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Abstract: This paper aims to present a general identification procedure for fractional first-order plus
dead-time (FFOPDT) models. This identification method is general for processes having S-shaped
step responses, where process information is collected from an open-loop step-test experiment, and
has been conducted by fitting three arbitrary points on the process reaction curve. In order to validate
this procedure and check its effectiveness for the identification of fractional-order models from the
process reaction curve, analytical expressions of the FFOPDT model parameters have been obtained
for both situations: as a function of any three points and three points symmetrically located on the
reaction curve, respectively. Some numerical examples are provided to show the simplicity and
effectiveness of the proposed procedure. Good results have been obtained in comparison with other
well-recognized identification methods, especially when simplicity is emphasized. This identification
procedure has also been applied to a thermal-based experimental setup in order to test its applicability
and to obtain insight into the practical issues related to its implementation in a microprocessor-based
control hardware. Finally, some comments and reflections about practical issues relating to industrial
practice are offered in this context.

Keywords: process identification; fractional-order systems; fractional first-order plus dead-time model

1. Introduction

For the design and tuning tasks of a control system, information about the dynamic
behavior of the controlled process is required, capturing it into a process mathematical
model [1]. This model must provide reliable information to predict the effects that a
control system will have on the behavior of the controlled process at the operating point, in
particular on its output variable in servo and regulatory control.

The academic and industrial community recognizes that proportional integral deriva-
tive (PID) controller is the most widely used option in the process industry, having become
an industry standard for process control [2]. Although the most commonly used models for
tuning PID controllers are the first-, dual-pole, and second-order plus dead-time (FOPDT,
DPPDT, SOPDT) ones, they are not able to represent the process dynamics with the required
accuracy in some cases, as suggested, e.g., in [3]. Due to this, increasing the robustness
of the control system can introduce issues in the well-known robustness/performance
trade-off, constraining the desired performance [4]. Therefore, obtaining more accurate
models of the controlled process is expected to improve performance.

In the technical literature there are a wide variety of identification procedures for
integer-order models that are based on an open-loop step-test experiment; see, e.g., the
identification methods detailed in [5–8] and the references cited therein. In general, these
types of identification procedures are characterized by being performed with very little
information about the plant, which makes them ideal for their use in industry. More
specifically, some references also described identification algorithms that are based on
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fitting different points on the reaction curve [9–11]. Generally, identification methods for
integer-order models that are based on the location of two or three points on the process
reaction curve use FOPDT, DPPDT, and SOPDT models.

Considering both two-point and three-point methods separately, in the first group, the
following methods can be considered [11–14], while in the second group, methods [15–17]
can be examined. The identification method proposed in [11], which is used as a two-point
method for FOPDT and DPPDT models, can also be used as a three-point method for
SOPDT models. In a recent paper, the method proposed in [11] has been also extended for
identifying a multiple-pole with dead-time model [18].

Note that in the case of two-point methods considered above, the sets of points are
asymmetrical with respect to the central point on the reaction curve (50%). The only
method with a symmetrical set of points is the 123c identification method proposed by
Alfaro in [11]. For the considered three-point methods, refs. [15,17] present asymmetrical
sets of points, while [11] for SOPDT models and ref. [16] provide sets of points that are
symmetrical, although for the latter the central point does not match the central value on
the reaction curve.

In recent decades, the advent of fractional calculus and new computational techniques
have made possible a major academic and industrial effort focused on the transition
from classical models and controllers to those described by non-integer order differential
equations. Thus, fractional-order dynamic models and controllers were introduced; see,
e.g., [19,20].

The apparent benefit of fractional calculus in the field of modelling has been justified
from an industrial point of view. However, it has been more difficult to convey the advan-
tages of fractional calculus on the controller side because of implementation issues [21].
That is why the adoption of fractional-order PID controllers in the industry is currently low,
even though fractional-order PID controllers offer clear advantages in comparison with
integer-order ones.

Recent studies have pointed to fractional-order PID controllers as an emerging trend in
process control (see [21–24]), the main reason for their success being the intrinsic robustness
they offer with a higher degree of freedom to operate and tune the controller parameters. It
is important to note that in some of the existing fractional-order controller design methods, a
simple process model has been used in order to tune the intended controller settings [25–30].

In the technical literature there is a wide range of methods for identifying fractional-
order models based on the process reaction curve; however, there are not many that are
analytical techniques and whose main feature is simplicity of implementation. Some
strategies to estimate the FFOPDT model parameters by using step-response data have
been proposed in [31]. These combine numerical computation and graphical estimation.
Integral-based estimation methods, whose main feature is their robustness to the presence
of measurement noise, are proposed in [32,33].

The most common approach in industrial practice is based on nonlinear optimization;
see, e.g., [34–37]. These methods are generally applied by minimizing the error between
the fractional-order model step response and the process reaction curve. These techniques
are characterized by the fact that they require more computational effort compared to other
existing analytical methods.

Despite the fact that the fractional-order model has been demonstrated to be techno-
logically superior on multiple occasions, the industrial adoption of the fractional-order
approach requires further analysis [38].

Considering all the above, the existence of identification methods for simple-structure
fractional-order models is of major relevance and can be very helpful in the practical design
of integer- and fractional-order control systems. There are multiple reaction curve-based
methods for identifying integer-order models, as discussed previously. This is mainly due
to the fact that the step response of a process has a straightforward physical interpretation
and that identification methods for integer-order models based on fitting several points
of the process reaction curve are very easy to implement and apply. Therefore, one may
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consider it appropriate to extend such methods for fractional models. To that end, an
FFOPDT model identification method, which is based on fitting three points on the reaction
curve, has been conducted in [39]. However, that study was restricted to considering that
the central point is located in the center of the reaction curve (50%), and that the extreme
points are located symmetrically with respect to this central point.

It is the authors’ opinion that it is of significant interest to extend the identification
method proposed in [39] to any set of points on the process reaction curve.

Therefore, the objective of this work is, on the one hand, to validate this identification
procedure for three asymmetrical points on the reaction curve and to obtain insight into
the selection of such points and their influence on the accuracy of the identified fractional-
order model. On the other hand, another additional objective is to test its applicability to
a laboratory prototype and to obtain some insights on the practical issues related to its
implementation on a microprocessor-based control hardware.

This paper is organized as follows. Section 2 is devoted to presenting some pre-
liminaries and theoretical background. In Section 3, a generalization of the three-point
step-response method for FFOPDT models is proposed. This general method is particu-
larized for several symmetrical and asymmetrical sets of points on the process reaction
curve. The results of some numerical simulations are presented in Section 4, illustrating
the effectiveness and simplicity of the proposed method for both symmetrical and asym-
metrical sets of points in comparison to well-known identification methods. In Section 5,
the applicability of the proposed identification procedure on a laboratory prototype is
verified, showing several practical issues related to its implementation on an industrial
control hardware. Finally, Section 6 presents conclusions of this paper.

2. Preliminaries and Theoretical Background

Some elementary definitions and basic concepts in fractional calculus are provided in
this section. Elementary ideas from fractional calculus can be found in many books, such
as [40,41].

The fractional integral of order α for function f(t) is defined as:

0Iαt f(t) ≡ 0D−αt f(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ (1)

where Γ(·) is the Gamma function [40], t ≥ 0, and α ∈ R+.
The α-th order Riemann-Liouville definition of fractional derivative of the given

function f(t) is defined as:

0Dα
t f(t) =

1
Γ(m− α)

dm

dtm

∫ t

0
(t− τ)m−α−1f(τ)dτ (2)

where m − 1 < α < m, m ∈ Z+. The subscripts 0 and t in Definitions (1) and (2) can be
considered as the limits of operation and referred to as the terminals of fractional-order
integration and differentiation, respectively. For simplicity, 0D−αt will be denoted by D−α

and 0Dα
t by Dα.

The Laplace transform of the fractional derivative based on Riemann-Liouville is:

L{Dαf(t)} = sαL{f(t)} −
m−1

∑
k=0

skDα−k−1f(0) (3)

where m − 1 < α < m. For zero initial conditions, (3) is reduced to:

L{Dαf(t)} = sαL{f(t)} (4)

A general fractional-order system can be described by a fractional differential equation
of the form:
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anDαny(t) + an−1Dαn−1y(t) + · · · a0Dα0y(t) = bmDβm u(t) + bm−1Dβm−1u(t) + · · ·+ b0Dβ0u(t) (5)

The transfer function of incommensurate real orders corresponding to the differential
Equation (5) has the following expression [40]:

G(s) =
Q(sβk)

P(sαk)
=

bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

sαn + an−1sαn−1 + · · ·+ a1sα1 + a0
(6)

where P(sαk) and Q(sβk) have no common zeros, ak (k = 0, . . . , n), bk (k = 0, . . . , m) are
constants, and αk (k = 0, . . . , n), βk (k = 0, . . . , m) are arbitrary real or rational numbers
and without loss of generality they can be arranged as αn > αn−1 > · · · > α0, and βm >
βm−1 > · · · > β0.

Considering that the transfer function G(s) given by (6) is strictly proper, then it is
BIBO stable if and only if P(s) has no root in {Re(s) ≥ 0} [19].

