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Abstract: This study investigates the fractional-order Swift–Hohenberg equations using the natural
decomposition method with non-singular kernel derivatives. The fractional derivative in the sense
of Caputo–Fabrizio is considered. The Adomian decomposition technique (ADT) is a great deal to
the overall natural transformation to create closed-form results of the given models. This technique
provides a closed-form result for the suggested models. In addition, this technique is attractive,
simple, and preferred over other techniques. The graphs of the solution in fractional and integer-
order show that the achieved solutions are very close to the actual result of the examples. It is
also investigated that the result of fractional-order models converges to the integer-order model’s
solution. Furthermore, the proposed method validity is examined using numerical examples. The
obtained results for the given problems fully support the theory of the proposed method. The present
method is a straightforward and accurate analytical method to analyze other fractional-order partial
differential equations, such as many evolution equations that govern the dynamics of nonlinear
waves in plasma physics.

Keywords: natural transform; Caputo–Fabrizio derivative; swift–Hohenberg equations; adomian
decomposition method; natural decomposition method

1. Introduction

Fractional calculus (FC) has become an essential computational method for describ-
ing appropriate nonlocal problems. Fractional derivatives have mathematically inter-
preted many physical models in the last few centuries; these representations have gener-
ated outstanding solutions to real-world modeling problems. Riemann–Liouville, Coim-
bra, Weyl, Riesz, Liouville–Caputo, Hadamard, Grunwald–Letnikov, Caputo–Fabrizio,
Atangana–Baleanu, and others, provided numerous fundamental ideas for the fractional
operators [1,2]. The Caputo–Fabrizio fractional derivative has expanded our understanding
of fractional differential equations. The new derivative’s charm is that it has a non-singular
kernel. The Caputo–Fabrizio derivative combines an ordinary derivative and an expo-
nential function. Still, it has the same additional driving qualities of heterogeneity and
configuration with different scales as the Caputo and Riemann–Liouville fractional deriva-
tives. Over the last several years, various nonlinear problems have been established and
broadly utilized in nonlinear scientific fields such as mathematics, biological sciences,
chemistry, and other aspects of mechanics such as thermodynamics, condensed matter

Fractal Fract. 2022, 6, 524. https://doi.org/10.3390/fractalfract6090524 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6090524
https://doi.org/10.3390/fractalfract6090524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-9595-6096
https://orcid.org/0000-0002-6724-7361
https://doi.org/10.3390/fractalfract6090524
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6090524?type=check_update&version=1


Fractal Fract. 2022, 6, 524 2 of 21

physics, quantum dynamics, wave equation, optics, and plasma physics. The accurate
result of nonlinear systems is essential in deciding the characteristics and properties of
physical processes. Still, sometimes it is difficult to obtain accurate results when dealing
with nonlinear problems [3–6]. Since the field of partial differential equations (PDEs) is so
significant in modeling several real-world issues, nonlinear equations are also fundamental
in developing different models and problems in materials science, fluid dynamics, commu-
nications, plasma physics, and industrial engineering. As a result, these equations have
been examined analytically and numerically using different techniques [7–9]. The equations
above have been examined under numerous fractional differential operators [3,10–12] due
to the applications of fractional calculus. Keeping in mind the significance of PDEs, the
”Swift–Hohenberg equation” is a significant problem that precisely represents the evolution
and generation of patterns in many systems. Swift and Hohenberg are the first to develop
the Swift–Hohenberg equation: [13]

∂ρ

∂=̄
= ηζ̄ −

(
1 +∇2

)2
ρ + N(ρ).

Here, N(ζ̄) is a nonlinear term, η is a real constant, and ρ is a scalar function. A
fundamental partial differential equation that defines pattern creation in various physical
systems is the Swift–Hohenberg equation. J. discovered this equation for the first time.
P. Swift and Hohenberg has the form and is useful for characterizing the hydrodynamic
fluctuations near the convective instability.

ρ=̄ + 2ρζ̄ ζ̄ + ρζ̄ ζ̄ ζ̄ ζ̄ = αρ + βρ2 − γρ3, (1)

where α, β and γ are constant parameters of equation. This equation appears in numerous
scientific disciplines. It explains, for instance, how shear microbands in nanocrystalline
materials arise, the size of the optical electric field inside a cavity, the patterns found inside
thin vibrated granular layers, and many other things. Studying the wave mechanisms that
this equation and its generalizations explain is crucial. One of the interesting generalizations
of Equation (1), arises in literature, have the following form

ρ=̄ + 2ρζ̄ ζ̄ − σρζ̄ ζ̄ ζ̄ + ρζ̄ ζ̄ ζ̄ ζ̄ = αρ− γρm+1, (2)

where σ, α and γ are the parameters. In Ref. [5], authors define the existence condition of
non stationary meromorphic solutions of Equation (2), that corresponds to σ 6= 0. Using this
fact they were succeed to find elliptic and simple periodic solutions. Another work, devoted
to studding the Equation (2) is a work, where the so-called snakes-and-ladders structure of
equation is studied. The Swift–Hohenberg equation has various uses in engineering and
science, including physics, biology, fluid, laser research and hydro dynamics [14–16]. In
addition, this equation has various uses in pattern formation modeling and its numerous
difficulties, such as the impact of noise on bifurcations, pattern selection, defect dynamics,
and spatiotemporal chaos [17–20]. The Swift–Hohenberg equation [21] is crucial in pattern
creation theory in fluid layers restricted between horizontal well-conducting barriers.

In the present investigation, we consider the fractional Swift–Hohenberg equations
with three different forms; for the initial two forms, [22–24].

Type-I Swift–Hohenberg equations:

CFDβ

=̄ρ(ζ̄, =̄) + ∂4(ρ(ζ̄, =̄))
∂ζ̄4 + 2

∂2(ρ(ζ̄, =̄))
∂ζ̄2 + (1− ϑ)ρ(ζ̄, =̄) + ρ3(ζ̄, =̄) = 0, β ∈ (0, 1], ϑ ∈ R, =̄ > 0,

Type-II Swift–Hohenberg equations:

CFDβ

=̄ρ(ζ̄, =̄) + ∂4(ρ(ζ̄, =̄))
∂ζ̄4 + 2

∂2(ρ(ζ̄, =̄))
∂ζ̄2 + (1− ϑ)ρ(ζ̄, =̄) = ρ`(ζ̄, =̄)−

(
∂ρ(ζ̄, =̄)

∂ζ̄

)`

, β ∈ (0, 1], =̄ > 0,
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where ϑ ∈ R and ` ≥ 0.

Type-III Swift–Hohenberg equations:
In the presence of the dispersive function [25], we investigate the proposed model
of the Swift–Hohenberg equation:

CFDβ

=̄ρ(ζ̄, =̄) + ∂4(ρ(ζ̄, =̄))
∂ζ̄4 + 2

∂2(ρ(ζ̄, =̄))
∂ζ̄2 − κ

∂3(ρ(ζ̄, =̄))
∂ζ̄3 − λρ(ζ̄, =̄)− 2ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) = 0,

where CFDβ

=̄ is Caputo–Fabrizio fractional operator and λ, κ are bifurcation and dispersive
real parameters. Many researchers analyzed and solved the Swift–Hohenberg equation us-
ing various methodologies, such as Vishal et al.’s use of the homotopy analysis method [22]
and the homotopy perturbation transform method. Moreover, the Swift–Hohenberg equa-
tion was solved using the variational iteration method with the Riemann–Liouville deriva-
tive and the differential transform method. Motivated by the preceding work, we establish
an approximation analytic solution for the given problem using a computer known as
the natural decomposition method (NDM). We also present a convergence analysis for
the problem under consideration. To fulfill this requirement, Maitama and Rawashdeh
introduced and nurtured the fractional NDM [26,27], a mixture of the ADT and the natural
transform method. Since the fractional NDM is an improved method of ADT, it will reduce
vast computations, and in addition, it does not requires discretization, linearization, or per-
turbation. Recently, due to the efficacy and reliability of the projected scheme; thus, several
researchers worked on it to understand the mystery of various nonlinear models [28–30].

