in the dynamics of beams. Bound. Value Probl. 2012, 2012.

[CrossRef]
11. Demir, D.; Bildik, N.; SINIR, B. Linear dynamical analysis of fractionally damped beams and rods. J. Eng. Math. 2014, 85, 131–147.

[CrossRef]
12. Parmoon, R.; Rashidinia, J.; Parsa, A.; Haddadpour, H.; Salehi, R. Application of radial basis functions and sinc method for solving

the forced vibration of fractional viscoelastic beam. J. Mech. Sci. Technol. 2016, 30, 3001–3008. [CrossRef]
13. Cajic, M.; Karlicic, D.; Lazarevic, M. Damped vibration of a nonlocal nanobeam resting on viscoelastic foundation: Fractional

derivative model with two retardation times and fractional parameters. Meccanica 2016, 52, 363–382. [CrossRef]
14. Liu, D.; Xu, W.; Xu, Y. Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and

random excitations. Acta Mech. Sin. 2013, 29, 443–451. [CrossRef]
15. Rossikhin, Y.; Shitikova, M. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass

system. Acta Mech. 1997, 120, 109–125. [CrossRef]
16. Faraji Oskouie, M.; Ansari, R.; Sadeghi, F. Nonlinear vibration analysis of fractional viscoelastic Euler-Bernoulli nanobeams based

on the surface stress theory. Acta Mech. Solida Sin. 2017, 30, 416–424. [CrossRef]
17. Yang, T.; Fang, B. Stability in parametric resonance of an axially moving beam constituted by fractional order material. Arch.

Appl. Mech. 2012, 82, 1763–1770. [CrossRef]
18. Cao, D.; Gao, Y.; Wang, J.; Yao, M.; Zhang, W. Analytical analysis of free vibration of non-uniform and non-homogenous beams:

Asymptotic perturbation approach. Appl. Math. Model. 2019, 65, 526–534. [CrossRef]
19. Liang, Z.; Tang, X. Analytical solution of fractionally damped beam by Adomian decomposition method. Appl. Math. Mech.

(Engl. Ed.) 2007, 28, 219–228. [CrossRef]
20. Patnaik, S.; Sidhardh, S.; Semperlotti, F. A Ritz-based finite element method for a fractional-order boundary value problem of

nonlocal elasticity. Int. J. Solids Struct. 2020, 202, 398–417. [CrossRef]
21. Stempin, P.; Sumelka, W. Formulation and experimental validation of space-fractional Timoshenko beam model with functionally

graded materials effects. Comput. Mech. 2021, 68, 697–708. [CrossRef]
22. Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: Cambridge, MA, USA,

1999.
23. Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Singapore, 2015.

[CrossRef]
24. Gao, G.; Sun, Z.; Zhang, H. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative

and its applications. J. Comput. Phys. 2014, 259, 33–50. [CrossRef]
25. Li, L.; Jiang, Z.; Yin, Z. Compact finite-difference method for 2D time-fractional convection–diffusion equation of groundwater

pollution problems. Comput. Appl. Math. 2020, 39. [CrossRef]
26. Jin, B.; Lazarov, R.; Zhou, Z. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations.

SIAM J. Numer. Anal. 2012, 51, 142. [CrossRef]
27. Liu, Y.; Du, Y.; Li, H.; Wang, J. An H1 Galerkin mixed finite element method for time fractional reaction–diffusion equation.

J. Appl. Math. Comput. 2014, 47, 103–117. [CrossRef]
28. Su, B.; Jiang, Z. High-order compact finite volume scheme for the 2D multi-term time fractional sub-diffusion equation. Adv.