A particular case occurs when a real number α exists as the greatest common divisor
of αi, i = 1, . . . , n and βi, i = 0, . . . , m. That value is referred to as the commensurate order.
It holds that αk = kα, βk = kα, 0 < α < 1, ∀k ∈ Z, and the incommensurate order system (6)
can also be rewritten in commensurate form as follows:

G(s) =
Q(sα)
P(sα)

=
∑m

k=0 bkskα

∑n
k=0 akskα (7)

It has been proven that the commensurate system G(s) brought in (7) is BIBO stable
if all the roots of polynomial equation P(x) = 0 in which x = sα are positioned out of the
sector |arg(x)| ≤ απ/2.

Considering n > m, the function G(s) becomes a proper rational function in the
complex variable sα and, if it is supposed that roots of P(x) = 0 are distinct, the partial
fraction expansion of transfer Function (7) can be written in the following general form:

G(sα) =
n

∑
i=1

ri

sα + λi
(8)

where ri, i = 1, . . . , n are the corresponding residues and λi, i = 1, . . . , n are the roots of
P(x) = 0.

Taking the inverse Laplace transform from (8), the impulse response of G(sα) is
obtained, which is also given in [40].

h(t) = L−1

{
n

∑
i=1

ri

sα + λi

}
=

n

∑
i=1

ritα−1Eα,α(−λitα) (9)

where Eα,α(z) is the Mittag–Leffler function. This function is defined for an arbitrary value
z as:

Eα,β(z) =
∞

∑
r=0

zr

Γ(αr + β)
(10)

Integrating the right-hand side of (9), the following step response of the transfer
function G(sα) is obtained:

g(t) =
n

∑
i=1

ri
Eα,1(−λitα)− 1

λi
(11)

Each component of the step response g(t) in (11) converges to its final value in a similar
way as function t–α does, as has been shown in [28].
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3. Fractional First-Order Plus Dead-Time Model Identification

The general identification procedure to be presented in this section uses process
information obtained from an open-loop test and is applied only for identifying a fractional-
order model for processes having an S-shaped step response.

The differential equation for an FFOPDT model can be expressed as follows:

T·Dαy(t) + y(t) = K·u(t− L) (12)

where the initial condition y(0+) is generally taken as zero to obtain a transfer function
model. The controlled processes under consideration can be well characterized by this
model. The standard FFOPDT model can be derived from Equation (12) by taking the
Laplace transform, obtaining the following transfer function:

P(s) =
Ke−Ls

1 + Tsα
(13)

where K is the process gain, T > 0 is the time constant, L ≥ 0 is the apparent dead-time, and
α is the fractional order of the model.

FFOPDT model parameters θP = {K, T, L, α} can be identified using the process reaction
curve, as a result of an open-loop test.

For the particular case α = 1, the FFOPDT model (13) becomes the standard FOPDT
model, which has been broadly used in practice to capture the essential dynamic response
of industrial processes for the purpose of control design [2].

The FFOPDT model (13) can be viewed as a generalization of the conventional FOPDT
model, as discussed in [42], where the relevance of this generalization and the implications
it has for both the identification of dynamic processes and the design of feedback control
loops are indicated.

The step response of the considered fractional model can conveniently describe both
monotonic or non-monotonic behaviors depending on the fractional order α. The step
responses of FFOPDT models for increasing values of α, with 0.5 ≤ α ≤ 1.1 which is
the range considered in this paper, are shown in Figure 1. As a particular case, the step
response of the considered system for α = 1, which represents an FOPDT model, is depicted
in red line.

In this paper, two parameters will be used to characterize process dynamics, namely
Tar and τ, which are two classical parameters well-defined for integer-order processes and
can also be defined for the fractional case.

Tar is referred to as the average residence time and has been defined in the fractional
context as follows [39]:

Tar
.
=

∫ ∞
0 tg(t)dt∫ ∞
0 g(t)dt

= L + T1/α (14)

where g(t) represents the impulse response of the fractional-order process. The average
residence time is a classical index that characterizes process dynamics by indicating the
time it takes the input to have a significant influence on the output [2].

τ is referred to as the normalized dead-time, the typical range of which is 0 ≤ τ ≤ 1,
and has been defined in the fractional context as follows [39]:

τ
.
=

L
Tar

=
L

L + T1/α (15)
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Figure 1. Step responses of FFOPDT models with α ∈ [0.5, 1.1]. The step response of an FOPDT
model (α = 1) is depicted in red line.

This parameter has been defined to characterize the degree of difficulty in controlling
a process. Broadly speaking, processes with small τ can be considered to be easy to control,
while processes with a larger value of τ are difficult to control. The standard definition of
the classical parameters Tar and τ for the case α = 1 corresponds to the one for an FOPDT
model [2].

Although with an FFOPDT model the monotonic and non-monotonic behavior of the
process can be characterized, in this work we will only focus on processes with monotonic
response with 0.50 ≤ α ≤ 1.00, characterized by an S-shaped response. The importance
of processes with essentially monotone step responses lies in the fact that they are very
common in process control [2].

The FFOPDT model normalized step responses for different values of α and different
values of τ are shown in Figure 2. It can be noticed from the figure that all responses
have a common point at t = Tar because time is normalized with respect to the average
residence time.

Considering that a step signal u(t) with an amplitude ∆u is applied to an FFOPDT model
(13), a signal yα(t) with an amplitude variation of ∆y is obtained, as shown in Figure 3.
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Figure 3. Process reaction curve yα(t), arbitrary representative points {x1, x2, and x3} on the process
reaction curve, and step-input signal u(t). Data obtained from the process reaction curve required for
the identification procedure are {∆y, ∆u, tx1, tx2, tx3}. Note that ∆x21 and ∆x32 represent a variation of
(x2 − x1)% and (x3 − x2)% from the centroid x2 to the extreme points x1 and x3, respectively.
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The corresponding FFOPDT model response to a ∆u step input change is:

yα(t) =

{
0, 0 ≤ t < L

K
{

1− Eα,1

[
− 1

T (t− L)α
]}

∆u, t ≥ L
(16)

where Eα,β is the two-parameter Mittag–Leffler function, which was previously defined
in (10).

Normalizing the process output yα(t) with respect to its final value ∆y = K·∆u and
using the shifted and normalized time τ = 1

T (t− L)α, Equation (16) is reduced to:

ỹα(τ) = 1− Eα,1(−τ), τ ≥ 0 (17)

The FFOPDT model parameters, θP = {K, T, L, α}, will be determined considering
the step response of an FFOPDT model (16) and the normalized process output (17),
respectively.

From Equation (16), the gain is given by:

K =
∆y
∆u

(18)

where ∆y is the total process output change when a step input with amplitude ∆u is applied,
as indicated in Figure 3.

Since ỹα(τ) is a specific value of the normalized output, which has the following range
0 ≤ ỹα(τ) ≤ 1, its corresponding normalized time τx can be found using (17). Therefore,
the time tx required for the process output (16) to reach such x-point is:

tx = L + (τxT)1/α (19)

In order to obtain the rest of the FFOPDT model parameters (T, L, and α), the set of
times {tx1, tx2, tx3} to reach points {yα(tx1), yα(tx2), yα(tx3)}, respectively, on the process
reaction curve are required.

Note that, without loss of generality, tx1 < tx2 < tx3 and τx1 < τx2 < τx3 will be considered
in this paper.

Considering expressions like (19), the following equations set is defined:

tx1 = L + (τx1T)1/α

tx2 = L + (τx2T)1/α

tx3 = L + (τx3T)1/α
(20)

In order for the model fractional order α to be estimated, the following ratio index ∆
is found by considering the previously obtained set of Equation (20):

∆ .
=

tx3 − tx1

tx2 − tx1
=
τx3

1/α − τx1
1/α

τx2
1/α − τx1

1/α (21)

where τx1, τx2, and τx3 are normalized times defined by (19) and which can be determined
using Equation (17). Note that ∆ index can be interpreted as the ratio between the time
difference in reaching from x1 to x3% and from x1 to x2% of the total variation of the
process output, as indicated in (21). From Equation (21) it is clear that there is a dependence
between fractional order α and ratio index ∆, which can be expressed as α = f1(∆).

For obtaining the time-based parameters (T, L) from (20), it is required to consider the
following two points, {tx1, yα(tx1)} and {tx3, yα(tx3)}, on the process reaction curve. Then,
the expressions for these parameters are:

T = aα(tx3 − tx1)
α (22)
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and
L = tx3 − τx3

1/αT1/α (23)

where
a =

1
τx3

1/α − τx1
1/α (24)

The two equivalent normalized points for obtaining parameters T and L are {ỹα(τx1),
τx1} and {ỹα(τx3), τx3}.

The set of Equation (25) are the expressions required to obtain the FFOPDT model
parameters, θP = {K, T, L, α}, by using the times needed for the response to reach any three
points on the process reaction curve {x1-x2-x3%}.

K =
∆y
∆u

α = f1(∆)
T = f2(α)(tx3 − tx1)

α

L = max
[
tx3 − f3(α)T1/α, 0

] (25)

where ∆y is the total process output change to the step input ∆u, as shown in Figure 3;
function f1 depends on ∆ and is defined in (21) as a function of the times {tx1, tx2, tx3};
functions f2(α) = aα and f3(α) = τx3

1/α depend on τx1 and τx3, and τx3, respectively, and
finally a-parameter is defined in (24). It can be observed from (25) that the expressions of T
and L have a high dependence on the value of α. This makes it of significant importance to
determine the value of α parameter accurately.