Due to the future technique allows us to choose the equation type of linear subprob-
lems, the initial guess, and the base function of the solution; thus, sophisticated nonlinear
differential equations can often be solved. The proposed technique is unique in that it has
a broad convergence zone, a straightforward solution procedure, and a nonlocal effect in
the achieved solution. The future scheme manages and manipulates the series solution,
which swiftly converges to the exact answer in a narrow acceptable region, which no other
traditional techniques can achieve. Furthermore, it logically contains the results of some
traditional methods, such as the ADT, the homotopy perturbation method (HPM), the
q-homotopy analysis transform method, and the reduced differential transforms method,
giving it prodigious generality. It is worth noting that the proposed approach can reduce
computing time and work compared to other standard procedures while retaining highly
efficient results obtained.

2. Basic Definitions

Definition 1. The Riemann–Liouville fractional integral operator of a function f ∈ Cv, v ≥ −1 is
defined as [31]

Iβ f (ω) =
1

Γ(β)

∫ ω

0
(ω− ζ)β−1 f (ζ)dζ, β > 0, ω > 0.

and I0 f (ω) = f (ω).
(3)

Definition 2. The fractional Caputo operator of f (ω) is given as [31]

Dβ
ω f (ω) = I`−βD` f (ω) =

1
`− β

∫ 0

ω
(ω− ζ)`−β−1 f `(ζ)dζ, (4)

for `− 1 < β ≤ `, ` ∈ N, ω > 0, f ∈ C`
v, v ≥ −1.

Definition 3. The fractional Caputo–Fabrizio derivative of f (ω) is given as [31]

Dβ
ω f (ω) =

B(β)

1− β

∫ ω

0
exp

(
−β(ω− ζ)

1− β

)
D( f (ζ))dζ, (5)
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where 0 < β < 1 and B(β) is a normalization function, where B(0) = B(1) = 1.

Definition 4. The Natural transform of ϕ(=̄) is defined by [31]

N (ϕ(=̄)) = U (s, v) =
∫ ∞

−∞
e−s=̄ϕ(v, =̄)d=̄, s, v ∈ (−∞, ∞). (6)

For =̄ ∈ (0, ∞), Natural transformation of ϕ(=̄) is given by

N (ϕ(=̄)H(=̄)) = N+ = U+(s, v) =
∫ ∞

0
e−s=̄ϕ(v, =̄)d=̄, s, v ∈ (0, ∞). (7)

where H(=̄) is the Heaviside term.

Definition 5. The inverse Natural transform of U (s, v) is define as [31]

N−1[U (s, v)] = ϕ(=̄), ∀=̄ ≥ 0. (8)

Lemma 1. If linearity property of Natural transform of ϕ1(=̄) is ϕ1(s, v) and ϕ2(=̄) is ϕ2(s, v),
then [31]

N [c1 ϕ1(=̄) + c2 ϕ2(=̄)] = c1N [ϕ1(=̄)] + c2N [ϕ2(=̄)] = c1 ϕ1(s, v) + c2 ϕ2(s, v), (9)

where c1 and c2 are constants.

Lemma 2. If inverse Natural transformation of ϕ1(s, v) and ϕ2(s, v) are ϕ1(=̄) and ϕ2(=̄)
respectively [31] then

N−1[c1 ϕ1(s, v) + c2 ϕ2(s, v)] = c1N−1[ϕ1(s, v)] + c2N−1[ϕ2(s, v)] = c1 ϕ1(=̄) + c2 ϕ2(=̄), (10)

where c1 and c2 are constants.

Definition 6. The Caputo sense of Natural transform Dβ

=̄ϕ(=̄) is given as [31]

N [Dβ

=̄] =
( s

v

)β
(
N [ϕ(=̄)]−

(
1
s

)
ϕ(0)

)
. (11)

Definition 7. The Caputo–Fabrizio derivative of Natural transform Dβ

=̄ϕ(=̄) is expressed as [31]

N [Dβ

=̄ϕ(=̄)] = 1
1− β + β( v

s )

(
N [ϕ(=̄)]−

(
1
s

)
ϕ(0)

)
. (12)

3. General Discussion of Method

In this section, we define an analytical methodology based on Natural transformation
of fractional partial differential equations

Dβ

=̄ϕ(ζ̄, =̄) = L(ϕ(ζ̄, =̄)) +N (ϕ(ζ̄, =̄)) + h(ζ̄, =̄), (13)

the initial condition

ϕ(ζ̄, 0) = φ(ζ̄), (14)
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where L, N , and h(ζ̄, =̄) are linear, nonlinear and source term, respectively. Now, by
applying the Natural transformation of Equation (13), we get

1
p(β, v, s)

(
N [ϕ(ζ̄, =̄)]− φ(ζ̄)

s

)
= N [M(ζ̄, =̄)], (15)

where

p(β, v, s) = 1− β + β(
v
s
). (16)

By applying inverse Natural transform (8), we rewrite Equation (15) as,

ϕ(ζ̄, =̄) = N−1
(

φ(ζ̄)

s
+ p(β, v, s)N [M(ζ̄, =̄)]

)
, (17)

N (ϕ(ζ̄, =̄)) can be decomposed into

N (ϕ(ζ̄, =̄)) =
∞

∑
i=0

A=̄. (18)

The nonlinear terms find with the help of Adomian polynomials

ϕ(ζ̄, =̄) =
∞

∑
i=0

ϕi(ζ̄, =̄). (19)

Applying Equations (18) and (19) into (17), we get

∞

∑
i=0

ϕi(ζ̄, =̄) =N−1
(

φ(ζ̄)

s
+ p(β, v, s)N [h(ζ̄, =̄)]

)

+N−1

(
p(β, v, s)N

[
∞

∑
i=0
L(ϕi(ζ̄, =̄)) + A=̄

])
.

(20)

From (20), we get

ϕCF
0 (ζ̄, =̄) =N−1

(
φ(ζ̄)

s
+ p(β, v, s)N [h(ζ̄, =̄)]

)
,

ϕCF
1 (ζ̄, =̄) =N−1(p(β, v, s)N

[
L(ϕ0(ζ̄, =̄)) + A0

])
,

...

ϕCF
l+1(ζ̄, =̄) =N−1(p(β, v, s)N

[
L(ul(ζ̄, =̄)) + Al

])
, l = 1, 2, 3, · · · .

(21)

By substituting (21) into (19), we get the NDMCF result of (13) as

ϕCF(ζ̄, =̄) = ϕCF
0 (ζ̄, =̄) + ϕCF

1 (ζ̄, =̄) + ϕCF
2 (ζ̄, =̄) + · · · . (22)

4. Convergence Analysis

In this section, we discuss the uniqueness of NDMCF.

Theorem 1. The NTDMCF result of (13) is unique when 0 < (δ1 + δ2)(1− β + β=̄) < 1.