Differ. Equ. 2020, 2020, 689. [CrossRef]
29. Youssri, Y.H. Orthonormal Ultraspherical Operational Matrix Algorithm for fractal–fractional Riccati Equation with Generalized

Caputo Derivative. Fractal Fract. 2021, 5, 100. [CrossRef]

http://doi.org/10.1002/pssb.2221330150
http://dx.doi.org/10.1016/j.apm.2021.07.025
http://dx.doi.org/10.1016/S1001-6058(08)60203-6
http://dx.doi.org/10.1007/s13137-010-0012-8
http://dx.doi.org/10.1016/j.apm.2019.03.010
http://dx.doi.org/10.1109/TCT.1964.1082270
http://dx.doi.org/10.1360/03yw0208
http://dx.doi.org/10.1017/S0022112091002203
http://dx.doi.org/10.1063/1.1745400
http://dx.doi.org/10.1186/1687-2770-2012-135
http://dx.doi.org/10.1007/s10665-013-9642-9
http://dx.doi.org/10.1007/s12206-016-0306-3
http://dx.doi.org/10.1007/s11012-016-0417-z
http://dx.doi.org/10.1007/s10409-013-0029-y
http://dx.doi.org/10.1007/BF01174319
http://dx.doi.org/10.1016/j.camss.2017.07.003
http://dx.doi.org/10.1007/s00419-012-0624-6
http://dx.doi.org/10.1016/j.apm.2018.08.026
http://dx.doi.org/10.1007/s10483-007-0210-z
http://dx.doi.org/10.1016/j.ijsolstr.2020.05.034
http://dx.doi.org/10.1007/s00466-021-01987-6
http://dx.doi.org/10.1142/9543
http://dx.doi.org/10.1016/j.jcp.2013.11.017
http://dx.doi.org/10.1007/s40314-020-01169-9
http://dx.doi.org/10.1137/120873984
http://dx.doi.org/10.1007/s12190-014-0764-7
http://dx.doi.org/10.1186/s13662-020-03128-4
http://dx.doi.org/10.3390/fractalfract5030100


Fractal Fract. 2022, 6, 523 18 of 18

30. Youssri, Y. Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein-Gordon equation. Int. J.
Mod. Phys. C 2022, 33, 2250049. [CrossRef]

31. Sabir, Z.; Munawar, M.; Abdelkawy, M.A.; Raja, M.A.Z.; Unlu, C.; Jeelani, M.B.; Alnahdi, A.S. Numerical Investigations of the
Fractional-Order Mathematical Model Underlying Immune-Chemotherapeutic Treatment for Breast Cancer Using the Neural
Networks. Fractal Fract. 2022, 6, 184. [CrossRef]

32. Russell, T. Rigorous Block-Centered Discretizations on Irregular Grids: Improved Simulation of Complex Reservior Systems; Project
Report; Technical Report No. 3; Resevoir Simulation Research Corporation: Tulsa, OK, USA, 1995.

33. Sun, Z.; Wu, X. A fully discrete scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [CrossRef]
34. Li, R.; Chen, Z.; Wu, W. Generalized Difference Methods for Differential Equations (Numerical Analysis of Finite Volume Methods); CRC

Press: Boca Raton, FL, USA, 2000.
35. Wang, T. A mixed finite volume element method based on rectangular mesh for biharmonic equations. J. Comput. Appl. Math.

2004, 172, 117–130. [CrossRef]
36. Fang, Z.; Li, H. Numerical solutions to regularized long wave equation based on mixed covolume method. Appl. Math. Mech.

2013, 34, 907–920. [CrossRef]
37. Ren, J.; Xiaonian, L.; Mao, S.; Zhang, J. Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave

Equation. J. Sci. Comput. 2017, 72, 917–935. [CrossRef]

http://dx.doi.org/10.1142/S0129183122500498
http://dx.doi.org/10.3390/fractalfract6040184
http://dx.doi.org/10.1016/j.apnum.2005.03.003
http://dx.doi.org/10.1016/j.cam.2004.02.002
http://dx.doi.org/10.1007/s10483-013-1716-8
http://dx.doi.org/10.1007/s10915-017-0385-z

	Introduction
	Fully Discrete MFVE Scheme
	Some Lemmas
	Stability Analysis for Fully Discrete MFVE Scheme
	Convergence Analysis for Fully Discrete MFVE Scheme
	Numerical Examples
	Conclusions and Suggestions
	References