In (25), α > 0 and T > 0 are fulfilled in a natural way, since τx1 < τx2 < τx3 and tx1 < tx2
< tx3. The following condition must be satisfied to ensure L ≥ 0:

tx3 ≥ τx3
1/α (26)

For a more detailed development of Equation (25) we refer the reader to [39], where
these equations are obtained and subsequently particularized for the case in which the
three points on the process reaction curve are symmetrical with respect to the central point.

Figure 4 shows the general scheme of the complete procedure for obtaining the expres-
sions for the identification of the FFOPDT model parameters, θP = {K, T, L, α}, from three
arbitrary points of the process reaction curve.

This procedure is summarized in the following steps, as depicted in Figure 4.

1. From the normalized process output (17), ỹα(τ), the values of the normalized times
{τx1, τx2, τx3} of the three considered points on the process reaction curve are obtained
for the different values of α, 0.50 ≤ α ≤ 1.10.

2. Data sets {∆, α}, {α, aα}, and {α, (τx3)1/α} are obtained for the considered set of points
(x1-x2-x3%) by using the values of the corresponding normalized times.

Note that this procedure is general and admits the points x1, x2, and x3 to be arbitrary.
In this paper, both a symmetrical and an asymmetrical location of the points on the process
reaction curve will be considered.

3. By means of a curve-fitting procedure, the values of the parameters {pi, qi} for the
rational functions α = f1(∆), f2(α), and f3(α), respectively, are obtained.

4. From the rational functions α = f1(∆), f2(α), and f3(α) obtained in the previous step,
the expressions for the FFOPDT model parameters (25) are completed.

5. Once the numerical values of α, f2, and f3 are determined, the values of the FFOPDT
model parameters, θP = {K, T, L, α}, are calculated using expressions (25) and experi-
mental data collected from the process reaction curve, {∆y, ∆u, tx1, tx2, tx3}.
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Figure 4. Scheme of the complete procedure for identifying the parameters of the fractional-order
model considering three arbitrary points on the process reaction curve. Note that the blue part of the
scheme (steps 1–4) represents the general procedure to obtain expressions (25) that allow to determine
the parameters of the FFOPDT model for any three points (x1, x2, and x3) on the process reaction
curve. On the other hand, the red part of the scheme (step 5) indicates how to estimate the parameters
θP = {K, T, L, α} from the information collected from the process reaction curve {∆y, ∆u, tx1, tx2, tx3}.

A detailed algorithm for estimating the FFOPDT model parameters, θP = {K, T, L, α},
from the information collected from the process reaction curve is provided in Section 5.4.
This algorithm, which simplifies its software implementation, can serve as a complement
to the scheme represented in Figure 4.

Table 1 includes the numerical values of the normalized times τ5, τ10, τ20, τ25, τ50,
τ55, τ60, τ75, τ90, and τ95, respectively. These data will be used indistinctly as τx, τ50, or
τ100−x in Section 3.1 for a symmetrical set of points (x-50-(100 − x)%), and τx1, τx2, or τx3
in Section 3.2 for an asymmetrical set of points (x1-x2-x3%), respectively, and constitute
the main source of data to determine the corresponding data sets {∆, α}, {α, aα}, and {α,
(τx3)1/α} or {α, (τ100−x)1/α}, needed to determine expressions for the functions α = f1(∆),
f2(α), and f3(α).

3.1. Symmetrical Set of Points (x-50-(100 − x)%)

This case can be considered as a simplification of the general identification procedure,
where only points that are symmetrically located on the process reaction curve are selected.
Note that the central point or centroid will be located in the middle of the range, x2 = 50%,
(tx2 = t50, yα(t50)), as depicted in Figure 3. The remaining two points could be located
arbitrarily on the reaction curve, but symmetrically located with respect to the central point
(∆x32 = ∆x21). One of the extreme points will be denoted x1 = x, the other being x3 = 100
− x. In this case, the times to be determined will be tx1 = tx and tx3 = t100−x, where tx and
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t100−x denote the time required to reach x% (yα(tx)) and (100 − x)% (yα(t100−x)) of the total
process output change, respectively, considering the following range 0 < x < 50.

Table 1. Numeric values of normalized times τ5, τ10, τ20, τ25, τ50, τ55, τ60, τ75, τ90, and τ95, respec-
tively, for different values of α, with 0.5 ≤ α ≤ 1.1.

α τ5 [s] τ10 [s] τ20 [s] τ25 [s] τ50 [s] τ55 [s] τ60 [s] τ75 [s] τ90 [s] τ95 [s]

0.5 0.0462 0.0963 0.2113 0.2781 0.7691 0.9216 1.1072 2.0516 5.5556 11.3640

0.6 0.0464 0.0965 0.2101 0.2752 0.7402 0.8810 1.0481 1.8734 4.7612 9.3440

0.7 0.0471 0.0975 0.2107 0.2749 0.7181 0.8470 0.9988 1.7127 3.9916 7.4160

0.8 0.0481 0.0993 0.2131 0.2768 0.7028 0.8220 0.9601 1.5757 3.2873 5.5890

0.9 0.0495 0.1019 0.2172 0.2811 0.6945 0.8060 0.9326 1.4665 2.7112 4.0190

1.0 0.0513 0.1054 0.2232 0.2877 0.6932 0.7990 0.9163 1.3863 2.3026 2.9960

1.1 0.0536 0.1097 0.2309 0.2967 0.6988 0.8000 0.9109 1.3334 2.0419 2.4560

In this section, the sets of points indicated in Table 2 will be considered. For the
case of symmetrical points, sets #1 and #2 have been chosen because the accuracy of the
fractional-order model is improved for low values of x. In particular, the influence of the
location of the symmetrical representative points of the reaction curve on the accuracy
of the identified model is explained in detail in [39]. In addition, set #3 has been chosen
because it gives very good results for integer- or close to integer-order models, see also [39].
This behavior has already been observed in the technical literature in some identification
methods for integer-order models, e.g., the aforementioned 123c method [11] uses time sets
(25–75%) to identify FOPDT and DPPDT models and (25-50-75%) for SOPDT models; and
in [18], points (25-50-75%) are proposed to identify multiple-pole with dead-time models.

Table 2. Sets of symmetrical points that have been considered.

Set # Symmetrical Points Centroid Distance from Centroid

1 (5-50-95%) x2 = 50% ∆x21 = ∆x32 = 45%
2 (10-50-90%) x2 = 50% ∆x21 = ∆x32 = 40%
3 (25-50-75%) x2 = 50% ∆x21 = ∆x32 = 25%

Then, the procedure summarized in Figure 4 is followed for the symmetrical case.
Data sets {∆, α}, {α, aα}, and {α, (τ100−x)1/α} for 0.5≤ α≤ 1.1, and the functions f1(∆), f2(α),
and f3(α) obtained by curve fitting for the different sets of symmetrical points, respectively,
are shown in Figure 5. Note that ∆ depends on normalized times {τx, τ50, and τ100−x} and
has a significant dependence on α parameter, that f2(α) = aα depends on α and normalized
times τx and τ100−x, and that f3(α) = (τ100−x)1/α depends on α and normalized time τ100−x.

The following rational functions have been used for curve fitting of functions f1(∆),
f2(α), and f3(α), respectively:

f1(∆) =
p1∆2 + p2∆ + p3

∆2 + q1∆ + q2
(27)

f2(α) =
p1α+ p2

α2 + q1α+ q2
(28)

f3(α) =
p1α

2 + p2α+ p3
α2 + q1α+ q2

(29)
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and (25-50-75%), respectively: (a) Data sets {∆, α} and curve fitting for f1(∆); (b) Data sets {α, aα} and
curve fitting for f2(α); (c) Data sets {α, (τ100−x)1/α} and curve fitting for f3(α). Note that in each graph,
curve fitting for (5-50-95%) is represented in red, (10-50-90%) in blue, and (25-50-75%) in green.

The Levenberg–Marquardt least-squares curve-fitting algorithm has been used for
fitting data in all graphs in Figure 5. The values of the corresponding parameters {pi, qi} for
functions f1(∆), f2(α), and f3(α), and each one of the selected sets of symmetrical points are
shown in Tables 3–5, respectively.

3.2. Asymmetrical Set of Points (x1-x2-x3%)

In this section, the general identification procedure is applied to three arbitrary points
asymmetrically located on the reaction curve (x1, x2, and x3), as shown in Figure 3. This
means that the times to be determined will be tx1, tx2, and tx3, where they denote the time
needed to reach x1% (yα(tx1)), x2% (yα(tx2)), and x3% (yα(tx3)) of the total process output
change, respectively.

Table 3. Parameters {pi, qi} of the rational function f1(∆) for the different sets of symmetrical points.

(5-50-95%) (10-50-90%) (25-50-75%)

p1 = 0.4259 p1 = 0.3808 p1 = 0.2676
p2 = 38.78 p2 = 13.57 p2 = 1.756
p3 = 14.34 p3 = −3.067 p3 = −2.578
q1 = 45.33 q1 = 14.69 q1 = −0.7042
q2 = −27.8 q2 = −15.9 q2 = −1.289

Table 4. Parameters {pi, qi} of the rational function f2(α) for the different sets of symmetrical points.

(5-50-95%) (10-50-90%) (25-50-75%)

p1 = −0.0337 p1 = −0.05698 p1 = −0.3443
p2 = 0.0595 p2 = 0.1596 p2 = 0.7806
q1 = −2.328 q1 = −2.528 q1 = −3.017
q2 = 1.404 q2 = 1.753 q2 = 2.496
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Table 5. Parameters {pi, qi} of the rational function f3(α) for the different sets of symmetrical points.