Proof. Let F = (C[J], ||.||) be the space Banach with the norms ||φ(=)|| = max=∈J |φ(=)|, ∀
function of continuous on J. Let G : F → F is a nonlinear mappings, with

ϕC
l+1 = ϕC

0 +N−1[p(β, v, s)N [L(ϕl(x̄i, =̄)) +N (ϕl(x̄i, =̄))]], l ≥ 0.
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Suppose that |L(ϕ)−L(ϕ∗)| < δ1|ϕ− ϕ∗| and |N (ϕ)−N (ϕ∗)| < δ2|ϕ− ϕ∗|, where
δ1 and δ2 are Lipschitz constants and ϕ := ϕ(ζ, =̄) and ϕ∗ := ϕ∗(ζ, t) are two various
functions value.

||Gϕ− Gϕ∗|| ≤ max=̄∈J |N−1
[

p(β, v, s)N [L(ϕ)−L(ϕ∗)]

+ p(β, v, s)N [N (ϕ)−N (ϕ∗)]|
]

≤ max=̄∈J

[
δ1N−1[p(β, v, s)N [|ϕ− ϕ∗|]]

+ δ2N−1[p(β, v, s)N [|ϕ− ϕ∗|]]
]

≤ max=̄∈J(δ1 + δ2)
[
N−1[p(β, v, s)N |ϕ− ϕ∗|]

]
≤ (δ1 + δ2)

[
N−1[p(β, v, s)N ||ϕ− ϕ∗||]

]
= (δ1 + δ2)(1− β + β=̄)||ϕ− ϕ∗||.

(23)

G is contraction as 0 < (δ1 + δ2)(1− β + β=̄) < 1. The result of (13) is unique from Banach
fixed point theorem.

Theorem 2. The NTDMCF solution of (13) is convergence.

Proof. Let ϕm = ∑m
r=0 ϕr(ζ̄, =̄). To prove that ϕm is a Cauchy sequence in F. Consider,

||ϕm − ϕn|| = max=̄∈J |
m

∑
r=n+1

ϕr|, n = 1, 2, 3, · · ·

≤ max=̄∈J

∣∣∣∣∣N−1

[
p(β, v, s)N

[
m

∑
r=n+1

(L(ϕr−1) +N (ϕr−1))

]]∣∣∣∣∣
= max=̄∈J

∣∣∣∣∣N−1

[
p(β, v, s)N

[
m−1

∑
r=n+1

(L(ϕr) +N (ϕr))

]]∣∣∣∣∣
≤ max=̄∈J |N−1[p(β, v, s)N [(L(ϕm−1)−L(ϕn−1) +N (ϕm−1)−N (ϕn−1))]]|

≤ δ1max=̄∈J |N−1[p(β, v, s)N [(L(ϕm−1)−L(ϕn−1))]]|

+ δ2max=̄∈J |N−1[p(β, v, s)N [(N (um−1)−N (=̄n−1))]]|
= (δ1 + δ2)(1− β + β=̄)||ϕm−1 − ϕn−1||.

(24)

Let m = n + 1, then

||ϕn+1 − ϕn|| ≤ δ||ϕn − ϕn−1|| ≤ δ2||ϕn−1 ϕn−2|| ≤ · · · ≤ δn||ϕ1 − ϕ0||, (25)

where δ = (δ1 + δ2)(1− β + β=̄). Similarly, we have

||ϕm − ϕn|| ≤ ||ϕn+1 − ϕn||+ ||ϕn+2 ϕn+1||+ · · ·+ ||ϕm − ϕm−1||,
(δn + δn+1 + · · ·+ δm−1)||ϕ1 − ϕ0||

≤ δn
(

1− δm−n

1− δ

)
||ϕ1||.

(26)

As 0 < δ < 1, we get 1− δm−n < 1. Therefore,

||ϕm − ϕn|| ≤
δn

1− δ
max=̄∈J ||ϕ1||. (27)

Since ||ϕ1|| < ∞, ||ϕm − ϕn|| → 0 when n→ ∞. Hence ϕm is a Cauchy sequence in F,
therefore the series ϕm is convergent.
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5. Applications

Example 1. Consider the linear fractional-order Swift–Hohenberg equation:

∂βρ(ζ̄, =̄)
∂=̄β

+ (1− ϑ)ρ(ζ̄, =̄) + 2
∂2ρ(ζ̄, =̄)

∂ζ̄2 +
∂4ρ(ζ̄, =̄)

∂ζ̄4 = 0, 0 < β ≤ 1, =̄ > 0, (28)

with initial condition
ρ(ζ̄, 0) = sin(ζ̄), (29)

Now, by applying the Natural transform to Equation (28), we have

N
[

∂βρ(ζ̄, =̄)
∂=̄β

]
= −N

[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

]
,

Applying the inverse Natural transformation

ρ(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2 − µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

}]
.

Applying the ADT procedure, we get

ρ0(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2

]
= N−1

[
µ2 sin(ζ̄)

s2

]
,

ρ0(ζ̄, =̄) = sin(ζ̄), (30)

ρj+1 = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρj(ζ̄, =̄) + 2

∂2ρj(ζ̄, =̄)
∂ζ̄2 +

∂4ρj(ζ̄, =̄)
∂ζ̄4

}]
, j = 0, 1, 2, · · · (31)

The following two cases can be discussed.
Case 1: (ϑ = 0). According to Equation (28), we get
for j = 0

ρ1(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 +

∂4ρ0(ζ̄, =̄)
∂ζ̄4

}]
= 0. (32)

The subsequent terms read

ρ2(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ1(ζ̄, =̄) + 2

∂2ρ1(ζ̄, =̄)
∂ζ̄2 +

∂4ρ1(ζ̄, =̄)
∂ζ̄4

}]
= 0,

ρ3(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ2(ζ̄, =̄) + 2

∂2ρ2(ζ̄, =̄)
∂ζ̄2 +

∂4ρ2(ζ̄, =̄)
∂ζ̄4

}]
= 0,

...

(33)

The solution of Equation (28) at b = 0 read

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · ·

ρ(ζ̄, =̄) = sin(ζ̄).

Case 2: (ϑ 6= 0). According to Equation (28), we get

ρ0(ζ̄, =̄) = sin(ζ̄),

In Equation (31) put j = 0, 1, 2, 3 · · · , is given as



Fractal Fract. 2022, 6, 524 8 of 21

ρ1(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 +

∂4ρ0(ζ̄, =̄)
∂ζ̄4

}]
ρ1(ζ̄, =̄) = ((ϑ− 1) + 1) sin(ζ̄)(1− β + β=̄).

(34)

The subsequent terms read

ρ2(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ1(ζ̄, =̄) + 2

∂2ρ1(ζ̄, =̄)
∂ζ̄2 +

∂4ρ1(ζ̄, =̄)
∂ζ̄4

}]
,

ρ2(ζ̄, =̄) = ((ϑ− 1)2 + (ϑ− 1) + 1) sin(ζ̄)
1
2
=̄(β=̄+ 2− 2β),

(35)

ρ3(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ2(ζ̄, =̄) + 2

∂2ρ2(ζ̄, =̄)
∂ζ̄2 +

∂4ρ2(ζ̄, =̄)
∂ζ̄4

}]
,

ρ3(ζ̄, =̄) = ((ϑ− 1)3 + (ϑ− 1)2 + (ϑ− 1) + 1) sin(ζ̄)
1
3
=̄2(β=̄+ 3− 3β),

(36)

ρ4(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ3(ζ̄, =̄) + 2

∂2ρ3(ζ̄, =̄)
∂ζ̄2 +

∂4ρ3(ζ̄, =̄)
∂ζ̄4

}]
,

ρ4(ζ̄, =̄) = ((ϑ− 1)4 + (ϑ− 1)3 + (ϑ− 1)2 + (ϑ− 1) + 1) sin(ζ̄)
1

24
=̄3(β=̄+ 4− 4β),

...

(37)

The NDM result for Example 1 is given by

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · ·

ρ(ζ̄, =̄) = sin(ζ̄) + ((ϑ− 1) + 1) sin(ζ̄)(1− β + β=̄) + ((ϑ− 1)2 + (ϑ− 1) + 1) sin(ζ̄)
1
2
=̄(β=̄+ 2− 2β)

+ ((ϑ− 1)3 + (ϑ− 1)2 + (ϑ− 1) + 1) sin(ζ̄)
1
3
=̄2(β=̄+ 3− 3β) + ((ϑ− 1)4 + (ϑ− 1)3

+ (ϑ− 1)2 + (ϑ− 1) + 1) sin(ζ̄)
1

24
=̄3(β=̄+ 4− 4β) + · · · .