(5-50-95%) (10-50-90%) (25-50-75%)

p1 = 10.43 p1 = 4.518 p1 = 3.901
p2 = −22.09 p2 = −8.675 p2 = −4.833
p3 = 13.14 p3 = 5.666 p3 = 4.546

q1 = −0.586 q1 = −0.3471 q1 = 2.239
q2 = 0.07943 q2 = 0.003197 q2 = −0.6319

The origin of the asymmetry comes not only from the fact that, in general, the centroid
x2 will not be located in the middle of the range (0–100%) of the process output, but
also from the fact that the distance from the centroid x2 to the extreme points x1 and x3,
respectively, is different, i.e., ∆x21 6= ∆x32.

As discussed previously, the objective is to validate this identification procedure for
the asymmetrical case and to obtain insight into the selection of representative points of the
reaction curve and their influence on the accuracy of the identified model.

In this section, the sets of points indicated in Table 6 will be considered.

Table 6. Sets of asymmetrical points that have been considered.

Set # Asymmetrical Points Centroid Distance from Centroid

4 (10-55-90%) x2 = 55% ∆x21 = 45%, ∆x32 = 35%
5 (20-60-95%) x2 = 60% ∆x21 = 40%, ∆x32 = 35%
6 (20-75-95%) x2 = 75% ∆x21 = 55%, ∆x32 = 25%

The selection of these three sets of points (x1-x2-x3%) is based on experimentation.
A large number of experiments have been performed in order to draw the following
observations:

1. The three sets of points have been chosen with a high x3 value, where x3 = 90 or 95%,
because the obtained model fits better the reaction curve, especially in the final part.
In this regard, it has been shown in [39] that the step response of the identified models
gives a good fit with the process reaction curve for the symmetrical case, particularly
in the interval [x-(100 − x)]. Due to the symmetry exhibited by this method, the
interval [x-(100 − x)] is larger for lower values of x and, therefore, the step response
of these models fits better the process reaction curve, which translates into a lower
value in the performance index S for this fractional-order model.

2. In general, the selection of x1 affects the accuracy of the model in the initial part and,
together with x3, allows better fitting of T parameter.

3. With respect to the centroid x2, set #4 has been chosen in order to test the effect of
moving the centroid x2, increasing ∆x21 and decreasing ∆x32, in comparison with the
symmetrical set #2. Sets #5 and #6 have been chosen because the effect of moving
the centroid x2, while keeping the extreme values x1 and x3, can be observed. In
particular, set #5 allows us to analyze the effect of increasing x1, with asymmetric
distances ∆x21 = 40% and ∆x32 = 35%, while set #6 shows the effect of increasing x2,
with asymmetric distances ∆x21 = 55% and ∆x32 = 25%.

Although the sets of points could have been chosen considering other criteria, in
the authors’ opinion, these are the ones that best reflect the effect of their position on the
model’s accuracy.

In the following section, several examples will be used to verify that these observations
are met.

Then, the procedure summarized in Figure 4 is followed for the asymmetrical case.
Data sets {∆, α}, {α, aα}, and {α, (τ100−x)1/α} for 0.5 ≤ α ≤ 1.1, and the functions f1(∆),
f2(α), and f3(α) obtained by curve fitting for the different sets of asymmetrical points, i.e.,
(10-55-90%), (20-60-95%), and (20-75-95%), respectively, are shown in Figure 6. Note that
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∆ depends on normalized times {τx1, τx2, and τx3} and has a significant dependence on α,
that f2(α) = aα depends on α and normalized times τx1 and τx3, and that f3(α) = (τx3)1/α

depends on α and normalized time τ100−x.
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Figure 6. Data sets and results of curve fitting for asymmetrical sets of points, (10-55-90%), (20-60-
95%), and (20-75-95%), respectively: (a) Data sets {∆, α} and curve fitting for f1(∆); (b) Data sets {α,
aα} and curve fitting for f2(α); (c) Data sets {α, (τx3)1/α} and curve fitting for f3(α). Note that in each
graph, curve fitting for (10-55-90%) is represented in red, (20-60-95%) in blue, and (20-75-95%) in
green, respectively. Note also that sets #5 (20-60-95%) and #6 (20-75-95%) have the same functions
f2(α) and f3(α).

The Levenberg–Marquardt least-squares curve-fitting algorithm has been used for
fitting data in all graphs in Figure 6. The same rational functions (27)–(29) have been used
for obtaining functions f1(∆), f2(α), and f3(α), respectively, by using curve fitting.

The values of the corresponding parameters {pi, qi} for functions f1(∆), f2(α), and f3(α),
and each one of the selected sets of asymmetrical points are shown in Tables 7–9, respectively.

Table 7. Parameters {pi, qi} of the rational function f1(∆) for the different sets of asymmetrical points.

(10-55-90%) (20-60-95%) (20-75-95%)

p1 = 0.3693 p1 = 0.4165 p1 = 0.3665
p2 = 9.55 p2 = 18.5 p2 = 7.191

p3 = −5.112 p3 = −15.5 p3 = −8.393
q1 = 9.53 q1 = 18.69 q1 = 5.838

q2 = −11.38 q2 = −25.6 q2 = −8.767

Table 8. Parameters {pi, qi} of the rational function f2(α) for the different sets of asymmetrical points.
Note that the parameters for (20-60-95%) and (20-75-95%) are the same since their x1 and x3-values
are the same (x1 = 20% and x3 = 95%).

(10-55-90%) (20-60-95%) (20-75-95%)

p1 = −0.05698 p1 = −0.03498 p1 = −0.03498
p2 = 0.1596 p2 = 0.05957 p2 = 0.05957
q1 = −2.528 q1 = −2.33 q1 = −2.33
q2 = 1.753 q2 = 1.398 q2 = 1.398
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Table 9. Parameters {pi, qi} of the rational function f3(α) for the different sets of asymmetrical points.
Note that the parameters for (20-60-95%) and (20-75-95%) are the same since their x3-values are the
same (x3 = 95%).

(10-55-90%) (20-60-95%) (20-75-95%)

p1 = 4.518 p1 = 10.43 p1 = 10.43
p2 = −8.675 p2 = −22.09 p2 = −22.09
p3 = 5.666 p3 = 13.14 p3 = 13.14

q1 = −0.3471 q1 = −0.586 q1 = −0.586
q2 = 0.003197 q2 = 0.07943 q2 = 0.07943

Note that the obtained values of T, L, and α, which are determined by using Equa-
tions (25), depend on functions f1(∆), f2(α), and f3(α). These functions thus play a relevant
role in the identification method as the features of normalized step responses (17) can
be well characterized due to their respective contribution. It is important to emphasize
that, for any different choice of times set {tx1 tx2, tx3} to reach three points {yα(tx1), yα(tx2),
yα(tx3)} on the reaction curve, the accuracy of the identification results only depends upon
the fitting precision. In this context, an accurate determination of α-value is of primary
importance since, subsequently, functions f2 and f3—and therefore T and L—depend on
the estimated value of α.

4. Simulation Results

In this section, the identification method proposed in this work has been proved for
several models that exhibit fractional behavior.

Process models (30), (31), and (32) have been selected to test the effectiveness of
the proposed method in obtaining an FFOPDT model (13) in comparison with several
identification methods for integer- and fractional-order models.

P1(s) =
1

(1 + s0.75)2 e−0.1s (30)

P2(s) =
3

(1 + 3s0.88)(1 + 2s0.88)(1 + s0.88)
(31)

P3(s) = e−
√

s (32)

On the one hand, process P1 has been used to evaluate the proposed identification
method for several symmetrical and asymmetrical sets of points in comparison with several
well-known identification methods for integer-order models and to obtain insight into the
influence of the location of asymmetrical points on the accuracy of the identified model.

On the other hand, processes P2 and P3 have been used to evaluate the model per-
formance of the proposed procedure for symmetrical and asymmetrical points with other
fractional-order methods.

These examples selected in this section have been also used to validate the proposed
identification method for both symmetrical and asymmetrical points on the process reac-
tion curve.

The experimental procedure followed is as follows: A step signal has been applied to
the input of these processes and the reaction curve has been registered. Then the process
output responses have been used to obtain the parameters of the models using the different
identification methods. The sampling period used in all the experiments is Ts = 10 ms.

Finally, it is necessary to evaluate the accuracy of the model parameters that have
been identified and the effectiveness of the model structure that has been adopted. A wide
variety of model validation methods and fitting objective functions for system identification
are available in the technical literature [5].
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Although another objective function could have been used, the Mean Squared Error
(MSE) has been used as a time-domain fitting criterion as a measure of performance for the
identified model:

S(θ) =
1

Ns

Ns

∑
k=1

[e(kTs, θ)]2 =
1

Ns

Ns

∑
k=1

[y(kTs)− ym(kTs, θ)]2 (33)

where e(kTs, θ) is the difference between the process reaction curve and the step response
of the identified model, y(kTs) and ym(kTs, θ), respectively, θ is the vector of process model
parameters, NS is the number of collected samples, TS is the sampling period, and NSTS is
the time length of the dynamic (transient) response.

The Mean Absolute Error (MAE), the expression of which is (34), has also been
calculated in the following examples for illustrative purposes.