The exact solution to Equation (31) at β = 1 read

ρ(ζ̄, =̄) = −1
b

sin(ζ̄) lim
N→∞

N

∑
n=0

(1− (ϑ− 1)n+1)(β=̄+ n− nβ). (38)

Figure 1, demonstrates the close agreement between the exact and approximate so-
lutions, which is a fascinating amalgamation of Natural transform and Caputo–Fabrizio
fractional derivative for real parts only. Furthermore, Figure 2, depicts the fractional order
behaviour of the real part of ρ(ζ̄, =̄) when fractional order β = 0.6 and 0.4, respectively.
Figure 3, indicates the three- and two-dimensional representations of various fractional-
order of β. In Table 1, exact solution, proposed technique solutions and AE for ρ(ζ̄, =̄) of
Example 1.
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Table 1. Example 1 Exact solution, proposed technique solutions and AE for ρ(ζ̄, =̄).

κ = 0.001 Exact Solution NDTM AE of NDTM AE of NDTM AE of NDTM

γ β = 1 β = 1 β = 1 β = 0.9 β = 0.8

0 0.000000000000 0.000000000000 0.0000000000×10+00 0.0000000000×10+00 0.0000000000×10+00

0.1 0.100000900000 0.100001000000 1.0000000000×10−7 2.2624000000×10−6 9.1005000000×10−6

0.2 0.200001600000 0.200002000000 4.0000000000×10−7 4.7247000000×10−6 1.8401000000×10−5

0.3 0.300002100000 0.300003000000 9.0000000000×10−7 7.3870000000×10−6 2.7901500000×10−5

0.4 0.400002400000 0.400004000000 1.6000000000×10−6 1.0249300000×10−5 3.7602000000×10−5

0.5 0.500002500000 0.500005000000 2.5000000000×10−6 1.3311600000×10−5 4.7502500000×10−5

0.6 0.600002400000 0.600006000000 3.6000000000×10−6 1.6574000000×10−5 5.7603000000×10−5

0.7 0.700002100000 0.700007000000 4.9000000000×10−6 2.0036200000×10−5 6.7903500000×10−5

0.8 0.800001600000 0.800008000000 6.4000000000×10−6 2.3698600000×10−5 7.8404000000×10−5

0.9 0.900000900000 0.900009000000 8.1000000000×10−6 2.7561000000×10−5 8.9104500000×10−5

1.0 1.000000000000 1.000010000000 1.0000000000×10−5 3.1624000000×10−5 1.0000500000×10−4

Figure 1. The first graph of analytical solution of β = 1 and second is β = 0.8 for Example 1.

Figure 2. The first graph of analytical solution of β = 0.6 and second is β = 0.4 for Example 1.
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Figure 3. The different fractional-order of β with respect to ζ̄ and =̄ for Example 1.

Example 2. Consider the fractional-order linear Swift–Hohenberg equation:

∂βρ(ζ̄, =̄)
∂=̄β

+ (1− ϑ)ρ(ζ̄, =̄) + 2
∂2ρ(ζ̄, =̄)

∂ζ̄2 +
∂3ρ(ζ̄, =̄)

∂ζ̄3 = 0, 0 < β ≤ 1, =̄ > 0, (39)

with initial condition
ρ(ζ̄, 0) = eζ̄ . (40)

Now, by considering the Natural transformation to Equation (39), we have

N
[

∂βρ(ζ̄, =̄)
∂=̄β

]
= −N

[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂3ρ(ζ̄, =̄)
∂ζ̄3

]
.

Applying the inverse Natural transformation

ρ(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2 − µ(s + β(s− µ))

s2 N
[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂3ρ(ζ̄, =̄)
∂ζ̄3

]]
.

Applying the ADT procedure, we get

ρ0(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2

]
= N−1

[
µ2eζ̄

s2

]
= eζ̄ .

ρj+1 = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρj(ζ̄, =̄) + 2

∂2ρj(ζ̄, =̄)
∂ζ̄2 +

∂3ρj(ζ̄, =̄)
∂ζ̄3

}]
, j = 0, 1, 2, · · ·

for j = 0

ρ1(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 +

∂3ρ0(ζ̄, =̄)
∂ζ̄3

}]
= (ϑ− 4)eζ̄(1− β + β=̄). (41)

The subsequent terms read
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ρ2(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ1(ζ̄, =̄) + 2

∂2ρ1(ζ̄, =̄)
∂ζ̄2 +

∂3ρ1(ζ̄, =̄)
∂ζ̄3

}]
= (ϑ− 4)2eζ̄ 1

2
=̄(β=̄+ 2− 2β),

ρ3(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ2(ζ̄, =̄) + 2

∂2ρ2(ζ̄, =̄)
∂ζ̄2 +

∂3ρ2(ζ̄, =̄)
∂ζ̄3

}]
= (ϑ− 4)3eζ̄ 1

3
=̄2(β=̄+ 3− 3β),

...

(42)

The NDM result for Example 2 is

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · · .

ρ(ζ̄, =̄) = eζ̄

[
1 + (ϑ− 4)(1− β + β=̄) + (ϑ− 4)2 1

2
=̄(β=̄+ 2− 2β) + (ϑ− 4)3 1

3
=̄2(β=̄+ 3− 3β) + · · ·

]
.

when β = 1, then the NDM result is

ρ(ζ̄, =̄) = eζ̄

[
1 + (ϑ− 4)eζ̄(1− β + β=̄) + (ϑ− 4)2eζ̄ 1

2
=̄(β=̄+ 2− 2β) + (ϑ− 4)3eζ̄ 1

3
=̄2(β=̄+ 3− 3β) + · · ·

]
. (43)

The exact result is
ρ(ζ̄, =̄) = eζ̄ Eβ((ϑ− 4)=̄β).

Figure 4, demonstrates the close agreement between the exact and approximate solutions,
which is a fascinating amalgamation of Natural transform and Caputo–Fabrizio fractional
derivative for real parts only. Furthermore, Figure 5, depicts the fractional order behaviour of
the real part of ρ(ζ̄, =̄) when fractional order β = 0.6 and 0.4, respectively. Figure 6, illustrates
the three- and two-dimensional representations of various fractional-order of β. Table 2 shows
that the comparison with the caputo and Caputo–Fabrizo operators.

Table 2. Comparison at different fractional-order of β on the basis of error for Example 2.