E(θ) =
1

Ns

Ns

∑
k=1

∣∣e(kTs, θ)
∣∣ = 1

Ns

Ns

∑
k=1

∣∣y(kTs)− ym(kTs, θ)
∣∣ (34)

In the same context, it may be interesting to evaluate the goodness of fit of the identified
model at different intervals of the reaction curve. For this reason, the index Sxi–xj(θ) is
introduced in this paper, where θ is the vector of identified model parameters. This
performance index represents the time-domain performance index S(θ) restricted to the
interval [xi–xj] on the reaction curve, where xi and xj are two specific points on the reaction
curve as depicted in Figure 3. Note that if the step response of the identified model is
divided into p intervals [xi–xj], the model performance index S(θ) and the p performance
indices Sk(θ) (k = 1, . . . , p) of each of the intervals satisfy the following expression:

S(θ) =
1

Ns

p

∑
k=1

Sk(θ)·Nsk (35)

where p ∈ Z+ is the number of intervals into which the model step response is divided, and
NSk is the number of samples of the model step response in the corresponding k interval.

The simulation results obtained in this section have been performed using the FOTF
MATLAB toolbox, which is a set of built-in functions that extends the control toolbox to
deal with fractional-order systems [43]. For a deeper knowledge of the FOTF toolbox, the
reader is referred to the reference text in [44].

4.1. Example 1

In this example, the fractional-order process model (30) is selected. This model is
a lag-dominated fractional second-order process plus dead-time (FSOPDT), providing
some modelling deviation from the model structure selected in the proposed identification
method, which is the FFOPDT dynamics.

This same model but for different α-values in the range 0.60 ≤ α ≤ 1.00 has been used
in [39], on the one hand, as a batch of processes to validate the proposed identification pro-
cedure for different sets of symmetrical points and, on the other hand, to obtain insight into
the influence of the location of symmetrical points on the accuracy of the identified model.

The objective in this case is to validate the identification procedure for asymmetrical
points on the process reaction curve and to obtain insight into the influence of the location
of such asymmetrical points on the accuracy of the fractional-order identified model. A
comparison between the proposed method and several well-known identification methods
for integer-order models is also provided in this section.

The process reaction curve for this model and the step-input signal are shown in Figure 7.
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Figure 7. Process reaction curve for process P1 and step-input signal.

The process information summarized in Table 10 for the proposed identification
method is collected from data in Figure 7.

With the information collected from Table 10, the following FFOPDT model parameters
θ1,i = {K1,i, T1,i, L1,i,α1,i}, for i = 1, . . . , 6, have been obtained in Table 11 for the different
sets of points proposed in Tables 2 and 6.

Table 10. Process information collected from the reaction curve for fractional-order model identifica-
tion of process P1.

Symmetrical Methods Asymmetrical Methods

Method #1:
(5-50-95%)

Method #2:
(10-50-90%)

Method #3:
(25-50-75%)

Method #4:
(10-55-90%)

Method #5:
(20-60-95%)

Method #6:
(20-75-95%)

∆u = 1.00

∆y = 1.00

t5 = 0.3020 s t10 = 0.4540 s t25 = 0.9300 s t10 = 0.4540 s t20 = 0.7620 s t20 = 0.7620 s
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Table 10. Cont.

Symmetrical Methods Asymmetrical Methods

Method #1:
(5-50-95%)

Method #2:
(10-50-90%)

Method #3:
(25-50-75%)

Method #4:
(10-55-90%)

Method #5:
(20-60-95%)

Method #6:
(20-75-95%)

t50 = 2.0910 s t50 = 2.0910 s t50 = 2.0910 s t55 = 2.4400 s t60 = 2.8590 s t75 = 4.9730 s

t95 = 29.1410 s t90 = 13.2640 s t75 = 4.9730 s t90 = 13.2640 s t95 = 29.1410 s t95 = 29.1410 s

Table 11. Fractional-order model settings for the symmetrical and asymmetrical sets of points (5-50-
95%), (10-50-90%), (25-50-75%), (10-55-90%), (20-60-95%), and (20-75-95%), respectively, applied to
Example 1.

Symmetrical Methods Asymmetrical Methods

Method #1:
(5-50-95%)

Method #2:
(10-50-90%)

Method #3:
(25-50-75%)

Method #4:
(10-55-90%)

Method #5:
(20-60-95%)

Method #6:
(20-75-95%)

K1,1 = 1.0000 K1,2 = 1.0000 K1,3 = 1.0000 K1,4 = 1.0000 K1,5 = 1.0000 K1,6 = 1.0000

T1,1 = 2.3137 s T1,2 = 2.2492 s T1,3 = 2.1890 s T1,4 = 2.1963 s T1,5 = 2.0223 s T1,6 = 1.8807 s

L1,1 = 0.2745 s L1,2 = 0.2782 s L1,3 = 0.3901 s L1,4 = 0.2791 s L1,5 = 0.3139 s L1,6 = 0.2921 s

α1,1 = 0.7791 α1,2 = 0.7888 α1,3 = 0.8088 α1,4 = 0.7836 α1,5 = 0.7580 α1,6 = 0.7463

The FFOPDT model step responses for (5-50-95%), (10-50-90%), (25-50-75%), (10-55-
90%), (20-60-95%), and (20-75-95%), respectively, are compared with the process reaction
curve and illustrated in Figures 8–10. In each figure the corresponding representative points,
symmetrical (x-50-(100−x)%) and asymmetrical (x1-x2-x3%), respectively, are also displayed.
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and process reaction curve: (a) Symmetrical set of points (5-50-95%); (b) Symmetrical set of points
(10-50-90%).
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Figure 9. FFOPDT model step response using the proposed identification method for process P1 and
process reaction curve: (a) Symmetrical set of points (25-50-75%); (b) Asymmetrical set of points
(10-55-90%).
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Figure 10. FFOPDT model step response using the proposed identification method for process P1

and process reaction curve: (a) Asymmetrical set of points (20-60-95%); (b) Asymmetrical set of point
(20-75-95%).

Figures 8–10 show that the step responses of the fractional-order models identified
with the proposed method, for both the symmetrical and asymmetrical case, give good fit
with the process reaction curve, which confirms the validity of this identification method
also for the asymmetrical case. Note that the identification method for the symmetrical
case has been studied in detail and its validity for the identification of FFOPDT models has
also been confirmed in [39].

Table 12 shows the process parameters identified for FOPDT and DPPDT models
obtained using the methods proposed by Alfaro in [11], and by Vitecková et al. in [14], and
the ones for SOPDT obtained using methods proposed by Stark in [16] and by Jahanmiri
and Fallahi in [15], using two or three points from the process reaction curve.
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Table 12. FOPDT, DPPDT, and SOPDT model settings obtained for the considered integer-order
identification methods.

FOPDT DPPDT SOPDT

Alfaro [11]
(25–75%)

Vitecková [14]
(33–70%)

Alfaro [11]
(25–75%)

Vitecková [14]
(33–70%)

Stark [16]
(15-45-75%)

Jahanmiri–
Fallahi [15]
(2-70-90%)

K = 1.00 K = 1.00 K = 1.00 K = 1.00 K = 1.0000 K1,6 = 1.0000

T = 3.68 s T = 3.51 s T = 2.24 s T = 2.33 s T1 = 3.52 s T1 = 5.61 s

L = 0.00 s L = 0.00 s L = 0.00 s L = 0.00 s T2 = 0.34 s T2 = 0.0072 s

- - - - L = 0.00 s L = 0.20 s

The corresponding integer-order model step responses for the considered classical
identification methods are compared with the process reaction curve and illustrated in
Figure 11 for FOPDT and DPPDT models and in Figure 12 for SOPDT models.
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Figure 11. FOPDT and DPPDT model step responses using integer-order model identification
methods for process P1 and process reaction curve: (a) Alfaro [11] (25–75%); (b) Vitecková et al. [14]
(33–70%).

Figures 11 and 12 illustrate that FOPDT, DPPDT, and SOPDT models, respectively, ap-
proximate process P1 with insufficient accuracy compared to FFOPDT models obtained with
the proposed method. It has been illustrated from Figures 8–12 that the proposed identifi-
cation method outperforms significantly the considered methods for integer-order models.

Table 13 shows the values of the time-domain performance indexes S(θ1,i) and E(θ1,i)
for process P1, and the ones corresponding to the intervals [0–50%], S0−50(θ1,i), and
[50–100%], S50−100(θ1,i), of the total process output change, respectively, for the differ-
ent models considered in this example. In this table, i = 1, . . . , 6 represents the different sets
of points considered in the proposed identification method, and i = 7, . . . , 12 represents the
different identification methods for integer-order models.
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Jahanmiri and Fallahi [15] (2-70-90%) and process reaction curve.

Table 13. Comparison between the performance indexes obtained for the proposed method with
different sets of points, symmetrical and asymmetrical, and the ones for several well-known methods
for integer-order models. The number of samples NS for the whole range and for each interval are
also displayed.

i Method Set of Points S0–50(
¯
θ1,i) S50–100(

¯
θ1,i) S0–100(

¯
θ1,i) = S(

¯
θ1,i) E(

¯
θ1,i)

1 FFOPDT Proposed #1 (5-50-95%) 3.07 × 10−4 2.24 × 10−5 2.48 × 10−5 2.4 × 10−3

2 FFOPDT Proposed #2 (10-50-90%) 4.63 × 10−4 1.45 × 10−5 1.83 × 10−5 3.6 × 10−3

3 FFOPDT Proposed #3 (25-50-75%) 4.75 × 10−4 5.36 × 10−5 5.72 × 10−5 6.7 × 10−3

4 FFOPDT Proposed #4 (10-55-90%) 6.86 × 10−4 1.09 × 10−5 1.65 × 10−5 3.2 × 10−3

5 FFOPDT Proposed #5 (20-60-95%) 1.30 × 10−3 3.46 × 10−6 1.44 × 10−5 1.2 × 10−3

6 FFOPDT Proposed #6 (20-75-95%) 3.20 × 10−3 6.86 × 10−6 3.34 × 10−5 9.7 × 10−4

7 FOPDT Alfaro (25-75%) - - 7.32 × 10−4 2.19 × 10−2

8 FOPDT Vitecková (33-70%) - - 7.54 × 10−4 2.20 × 10−2

9 DPPDT Alfaro (25-75%) - - 1.50 × 10−3 2.51 × 10−2
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Table 13. Cont.

i Method Set of Points S0–50(
¯
θ1,i) S50–100(

¯
θ1,i) S0–100(

¯
θ1,i) = S(

¯
θ1,i) E(

¯
θ1,i)

10 DPPDT Vitecková (33-70%) - - 1.60 × 10−3 2.53 × 10−2

11 SOPDT Stark (15-45-75%) - - 8.26 × 10−4 2.26 × 10−2

12 SOPDT Jahanmiri–Fallahi (2-70-90%) - - 1.40 × 10−3 2.35 × 10−2

Number of samples NS1 = 210 NS2 = 24,791 NS = NS1 + NS2 = 25,001 NS = 25,001

Time-domain performance indexes in both intervals, S0−50(θ1,i) and S50−100(θ1,i), give
information about the effect of the location of the different set of points on the accuracy of
the identified models. Since the step response of the identified models can be divided into
the two aforementioned intervals, the accuracy of the identified models can be quantified
and the one for the first and second half of the total interval can be also determined from
data in Table 13. The number of samples for the model step responses in the whole range,
NS, and in both intervals, NS1 and NS2, respectively, are also provided in Table 13.

Note that from expression (35) the following relation that must be fulfilled can be
particularized for this case:

S(θ1,i) = S0−100(θ1,i) =
1

Ns

[
S0−50(θ1,i)·Ns1 + S50−100(θ1,i)·Ns2

]
(36)

The results of Table 13 for the proposed identification method in terms of S0–50(θ1,i),
S50–100(θ1,i), and S(θ1,i), for i = 1, . . . , 6, are also shown graphically in Figure 13.
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Figure 13. Graphical representation of the data given in Table 13 for process P1. From left to right the
performance indexes S0–50(θ1,i), S50–100(θ1,i), and S(θ1,i), i = 1, . . . , 6, are shown, respectively, for each
of the considered methods.

Next, the results obtained in Table 13 and illustrated in Figure 13 for the FFOPDT
models identified for process P1 will be analyzed in order to gain insights into the location of
the points for the asymmetrical case and their effect on the accuracy of the identified model.

The following observations can be drawn from the above results:

1. Methods with low values of x1 for the asymmetrical case, or x in the symmetrical case,
allow obtaining low values of S0–50, as can be seen in Figure 13 for methods #1, #2,
and #4, compared to #5 and #6, which give worse results in that interval.



Fractal Fract. 2022, 6, 526 23 of 46

2. Methods with high values of x3 for the asymmetrical case allow better fitting of the
model to the reaction curve in the final part of the response, as verified by the low
values of S50–100 for methods #4, #5, and #6. For the symmetrical case, a high value of
(100 − x) implies a low value of x, thus better fitting the model to the reaction curve
in the initial and final parts of the response, as illustrated by the low values of S0–50
and S50–100, respectively, for methods #1 and #2.

3. Comparing methods #2 and #4, it can be seen that the effect of increasing the value
of x2, while keeping x1 and x3 constant, is to reduce the value of S as a result of a
reduction in the value of S50–100, even though the value of S0–50 is slightly increased.

4. Comparing methods #5 and #6, the effect of increasing the value of x2 can also be
observed, while keeping x1 and x3 constant. Note that the value of x1 in this case is
higher than for methods #2 and #4. The value of S for method #5 is reduced as a result
of a very good fit in the interval [50–100%], as shown in Figure 13. The value of S
corresponding to method #6 increases substantially due to a poorer fit in the interval
[0–50%] despite the good result for S50–100.

As discussed previously, the step response of the identified model can be divided
into different intervals to evaluate the effect that the selection of different sets of points
(x1-x2-x3%) has on the model’s accuracy in each interval.

In this regard, Table 14 allows the comparison of method #2 with #4 for the intervals
[0–10%], [10–55%], [55–90%], and [90–100%], respectively. The comparison of methods #5
and #6 for the intervals [0–20%], [20–50%], [50–75%], and [75–100%], respectively, is shown
in Table 15.

Table 14. Comparison between methods #2 and #4 in terms of time-domain model performance
indices for different intervals of the process reaction curve for both identified models. The time-
domain performance index for the whole response is also included in this table. NS represents the
number of points for each interval.

Interval # Interval Method #2: (10-50-90%) Method #4: (10-55-90%) NS

1 [0–10%] S0−10(θ1,2) = 2.61 × 10−4 S0−10(θ1,4) = 2.64 × 10−4 46
2 [10–55%] S10−55(θ1,2) = 4.31 × 10−4 S10−55(θ1,4) = 6.76 × 10−4 198
3 [55–90%] S55−90(θ1,2) = 8.11 × 10−5 S55−90(θ1,4) = 4.90 × 10−5 1117
4 [90–100%] S90−110(θ1,2) = 1.14 × 10−5 S90−100(θ1,4) = 9.06 × 10−6 23,674

- [0–100%] S(θ1,2) = 1.83 × 10−5 S(θ1,4) = 1.65 × 10−5 25,001

Table 15. Comparison between methods #5 and #6 in terms of time-domain model performance
indices for different intervals of the process reaction curve for both identified models. The time-
domain performance index for the whole response is also included in this table. NS represents the
number of points for each interval.

Interval # Interval Method #5: (20-60-95%) Method #6: (20-75-95%) NS

1 [0–20%] S0−20(θ1,5) = 7.65 × 10−4 S0−20 = 1.60 × 10−3 77
2 [20–50%] S20−50(θ1,5) = 1.60 × 10−3 S20−50(θ1,6) = 4.10 × 10−3 133
3 [50–75%] S50−75(θ1,5) = 9.31 × 10−5 S50−75(θ1,6) = 5.69 × 10−4 288
4 [75–100%] S75−100(θ1,5) = 2.40 × 10−6 S75−100(θ1,6) = 2.45 × 10−7 24,503

- [0–100%] S(θ1,5) = 1.44 × 10−5 S(θ1,6) = 3.34 × 10−5 25,001

4.2. Example 2

The model (31) proposed in [31] is considered in this example. This process exhibits
a higher-order lag-dominated fractional-order dynamics. The proposed identification
method for symmetrical and asymmetrical sets of points are compared with other well-
recognized methods for FFOPDT models, which are also based on the process reaction
curve, and the optimal FOPDT.

The step-input signal and the process reaction curve for this model are shown
in Figure 14.
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The process information summarized in Table 16 for the different identification meth-
ods is collected from data in Figure 14.

Table 16. Process information collected from the reaction curve for fractional-order model identifica-
tion of process P2.

Symmetrical Methods Asymmetrical Methods

Method #1:
(5-50-95%)

Method #2:
(10-50-90%)

Method #3:
(25-50-75%)

Method #4:
(10-55-90%)

Method #5:
(20-60-95%)

Method #6:
(20-75-95%)

∆u = 1.00

∆y = 3.00

t5 = 1.4140 s t10 = 2.0290 s t25 = 3.5600 s t10 = 2.0290 s t20 = 3.0630 s t20 = 3.0630 s

t50 = 6.3850 s t50 = 6.3850 s t50 = 6.3850 s t55 = 7.1044 s t60 = 7.9180 s t75 = 11.4060 s

t95 = 33.9290 s t90 = 20.8030 s t75 = 11.4060 s t90 = 20.8030 s t95 = 33.9290 s t95 = 33.9290 s

With the information collected from Table 16, the following FFOPDT model parameters
θ2,i = {K2,i, T2,i, L2,i,α2,i}, for i = 1, . . . , 6, have been obtained in Table 17 for the different
sets of points, i.e., (5-50-95%), (10-50-90%), (25-50-75%), (10-55-90%), (20-60-95%), and
(20-75-95%), respectively.
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Table 17. Fractional-order model settings for the symmetrical and asymmetrical sets of points (5-50-
95%), (10-50-90%), (25-50-75%), (10-55-90%), (20-60-95%), and (20-75-95%), respectively, applied to
Example 2.

Symmetrical Methods Asymmetrical Methods

Method #1:
(5-50-95%)

Method #2:
(10-50-90%)

Method #3:
(25-50-75%)

Method #4:
(10-55-90%)

Method #5:
(20-60-95%)

Method #6:
(20-75-95%)

K2,1 = 3.0000 K2,2 = 3.0000 K2,3 = 3.0000 K2,4 = 3.0000 K2,5 = 3.0000 K2,6 = 3.0000

T2,1 = 6.4066 s T2,2 = 6.6381 s T2,3 = 6.6817 s T2,4 = 6.3850 s T2,5 = 5.1733 s T2,6 = 4.6914 s

L2,1 = 1.2638 s L2,2 = 1.3955 s L2,3 = 1.6203 s L2,4 = 1.4329 s L2,5 = 2.4042 s L2,6 = 2.5096 s

α2,1 = 0.9189 α2,2 = 0.9470 α2,3 = 0.9802 α2,4 = 0.9391 α2,5 = 0.8901 α2,6 = 0.8759

Process (31) is also approximated by an FFOPDT model following the method pro-
posed by Tavakoli-Kakhki in [31], by an FFOPDT model obtained using the optimization-
based method proposed by Guevara et al. in [34], and by the optimal FOPDT model, where
model parameters, θ2,i for i = 7, 8, and 9, respectively, are given in Table 18.