=̄ ζ̄ β = 0.4 β = 0.6 β = 0.8 β = 1 (NDMC) β = 1 (NDMCF)

0.2 5.2120000000 × 10−7 3.6017600000 × 10−7 2.0943200000 × 10−7 6.4513000000 × 10−8 6.4513000000 × 10−8

0.4 1.0384330000 × 10−6 7.1776700000 × 10−7 4.1757400000 × 10−7 1.2893800000 × 10−7 1.2893800000 × 10−7

0.1 0.6 1.5474640000 × 10−6 1.0698980000 × 10−6 6.2282300000 × 10−7 1.9293900000 × 10−7 1.9293900000 × 10−7

0.8 2.0443500000 × 10−6 1.4139470000 × 10−6 8.2379300000 × 10−7 2.5631800000 × 10−7 2.5631800000 × 10−7

1 2.5253100000 × 10−6 1.7473930000 × 10−6 1.0191440000 × 10−6 3.1886900000 × 10−6 3.1886900000 × 10−6

0.2 5.8984400000 × 10−7 4.2773700000 × 10−7 2.7455400000 × 10−7 1.2876600000 × 10−7 1.2876600000 × 10−7

0.4 1.1759660000 × 10−6 8.5314400000 × 10−7 5.4809200000 × 10−7 2.5761600000 × 10−7 2.5761600000 × 10−7

0.2 0.6 1.7533840000 × 10−6 1.2726080000 × 10−6 8.1829600000 × 10−7 3.8562800000 × 10−7 3.8562800000 × 10−7

0.8 2.3179040000 × 10−6 1.6832640000 × 10−6 1.0835570000 × 10−6 5.1239700000 × 10−7 5.1239700000 × 10−7

1 2.8655420000 × 10−6 2.0823970000 × 10−6 1.3423590000 × 10−6 6.3748800000 × 10−7 6.3748800000 × 10−7

0.2 6.5642700000 × 10−7 4.9400400000 × 10−7 3.3914500000 × 10−7 1.9276800000 × 10−7 1.9276800000 × 10−7

0.4 1.3096920000 × 10−6 9.8624000000 × 10−7 6.7785000000 × 10−7 3.8605500000 × 10−7 3.8605500000 × 10−7

0.3 0.6 1.9537820000 × 10−6 1.4720680000 × 10−6 1.0127840000 × 10−6 5.7806700000 × 10−7 5.7806700000 × 10−7

0.8 2.5842940000 × 10−6 1.9484160000 × 10−6 1.3421460000 × 10−6 7.6821500000 × 10−7 7.6821500000 × 10−7

1 3.1969960000 × 10−6 2.4123230000 × 10−6 1.6641870000 × 10−6 9.5586800000 × 10−7 9.5586800000 × 10−7

0.2 7.2188300000 × 10−7 5.5944200000 × 10−7 4.0328700000 × 10−7 2.5652100000 × 10−7 2.5652100000 × 10−7

0.4 1.4414910000 × 10−6 1.1180020000 × 10−6 8.0703200000 × 10−7 5.1423300000 × 10−7 5.1423300000 × 10−7

0.4 0.6 2.1514870000 × 10−6 1.6697170000 × 10−6 1.2065920000 × 10−6 7.7025600000 × 10−7 7.7025600000 × 10−7

0.8 2.8472250000 × 10−6 2.2112730000 × 10−6 1.5999330000 × 10−6 1.0237930000 × 10−6 1.0237930000 × 10−6

1 3.5242520000 × 10−6 2.7394880000 × 10−6 1.9850950000 × 10−6 1.2740070000 × 10−6 1.2740070000 × 10−6

0.2 7.8654200000 × 10−7 6.2423400000 × 10−7 4.6702100000 × 10−7 3.2001400000 × 10−7 3.2001400000 × 10−7

0.4 1.5720280000 × 10−6 1.2488040000 × 10−6 9.3572800000 × 10−7 6.4215100000 × 10−7 6.4215100000 × 10−7

0.5 0.6 2.3474550000 × 10−6 1.8660800000 × 10−6 1.3998180000 × 10−6 9.6219500000 × 10−7 9.6219500000 × 10−7

0.8 3.1079660000 × 10−6 2.4725350000 × 10−6 1.8570540000 × 10−6 1.2791210000 × 10−6 1.2791210000 × 10−6

1 3.8489010000 × 10−6 3.0647790000 × 10−6 2.3052760000 × 10−6 1.5918960000 × 10−6 1.5918960000 × 10−6
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Figure 4. The first graph of analytical solution of β = 1 and second is β = 0.8 for Example 2.

Figure 5. The first graph of analytical solution of β = 0.6 and second is β = 0.4 for Example 2.

Figure 6. The different fractional-order of β with respect to ζ̄ and =̄ for Example 2.
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Example 3. Consider the fractional-order linear Swift–Hohenberg equation:

∂βρ(ζ̄, =̄)
∂=̄β

+ (1− ϑ)ρ(ζ̄, =̄) + 2
∂2ρ(ζ̄, =̄)

∂ζ̄2 +
∂4ρ(ζ̄, =̄)

∂ζ̄4 = 0, 0 < β ≤ 1, =̄ > 0, (44)

with initial condition
ρ(ζ̄, 0) = cos(ζ̄). (45)

Using the Natural transformation to Equation (44), we have

N
[

∂βρ(ζ̄, =̄)
∂=̄β

]
= −N

[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

]
.

Applying the inverse Natural transformation

ρ(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2 − µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

}]
.

Applying the ADM procedure, we get

ρ0(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2

]
= N−1

[
µ2 cos(ζ̄)

s2

]
= cos(ζ̄),

ρj+1 = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρj(ζ̄, =̄) + 2

∂2ρj(ζ̄, =̄)
∂ζ̄2 +

∂4ρj(ζ̄, =̄)
∂ζ̄4

}]
, j = 0, 1, 2, · · · (46)

The following two cases will be discussed.
Case 1: (ϑ = 0). According to Equation (44), we get
for j = 0

ρ1(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 +

∂4ρ0(ζ̄, =̄)
∂ζ̄4

}]
= 0. (47)

The subsequent terms read

ρ2(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ1(ζ̄, =̄) + 2

∂2ρ1(ζ̄, =̄)
∂ζ̄2 +

∂4ρ1(ζ̄, =̄)
∂ζ̄4

}]
= 0,

ρ3(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ2(ζ̄, =̄) + 2

∂2ρ2(ζ̄, =̄)
∂ζ̄2 +

∂4ρ2(ζ̄, =̄)
∂ζ̄4

}]
= 0,

...

(48)

The Equation (44) solution is given as at b = 0

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · · .

ρ(ζ̄, =̄) = cos(ζ̄).

Case 2: (ϑ 6= 0). According to Equation (44), we get

ρ0(ζ̄, =̄) = cos(ζ̄).

In Equation (46) put j = 0, 1, 2, 3 · · · , is given as

ρ1(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 +

∂4ρ0(ζ̄, =̄)
∂ζ̄4

}]
,

ρ1(ζ̄, =̄) = ((ϑ− 1) + 1) cos(ζ̄)(1− β + β=̄).
(49)

The subsequent terms read
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ρ2(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ1(ζ̄, =̄) + 2

∂2ρ1(ζ̄, =̄)
∂ζ̄2 +

∂4ρ1(ζ̄, =̄)
∂ζ̄4

}]
,

ρ2(ζ̄, =̄) = ((ϑ− 1)2 + (ϑ− 1) + 1) cos(ζ̄)
1
2
=̄(β=̄+ 2− 2β),

(50)

ρ3(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ2(ζ̄, =̄) + 2

∂2ρ2(ζ̄, =̄)
∂ζ̄2 +

∂4ρ2(ζ̄, =̄)
∂ζ̄4

}]
,

ρ3(ζ̄, =̄) = ((ϑ− 1)3 + (ϑ− 1)2 + (ϑ− 1) + 1) cos(ζ̄)
1
3
=̄2(β=̄+ 3− 3β),

(51)

ρ4(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ3(ζ̄, =̄) + 2

∂2ρ3(ζ̄, =̄)
∂ζ̄2 +

∂4ρ3(ζ̄, =̄)
∂ζ̄4

}]
,

ρ4(ζ̄, =̄) = ((ϑ− 1)4 + (ϑ− 1)3 + (ϑ− 1)2 + (ϑ− 1) + 1) cos(ζ̄)
1

24
=̄3(β=̄+ 4− 4β),

...

(52)

The NDM result for Example 3 is given by

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · · .

ρ(ζ̄, =̄) = cos(ζ̄) + ((ϑ− 1) + 1) cos(ζ̄)(1− β + β=̄) + ((ϑ− 1)2 + (ϑ− 1) + 1) cos(ζ̄)
1
2
=̄(β=̄+ 2− 2β)

+ ((ϑ− 1)3 + (ϑ− 1)2 + (ϑ− 1) + 1) cos(ζ̄)
1
3
=̄2(β=̄+ 3− 3β) + ((ϑ− 1)4 + (ϑ− 1)3

+ (ϑ− 1)2 + (ϑ− 1) + 1) cos(ζ̄)
1

24
=̄3(β=̄+ 4− 4β) + · · · .

The exact result for Equation (44) at β = 1 reads

ρ(ζ̄, =̄) = −1
b

cos(ζ̄) lim
N→∞

N

∑
n=0

(1− (ϑ− 1)n+1)(β=̄+ n− nβ). (53)

Figure 7, demonstrates the close agreement between the exact and approximate so-
lutions, which is a fascinating amalgamation of Natural transform and Caputo–Fabrizio
fractional derivative for real parts only. Furthermore, Figure 8, depicts the fractional order
behaviour of the real part of ρ(ζ̄, =̄) when fractional order β = 0.6 and 0.4, respectively.
Figure 9, depicts the two-dimensional representation of various fractional-order of β of
Example 3.

Figure 7. The first graph of analytical solution of β = 1 and second is β = 0.8 for Example 3.
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Figure 8. The first graph of analytical solution of β = 0.6 and second is β = 0.4 for Example 3.

Figure 9. The different fractional-order of β with respect to ζ̄ for Example 3.

Example 4. Consider the fractional-order linear Swift–Hohenberg equation:

∂βρ(ζ̄, =̄)
∂=̄β

+ (1− ϑ)ρ(ζ̄, =̄) + 2
∂2ρ(ζ̄, =̄)

∂ζ̄2 − σ
∂3ρ(ζ̄, =̄)

∂ζ̄3 +
∂4ρ(ζ̄, =̄)

∂ζ̄4 = 0, 0 < β ≤ 1, =̄ > 0, (54)

with initial condition
ρ(ζ̄, 0) = eζ̄ . (55)

Now, by applying the Natural transform to Equation (54), we get

N
[

∂βρ(ζ̄, =̄)
∂=̄β

]
= −N

[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ(ζ̄, =̄)
∂ζ̄3 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

]
.

Applying the inverse Natural transformation
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ρ(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s

− µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ(ζ̄, =̄)
∂ζ̄3 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

}]
.

Using the ADT procedure, we get:

ρ0(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2

]
= N−1

[
µ2eζ̄

s2

]
= eζ̄ .

ρj+1 = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρj(ζ̄, =̄) + 2

∂2ρj(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρj(ζ̄, =̄)
∂ζ̄3 +

∂4ρj(ζ̄, =̄)
∂ζ̄4

}]
, j = 0, 1, 2, · · ·

for j = 0

ρ1(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ0(ζ̄, =̄)
∂ζ̄3 +

∂4ρ0(ζ̄, =̄)
∂ζ̄4

}]
,

ρ1(ζ̄, =̄) = (ϑ− 4 + σ)eζ̄(1− β + β=̄).
(56)

The subsequent terms read

ρ2(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ1(ζ̄, =̄) + 2

∂2ρ1(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ1(ζ̄, =̄)
∂ζ̄3 +

∂4ρ1(ζ̄, =̄)
∂ζ̄4

}]
,

ρ2(ζ̄, =̄) = (ϑ− 4 + σ)2eζ̄ 1
2
=̄(β=̄+ 2− 2β),

ρ3(ζ̄, =̄) = −N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ2(ζ̄, =̄) + 2

∂2ρ2(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ2(ζ̄, =̄)
∂ζ̄3 +

∂4ρ2(ζ̄, =̄)
∂ζ̄4

}]
,

ρ3(ζ̄, =̄) = (ϑ− 4 + σ)3eζ̄ 1
3
=̄2(β=̄+ 3− 3β),

...

(57)

The NDM result for Example 4 is given by

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · · .

ρ(ζ̄, =̄) = eζ̄

[
1 + (ϑ− 4)(1− β + β=̄) + (ϑ− 4)2 1

2
=̄(β=̄+ 2− 2β) + (ϑ− 4)3 1

3
=̄2(β=̄+ 3− 3β) + · · ·

]
.

when β = 1, then the NDM result is

ρ(ζ̄, =̄) = eζ̄

[
1 + (ϑ− 4 + σ)(1− β + β=̄) + (ϑ− 4 + σ)2 1

2
=̄(β=̄+ 2− 2β) + (ϑ− 4 + σ)3 1

3
=̄2(β=̄+ 3− 3β) + · · ·

]
. (58)

The exact result reads

ρ(ζ̄, =̄) = expζ̄ Eβ((ϑ− 4 + σ)=̄β).

Figure 10, demonstrates the close agreement between the exact and approximate
solutions, which is a fascinating amalgamation of Natural transform and Caputo–Fabrizio
fractional derivative for real parts only. Furthermore, Figure 11, depicts the fractional order
behaviour of the real part of ρ(ζ̄, =̄) when fractional order β = 0.6 and 0.4, respectively of
Example 4.
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Figure 10. The first graph of analytical solution of β = 1 and second is β = 0.8 for Example 3.

Figure 11. The first graph of analytical solution of β = 0.6 and second is β = 0.4 for Example 3.

Example 5. Consider the fractional-order non-linear Swift–Hohenberg equation:

∂βρ(ζ̄, =̄)
∂=̄β

+ (1− ϑ)ρ(ζ̄, =̄) + 2
∂2ρ(ζ̄, =̄)

∂ζ̄2 +
∂4ρ(ζ̄, =̄)

∂ζ̄4 − ρ2(ζ̄, =̄) +
(

∂ρ(ζ̄, =̄)
∂ζ̄

)2

= 0, 0 < β ≤ 1, =̄ > 0, (59)

with initial condition
ρ(ζ̄, 0) = eζ̄ . (60)

Using the Natural transformation to Equation (59), we get

N
[

∂βρ(ζ̄, =̄)
∂=̄β

]
= −N

[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂4ρ(ζ̄, =̄)
∂ζ̄4 − ρ2(ζ̄, =̄) +

(
∂ρ(ζ̄, =̄)

∂ζ̄

)2
]

.

Applying the inverse Natural transformation

ρ(ζ̄, =̄) =N−1
[

µ2ρ(ζ̄, 0)
s2 − µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 +

∂4ρ(ζ̄, =̄)
∂ζ̄4

−ρ2(ζ̄, =̄) +
(

∂ρ(ζ̄, =̄)
∂ζ̄

)2
}]

.
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Using the ADT procedure, we get

ρ0(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2

]
= N−1

[
µ2eζ̄

s2

]
= eζ̄ .

ρj+1 = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ(ζ̄, =̄)− 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 − ∂4ρ(ζ̄, =̄)

∂ζ̄4 +
∞

∑
m=0
Am −

∞

∑
m=0
Bm

}]
, j = 0, 1, 2, · · ·

The nonlinear term can be with the help of Adomian polynomials is expressed as,

A0 = ρ2
0, A1 = 2ρ0ρ1,

B0 = (ρ0ζ̄)
2, B1 = 2ρ0ζ̄ ρ1ζ̄ ,

for j = 0

ρ1(ζ̄, =̄) = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 +

∂4ρ0(ζ̄, =̄)
∂ζ̄4 − ρ2(ζ̄, =̄) +

(
∂ρ0(ζ̄, =̄)

∂ζ̄

)2
}]

,

ρ1(ζ̄, =̄) = (ϑ− 4)eζ̄(1− β + β=̄).

(61)

The subsequent terms read

ρ2(ζ̄, =̄) = (ϑ− 4)2eζ̄ 1
2
=̄(β=̄+ 2− 2β),

ρ3(ζ̄, =̄) = (ϑ− 4)3eζ̄ 1
3
=̄2(β=̄+ 3− 3β),

...