Table 18. FFOPDT model parameters obtained using methods proposed by Tavakoli-Kakhki [31] and
by Guevara et al. [34], and optimal FOPDT model parameters, respectively, for process P2.

Method #7:
FFOPDT Tavakoli-Kakhki [31]

Method #8:
FFOPDT Guevara et al. [34]

Method #9:
FOPDT optimal

K2,7 = 3.00 K2,8 = 3.0000 K2,9 = 3.0000

T2,7 = 6.30 s T2,8 = 5.6285 s T2,9 = 8.7412 s

L2,7 = 1.00 s L2,8 = 1.8833 s L2,9 = 0.0000 s

α2,7 = 0.92 α2,8 = 0.9263 -

Note that the method proposed in [34] is based on optimization, where the function to

be minimized is E(
¯
θ) (34). In this method, the approximation of the fractional term sα is

developed using the Oustaloup method; see [19]. In contrast, the parameters obtained in

the optimal FOPDT model are those that minimize the function S(
¯
θ) (33).

The step responses of the considered approximated models for (5-50-95%), (10-50-90%),
(25-50-75%), (10-55-90%), (20-60-95%), and (20-75-95%), respectively, are compared with the
process reaction curve and illustrated in Figures 15–17. The corresponding representative
points, symmetrical (x-50-(100 − x)%) and asymmetrical (x1-x2-x3%), respectively, are also
displayed in these figures. Moreover, the process reaction curve and the step responses
of the FFOPDT model proposed by Tavakoli-Kakhki, the FFOPDT model obtained using
the method proposed by Guevara et al., and the optimal FOPDT model, respectively, are
shown in Figure 18.
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Figure 18. Step response of the FFOPDT model obtained using methods proposed by Tavakoli-
Kakhki [31] and by Guevara [34], respectively, the step response of the optimal FOPDT model, for
process P2 and process reaction curve.

In this example, a high-order process model has been utilized to demonstrate the ef-
fectivity and applicability of the proposed identification procedure in the task of estimating
FFOPDT-type model parameters.
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Similar to the previous example, Figures 15–17 illustrate that the models obtained
with the proposed method, for both the symmetrical and asymmetrical case, provide a
good fit with the process reaction curve also for a higher-order lag-dominated fractional-
order process in comparison with the results obtained using the well-recognized method
proposed by Tavakoli-Kakhki, and even in comparison with optimization-based methods
for FFOPDT and FOPDT models. These results are shown in Figure 18.

Figure 15a,b and Figure 16a show that the proposed method for the symmetrical case
gives good results in the interval [x-(100 − x)%]. For this reason, better results are obtained
for low values of x, as discussed in [39]. Figures 16b and 17a,b show that by moving the
points x1, x2, and x3 of the reaction curve it is possible to obtain an FFOPDT model of which
the step response can be better fitted to the reaction curve in certain intervals, as will be
shown below.

Table 19 shows the values of the time-domain performance indexes S(θ2,i) and E(θ2,i)
for process P2, and the ones corresponding to the intervals [0–50%], S0–50(θ2,i), and [50–
100%], S50–100(θ2,i), of the total process output change, respectively, for the different models
considered in this example. In this table, i = 1, . . . , 6 represents the different sets of points
considered in the proposed identification method, and i = 7, 8, and 9 represents methods #7
and #8 for FFOPDT models, and #9 for FOPDT, respectively.

Table 19. Comparison between the performance indexes obtained for the proposed method with
different sets of points, symmetrical and asymmetrical, and the ones for several methods for FFOPDT
and FOPDT models. The number of samples NS for the whole range and for each interval are
also displayed.

i Method Set of Points S0–50(
¯
θ2,i) S50–100(

¯
θ2,i) S0–100(

¯
θ2,i) = S(

¯
θ2,i) E(

¯
θ2,i)

1 FFOPDT Proposed #1 (5-50-95%) 5.80 × 10−3 8.78 × 10−4 1.10 × 10−3 2.40 × 10−2

2 FFOPDT Proposed #2 (10-50-90%) 2.80 × 10−3 1.20 × 10−3 1.30 × 10−3 3.34 × 10−2

3 FFOPDT Proposed #3 (25-50-75%) 4.40 × 10−3 3.33 × 10−3 3.30 × 10−3 5.14 × 10−2

4 FFOPDT Proposed #4 (10-55-90%) 3.80 × 10−3 9.58 × 10−4 1.10 × 10−3 3.02 × 10−2

5 FFOPDT Proposed #5 (20-60-95%) 2.78 × 10−2 4.53 × 10−4 1.60 × 10−3 1.92 × 10−2

6 FFOPDT Proposed #6 (20-75-95%) 2.88 × 10−2 1.01 × 10−4 1.30 × 10−3 1.24 × 10−2

7 FFOPDT Tavakoli-Kakhki [31] - 2.02 × 10−2 5.25 × 10−4 1.40 × 10−3 2.47 × 10−2

8 FFOPDT Guevara et al. [34] - 8.30 × 10−3 8.23 × 10−4 1.10 × 10−3 2.82 × 10−2

9 FOPDT optimal - 4.55 × 10−2 9.07 × 10−4 2.80 × 10−3 2.95 × 10−2

Number of samples NS1 = 639 NS2 = 14362 NS = NS1 + NS2 = 15,001 NS = 15,001

Note that from expression (35) the following relation that must be fulfilled can be
particularized for this case:

S(θ2,i) = S0–100(θ2,i) =
1

Ns
[S0–50(θ2,i)·Ns1 + S50–100(θ2,i)·Ns2] (37)

Table 19 shows that the accuracy of models obtained with methods #1, #5, and #6 is
better in terms of E than the one obtained for methods #7 and #8. The proposed method for
all the sets of points except #3 provides models with lower values of E than for the optimal
FOPDT model.

For the sake of simplicity in the interpretation of results, information taken from
Table 19 is depicted in Figure 19.
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performance indices S0–50(θ2,i), S50–100(θ2,i), and S(θ2,i), i = 1, . . . , 9, are shown, respectively, for each
of the considered methods.

Figure 19 illustrates that the accuracy of the models obtained with the proposed
method for the symmetrical and asymmetrical case is similar to the one obtained using the
method proposed by Guevara et al., and even better than that obtained with a well-known
identification method such as the one proposed by Tavakoli-Kakhki, or than the optimal
FOPDT model. Note that the method proposed by Guevara et al. is based on optimization,
while the method proposed in this paper is analytical.

Specifically, the value of the time-domain model performance index of methods #1, #2,
#4, and #6 are lower than the one proposed by Tavakoli-Kakhki, confirming the effectiveness
of the proposed method for both the symmetrical and the asymmetrical case. Furthermore,
the proposed method not only gives better results than the Tavakoli-Kakhki method in
terms of S, but in the authors’ opinion it is easier to apply.

The S-value of the model obtained with method #5 is slightly higher than the one by
Tavakoli-Kakhki, while the one obtained with method #3 is substantially higher than the
rest. This fact has already been discussed above and also in [39] for the symmetrical case
and the choice of this method among the symmetrical methods allows us to determine that
the accuracy of models obtained is improved for low values of x in the symmetrical case,
and high values of x3 for the asymmetrical case.

Results in Table 19 confirm the same observations taken from Example 1:

1. Methods with low values of x1 for the asymmetrical case, or x in the symmetrical case,
present low values of S0–50, as can be seen in Figure 19 for methods #1, #2, and #4.

2. Methods with high values of x3 for the asymmetric case present a lower value of
S50–100, as can be observed for method #4, and especially for #5 and #6. For the
symmetric case, methods #1 and #2, with low values of x and high values of (100 − x),
present good values of S0–50 and S50–100, as expected.

3. Comparison of methods #2 and #4 yields the same conclusions as for Example 1.
4. The observations drawn from Example 1 for the comparison of methods #5 and #6 are

also extensible to Example 2.

The comparison of method #7 with the methods providing the best results in terms of
S is then performed by dividing the reaction curve and the respective step responses of the
obtained models into different intervals.

It can be extracted from data taken from Table 19 that the best results in terms of S
are those obtained with models determined using method #1 for the symmetrical case
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and #4 for the asymmetrical case. Then, the step responses of the models obtained using
methods #1, #4, and #7 are divided into four intervals, i.e., [0–10%], [10–50%], [50–90%],
and [90–100%], respectively. Table 20 provides a comparison of these methods for the
aforementioned intervals.

Table 20. Comparison between methods #1, #4, and #7 in terms of time-domain model performance
indexes for different intervals of the process reaction curve for both identified models. The time-
domain performance index for the whole response is also included in this table. NS represents the
number of points for each interval.