(62)

The NDM result for Example 6 is given by

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · · .

ρ(ζ̄, =̄) = eζ̄

[
1 + (ϑ− 4)(1− β + β=̄) + (ϑ− 4)2 1

2
=̄(β=̄+ 2− 2β) + (ϑ− 4)3 1

3
=̄2(β=̄+ 3− 3β) + · · ·

]
.

The exact result reads
ρ(ζ̄, =̄) = eζ̄ Eβ((ϑ− 4)=̄β).

Example 6. Consider the fractional-order non-linear Swift–Hohenberg equation:

∂βρ(ζ̄, =̄)
∂=̄β

+ (1− ϑ)ρ(ζ̄, =̄) + 2
∂2ρ(ζ̄, =̄)

∂ζ̄2 − σ
∂3ρ(ζ̄, =̄)

∂ζ̄3

+
∂4ρ(ζ̄, =̄)

∂ζ̄4 − ρ2(ζ̄, =̄) +
(

∂ρ(ζ̄, =̄)
∂ζ̄

)2

= 0, 0 < β ≤ 1, =̄ > 0,

(63)

with initial condition
ρ(ζ̄, 0) = eζ̄ , (64)

Now, by applying the Natural transformation to Equation (59), we get

N
[

∂βρ(ζ̄, =̄)
∂=̄β

]
= −N

[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ(ζ̄, =̄)
∂ζ̄3 +

∂4ρ(ζ̄, =̄)
∂ζ̄4 − ρ2(ζ̄, =̄) +

(
∂ρ(ζ̄, =̄)

∂ζ̄

)2
]

,
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Applying the inverse Natural transformation

ρ(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2 − µ(s + β(s− µ))

s2 N
[
(1− ϑ)ρ(ζ̄, =̄) + 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ(ζ̄, =̄)
∂ζ̄3

+
∂4ρ(ζ̄, =̄)

∂ζ̄4 − ρ2(ζ̄, =̄) +
(

∂ρ(ζ̄, =̄)
∂ζ̄

)2
]]

.

Using the ADT procedure, we get

ρ0(ζ̄, =̄) = N−1
[

µ2ρ(ζ̄, 0)
s2

]
= N−1

[
µ2eζ̄

s2

]
= eζ̄ .

ρj+1 = −N−1

[
µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ(ζ̄, =̄)− 2

∂2ρ(ζ̄, =̄)
∂ζ̄2 + σ

∂3ρ(ζ̄, =̄)
∂ζ̄3 − ∂4ρ(ζ̄, =̄)

∂ζ̄4 +
∞

∑
m=0
Am −

∞

∑
m=0
Bm

}]
.

The nonlinear term can be defined with the help of Adomian polynomials as

A0 = ρ2
0, A1 = 2ρ0ρ1,

B0 = (ρ0ζ̄)
2, B1 = 2ρ0ζ̄ ρ1ζ̄ ,

for j = 0

ρ1(ζ̄, =̄) =−N−1
[

µ(s + β(s− µ))

s2 N
{
(1− ϑ)ρ0(ζ̄, =̄) + 2

∂2ρ0(ζ̄, =̄)
∂ζ̄2 − σ

∂3ρ0(ζ̄, =̄)
∂ζ̄3

+
∂4ρ0(ζ̄, =̄)

∂ζ̄4 − ρ2
0(ζ̄, =̄) +

(
∂ρ0(ζ̄, =̄)

∂ζ̄

)2
}]

= (ϑ− 4 + σ)eζ̄(1− β + β=̄).
(65)

The subsequent terms read

ρ2(ζ̄, =̄) = (ϑ− 4 + σ)2eζ̄ 1
2
=̄(β=̄+ 2− 2β),

ρ3(ζ̄, =̄) = (ϑ− 4 + σ)3eζ̄ 1
3
=̄2(β=̄+ 3− 3β),

...

(66)

The NDM result for Example 6 is given by

ρ(ζ̄, =̄) = ρ0(ζ̄, =̄) + ρ1(ζ̄, =̄) + ρ2(ζ̄, =̄) + ρ3(ζ̄, =̄) + ρ4(ζ̄, =̄) · · ·

ρ(ζ̄, =̄) = eζ̄

[
1 + (ϑ− 4 + σ)(1− β + β=̄) + (ϑ− 4 + σ)2 1

2
=̄(β=̄+ 2− 2β) + (ϑ− 4 + σ)3 1

3
=̄2(β=̄+ 3− 3β) + · · ·

]
.

The exact result reads

ρ(ζ̄, =̄) = eζ̄ Eβ((ϑ− 4 + σ)=̄β).

6. Conclusions

In this investigation, a novel technique known as Natural decomposition has been
devoted to obtain the fractional-order analytical result to Swift–Hohenberg equation. By
applying the later technique, we studied a fractional-order (non)linear Swift–Hohenberg
equation involving and excluding dispersive terms. We compared the solutions using
figures for the various fractional-orders. After that, we studied the problem described
above under Caputo–Fabrizio fractional-order derivative. The obtained solutions can be
helpful for further analysis of the complicated nonlinear physical models. The calculations
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of this method are very simple and straightforward. Thus, we deduced that this method
can be applied to solve different systems of nonlinear fractional-order partial differential
equations. In addition, the suggested method can be used for solving many nonlinear
evolution equations that govern the propagation of unmodulated and modulated structures
in different plasma systems. For instance, this method can be employed for solving
the family of fractional Kawahara-type equations that govern the propagation of strong
nonlinear unmodulated structures in a plasma physics [32–34]. Finally, we can conclude
the regarded technique is better and highly effective, and it can be utilized to study the
various classes of nonlinear problems arisen in real life.

Author Contributions: Conceptualization, L.S.E.-S.; Data curation, S.A.A.; Formal analysis, S.A.A.
and S.A.E.-T.; Funding acquisition, W.W.; Investigation, R.S.; Methodology, W.W.; Project administra-
tion, W.W.; Resources, S.A.E.-T.; Software, L.S.E.-S.; Supervision, S.A.E.-T.; Writing—original draft,
R.S. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
(IF-PSAU-2021/01/17765). This research received funding support from the NSRF via the Program
Management Unit for Human Resources & Institutional Development, Research and Innovation,
(grant number B05F650018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The numerical data used to support the findings of this study are
included within the article.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia for funding this research work through the project number
(IF-PSAU-2021/01/17765). This research received funding support from the NSRF via the Program
Management Unit for Human Resources & Institutional Development, Research and Innovation,
(grant number B05F650018).

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this article.

References
1. Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007;

Volume 4.
2. Atangana, A.; Baleanu, D. Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 2017,

143, D4016005. [CrossRef]
3. Aljahdaly, N.H.; Agarwal, R.P.; Botmart, T. The analysis of the fractional-order system of third-order KdV equation within

different operators. Alex. Eng. J. 2022, 61, 11825–11834. [CrossRef]
4. Mukhtar, S.; Noor, S. The Numerical Investigation of a Fractional-Order Multi-Dimensional Model of Navier-Stokes Equation via

Novel Techniques. Symmetry 2022, 14, 1102. [CrossRef]
5. Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Baleanu, D.; Escobar-Jimenez, R.F.; Olivares-Peregrino, V.H.

Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without
kernel singular. Adv. Differ. Equ. 2016, 2016, 164. [CrossRef]

6. Li, Y.; Nohara, B.T.; Liao, S. Series solutions of coupled Van der Pol equation by means of homotopy analysis method. J. Math.
Phys. 2010, 51, 063517. [CrossRef]

7. Shah, R.; Khan, H.; Baleanu, D. Fractional Whitham-Broer-Kaup Equations within Modified Analytical Approaches. Axioms 2019,
8, 125. [CrossRef]

8. El-Tantawy, S.A.; Shan, S.A.; Mustafa, N.; Alshehri, M.H.; Duraihem, F.Z.; Turki, N.B. Homotopy perturbation and Adomian
decomposition methods for modeling the nonplanar structures in a bi-ion ionospheric superthermal plasma. Eur. Phys. J. Plus
2021, 136, 561. [CrossRef]

9. Kashkari, B.S.; El-Tantawy, S.A.; Salas, A.H.; El-Sherif, L.S. Homotopy perturbation method for studying dissipative nonplanar
solitons in an electronegative complex plasma. Chaos Solitons Fractals 2020, 130, 109457. [CrossRef]

10. Alshehry, A.S.; Imran, M.; Weera, W. Fractional-View Analysis of Fokker-Planck Equations by ZZ Transform with Mittag-Leffler
Kernel. Symmetry 2022, 14, 1513. [CrossRef]

http://doi.org/10.1061/(ASCE)EM.1943-7889.0001091
http://dx.doi.org/10.1016/j.aej.2022.05.032
http://dx.doi.org/10.3390/sym14061102
http://dx.doi.org/10.1186/s13662-016-0891-6
http://dx.doi.org/10.1063/1.3445770
http://dx.doi.org/10.3390/axioms8040125
http://dx.doi.org/10.1140/epjp/s13360-021-01494-w
http://dx.doi.org/10.1016/j.chaos.2019.109457
http://dx.doi.org/10.3390/sym14081513


Fractal Fract. 2022, 6, 524 21 of 21

11. Wu, S. Nonlinear information data mining based on time series for fractional differential operators. Chaos Interdiscip. J. Nonlinear
Sci. 2019, 29, 013114. [CrossRef]

12. Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2008, 69,
2677–2682. [CrossRef]

13. Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. Residual power series method for fractional Swift–Hohenberg equation. Fractal
Fract. 2019, 3, 9.[CrossRef]

14. Swift, J.; Hohenberg, P.C. Hydrodynamics fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [CrossRef]
15. Lega, L.; Moloney, J.V.; Newell, A.C. Swift–Hohenberg equation for lasers. Phys. Rev. Lett. 1994, 73, 2978–2981. [CrossRef]
16. Pomeau, Y.; Zaleski, S. Dislocation motion in cellular structures. Phys. Rev. A 1983, 27, 2710–2726. [CrossRef]
17. Peletier, L.A.; Rottschafer, V. Large time behaviour of solutions of the SwiftHohenberg equation. R. Acad. Sci. Paris Ser. I 2003, 336,

225–230. [CrossRef]
18. Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F. Uncertain viscoelastic models with fractional order: A new

spectral tau method to study the numerical simulations of the solution. Commun. Nonlinear Sci. Numer. Simul. 2017, 53, 44–64.
[CrossRef]

19. Fife, P.C. Pattern formation in gradient systems. In Handbook of Dynamical Systems; Esevier: Amsterdam, The Netherlands, 2002;
Volume 2, pp. 679–719.

20. Hoyle, R.B. Pattern Formation; Cambridge University Press: Cambridge, UK, 2006.
21. Ryabov, P.N.; Kudryashov, N.A. Nonlinear waves described by the generalized Swift–Hohenberg equation. J. Phys. Conf. Ser.

2017, 788, 012032. [CrossRef]
22. Vishal, K.; Kumar, S.; Das, S. Application of homotopy analysis method for fractional Swift Hohenberg equation—Revisited.

Appl. Math. Model. 2012, 36, 3630–3637. [CrossRef]
23. Khan, N.A.; Khan, N.U.; Ayaz, M.; Mahmood, A. Analytical methods for solving the time-fractional Swift–Hohenberg (S-H)

equation. Comput. Math. Appl. 2011, 61, 2181–2185. [CrossRef]
24. Li, W.; Pang, Y. An iterative method for time-fractional Swift–Hohenberg equation. Adv. Math. Phys. 2018, 2018, 2405432.

[CrossRef]
25. Vishal, K.; Das, S.; Ong, S.H.; Ghosh, P. On the solutions of fractional Swift Hohenberg equation with dispersion. Appl. Math.

Comput. 2013, 219, 5792–5801. [CrossRef]
26. Rawashdeh, M.S.; Al-Jammal, H. New approximate solutions to fractional nonlinear systems of partial differential equations

using the FNDM. Adv. Differ. Equ. 2016, 2016, 235. [CrossRef]
27. Rawashdeh, M.S.; Al-Jammal, H. Numerical solutions for systems of nonlinear fractional ordinary differential equations using

the FNDM. Mediterr. J. Math. 2016, 13, 4661–4677. [CrossRef]
28. Rawashdeh, M.S. The fractional natural decomposition method: Theories and applications. Math. Methods Appl. Sci. 2017, 40,

2362–2376. [CrossRef]
29. Aljahdaly, N.H.; Akgul, A.; Shah, R.; Mahariq, I.; Kafle, J. A comparative analysis of the fractional-order coupled Korteweg-De

Vries equations with the Mittag-Leffler law. J. Math. 2022, 2022, 8876149. [CrossRef]
30. Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Shah, R.; Khan, A. A comparative analysis of fractional-order kaup-

kupershmidt equation within different operators. Symmetry 2022, 14, 986. [CrossRef]
31. Zhou, M.X.; Kanth, A.S.V.; Aruna, K.; Raghavendar, K.; Rezazadeh, H.; Inc, M.; Aly, A.A. Numerical solutions of time fractional

Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives. J. Funct. Spaces
2021, 2021, 9884027. [CrossRef]

32. El-Tantawy, S.A.; Salas, A.H.; Alharthi, M.R. Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara
equation. Chaos Solitons Fractals 2021, 147, 110965. [CrossRef]

33. El-Tantawy, S.A.; Salas, A.H.; Alharthi, M.R. On the dissipative extended Kawahara solitons and cnoidal waves in a collisional
plasma: Novel analytical and numerical solutions. Phys. Fluids 2021, 33, 106101. [CrossRef]

34. El-Tantawy, S.A.; Salas, A.H.; Alharthi, M.R. Novel anlytical solution to the damped Kawahara equation and its application for
modeling the dissipative nonlinear structures in a fluid medium. J. Ocean Eng. Sci. 2021, 33, 106101. [CrossRef]

http://dx.doi.org/10.1063/1.5085430
http://dx.doi.org/10.1016/j.na.2007.08.042
http://dx.doi.org/10.3390/fractalfract3010009
http://dx.doi.org/10.1103/PhysRevA.15.319
http://dx.doi.org/10.1103/PhysRevLett.73.2978
http://dx.doi.org/10.1103/PhysRevA.27.2710
http://dx.doi.org/10.1016/S1631-073X(03)00021-9
http://dx.doi.org/10.1016/j.cnsns.2017.03.012
http://dx.doi.org/10.1088/1742-6596/788/1/012032
http://dx.doi.org/10.1016/j.apm.2011.10.001
http://dx.doi.org/10.1016/j.camwa.2010.09.009
http://dx.doi.org/10.1155/2018/2405432
http://dx.doi.org/10.1016/j.amc.2012.12.032
http://dx.doi.org/10.1186/s13662-016-0960-x
http://dx.doi.org/10.1007/s00009-016-0768-7
http://dx.doi.org/10.1002/mma.4144
http://dx.doi.org/10.1155/2022/8876149
http://dx.doi.org/10.3390/sym14050986
http://dx.doi.org/10.1155/2021/9884027
http://dx.doi.org/10.1016/j.chaos.2021.110965
http://dx.doi.org/10.1063/5.0061823
http://dx.doi.org/10.1016/j.joes.2021.10.001

	Introduction
	Basic Definitions
	General Discussion of Method
	Convergence Analysis
	Applications
	Conclusions
	References