Interval # Interval Method #1: (5-50-95%) Method #4: (10-55-90%) Method #7 NS

1 [0–10%] S0–10(θ2,1) = 2.80 × 10−3 S0–10(θ2,4) = 5.70 × 10−3 S0–10(θ2,7) = 4.80 × 10−3 203
2 [10–50%] S10–50(θ2,1) = 7.20 × 10−3 S10–50(θ2,4) = 2.90 × 10−3 S10–50(θ2,7) = 2.73 × 10−2 436
3 [50–90%] S50–90(θ2,1) = 6.10 × 10−3 S50–90(θ2,4) = 1.30 × 10−3 S50–90(θ2,7) = 2.30 × 10−3 1442
4 [90–100%] S90–100(θ2,1) = 3.00 × 10−4 S90–100(θ2,4) = 9.25 × 10−5 S90–100(θ2,7) = 3.26 × 10−4 12,920

- [0–100%] S(θ2,1) = 1.10 × 10−3 S(θ2,4) = 1.10 × 10−3 S(θ2,7) = 1.40 × 10−3 15,001

Note that from expression (35) the following relation must be fulfilled:

S(θ2,i) = S0−100(θ2,i)

= 1
Ns

[S0−10(θ2,i)·Ns1 + S10−50(θ2,i)·Ns2 + S50−90(θ2,i)·Ns3

+S90−100(θ2,i)·Ns4]

(38)

Figure 20 represents graphically the information taken from Table 20, which simplifies
the interpretation of results.
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Figure 20. Graphical representation of data given in Table 20 for process P2. From left to right the
performance indexes S0–10(θ2,i), S10–50(θ2,i), S50–90(θ2,i), and S90–100(θ2,i), are shown for methods #1,
#4, and #7, respectively.

Information about the accuracy of the model obtained at the different intervals of the
reaction curve can be extracted from Table 20. Specifically, it can be seen that method #1
provides a model that fits the reaction curve very well in the intervals [0–10%], [10–50%] and
[90–100%], while the fit is worse in the interval [50–90%], as can also be seen in Figure 15a.
This method provides the best results of the three compared methods in the intervals
[0–10%] and [90–100%].
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The model for method #4 fits very well in the intervals [10–50%] and [50–90%], where
it presents the lowest values of the three compared methods. In contrast, the value of S
increases outside these intervals, as can also be seen in Figure 16b.

The model proposed by Tavakoli-Kakhki provides a good fit in the intervals [50–90%]
and [90–100%], while the results for the rest of intervals are worse, particularly for [10–50%].

4.3. Example 3

The model (32), which has been proposed in [45] as part of a collection of systems that
are suitable for testing PID controllers, is considered in this example.

Physically, this transfer function describes how temperature evolves over time in
a solid medium, which assumes that the temperature is distributed in only one spatial
coordinate and the heat is transferred in the direction in which the temperature decreases.
This ideal transfer function contains the irrational operator

√
s which may cause difficulties

in a further analytical analysis.
In general, temperature control is a widespread application in the process industry,

and, in particular, thermal conduction is a very common dynamic in process control.
Traditionally, the FOPDT model has been utilized to approximate this dynamic; how-

ever, it has insufficient accuracy. Since a growing body of evidence has suggested that
fractional-order models are able to describe dynamic processes with higher accuracy, the
proposed identification method will be used to more accurately model this process, which
exhibits fractional behavior.

In order to evaluate the effectiveness of the proposed method, the estimated models
for the symmetrical and asymmetrical cases will be compared with the optimal FOPDT
and FFOPDT models.

Following the same procedure used in previous examples, the following FFOPDT
model parameters θ3,i = {K3,i, T3,i, L3,i, α3,i} for i = 1, . . . , 6, have been obtained in Table 21
for the different sets of points, i.e., (5-50-95%), (10-50-90%), (25-50-75%), (10-55-90%), (20-60-
95%), and (20-75-95%), respectively. Model parameters for optimal FFOPDT and FOPDT
models have also been calculated. Process (32) has also been approximated by the optimal
FFOPDT and FOPDT models, where model parameters θ3,i for i = 7 and 8, respectively, are
given in Table 21. Note that the parameters obtained in the optimal models are those that
minimize the function S(θ) (33). Since the Taylor series expansion for the irrational transfer
function (32) give a polynomial of half-order integrators s0.5, α3,7 has been considered to
be 0.5.

Table 21. Fractional-order model settings for the symmetrical and asymmetrical sets of points (5-50-
95%), (10-50-90%), (25-50-75%), (10-55-90%), (20-60-95%), and (20-75-95%), respectively, and optimal
FFOPDT and FOPDT model parameters.

Method #1:
(5-50-95%)

Method #2:
(10-50-90%)

Method #3:
(25-50-75%)

Method #4:
(10-55-90%)

Method #5:
(20-60-95%)

Method #6:
(20-75-95%)

#7: FFOPDT
Optimal

#8: FOPDT
Optimal

K3,1 = 1.00 K3,2 = 1.00 K3,3 = 1.00 K3,4 = 1.00 K3,5 = 1.00 K3,6 = 1.00 K3,7 = 1.02 K3,8 = 0.91

T3,1 = 1.26 s T3,2 = 1.26 s T3,3 = 1.22 s T3,4 = 1.22 s T3,5 = 1.13 s T3,6 = 1.08 s T3,7 = 1.23 s T3,8 = 2.24 s

L3,1 = 0.00 s L3,2 = 0.60 s L3,3 = 0.22 s L3,4 = 0.67 s L3,5 = 0.00 s L3,6 = 0.00 s L3,7 = 0.0001 s L3,8 = 0.00 s

α3,1 = 0.5368 α3,2 = 0.5459 α3,3 = 0.5598 α3,4 = 0.5401 α3,5 = 0.5206 α3,1 = 0.5140 α3,7 = 0.5000 -

In this example, an ideal thermal conduction process model has been used to demon-
strate the effectiveness of the proposed identification procedure in the task of estimating the
FFOPDT model parameters, compared to the optimal FOPDT model, which is traditionally
used to model this type of process. Also, the results are compared with the optimal FFOPDT
model to verify that with the proposed method it is possible to obtain comparable results
to the latter with much less computational effort.

The step responses of the considered approximated models in Table 21 are compared
with the process reaction curve and illustrated in Figures 21–24.
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Figures 21–23 illustrate that the models obtained with the proposed method, for both
the symmetrical and asymmetrical case, provide a good fit with the process reaction curve
compared to the results obtained using the optimal FFOPDT, which is shown in Figure 24a.
It can also be observed that the proposed method outperforms the results obtained using
the optimal FOPDT model, which is shown in Figure 24b.

Table 22 shows the values of the time-domain performance indexes S(θ3,i) and E(θ3,i)
for process P3, for the different models considered in this example. In this table, i = 1, . . . , 6
represents the different sets of points considered in the proposed identification method,
and i = 7 and 8 represents optimal FFOPDT and FOPDT models, respectively.
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Table 22. Comparison between the performance indexes obtained for the proposed method with
different sets of points, symmetrical and asymmetrical, and the ones for optimal methods for FFOPDT
and FOPDT models. The number of samples NS is also displayed.

i Method Set of Points S(
¯
θ3,i) E(

¯
θ3,i)

1 FFOPDT Proposed #1 (5-50-95%) 1.00 × 10−4 3.00 × 10−3

2 FFOPDT Proposed #2 (10-50-90%) 3.60 × 10−4 5.70 × 10−3

3 FFOPDT Proposed #3 (25-50-75%) 8.97 × 10−5 8.90 × 10−3

4 FFOPDT Proposed #4 (10-55-90%) 4.19 × 10−4 5.40 × 10−3

5 FFOPDT Proposed #5 (20-60-95%) 1.41 × 10−4 2.00 × 10−3

6 FFOPDT Proposed #6 (20-75-95%) 1.73 × 10−4 2.50 × 10−3

7 FFOPDT optimal - 1.47 × 10−4 6.40 × 10−3

8 FOPDT optimal - 1.40 × 10−3 3.08 × 10−2

Number of samples NS = 15,001 NS = 15,001

Table 22 shows that methods #1, #5, and #6 provide E values comparable to that
obtained for the optimal FFOPDT model. On the other hand, it is also observed that the
FOPDT model approximates the process dynamics with insufficient accuracy. In fact, for
example, methods #1, #5, and #6 have E values that are 10.3, 15.4, and 12.3 times lower than
that obtained by the optimal FOPDT model.

5. Experimental Results

One of the objectives of this paper is to verify the applicability of the proposed
identification procedure in a laboratory prototype and to obtain insight into the practical
issues related to its implementation on industrial control hardware.

In this section, a thermal process-based hardware-in-the-loop experimental setup will
be used to validate the effectiveness of the proposed identification procedure implemented
on microprocessor-based control hardware.

This section is organized as follows. Firstly, the laboratory prototype to be used
is described. After that, the controlled process is configured to test the identification
procedures proposed in this work for both the symmetrical and the asymmetrical case.
Since the prototype can be set up in three different configurations, this section describes the
selected configuration and defines the different components and variables that make up
the controlled process. Then, the hardware control architecture to be used for the operation
of the prototype and the practical implementation of the model estimation procedures are
briefly presented. Next, the identification procedures are applied to the thermal laboratory
prototype using a microprocessor-based control hardware, confirming the applicability
of these procedures in industrial equipment. This constitutes one of the main results
of this paper. Finally, some remarks and final comments about practical issues in the
microprocessor-based implementation are offered in this context.

5.1. Description of the Prototype

Recently, a thermal-based experimental setup has been designed and built in the
Faculty of Engineering, University of Deusto. The considered prototype consists of two
clearly different parts, as can be seen in the 3D-model layout in Figure 25.
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Figure 25. Deusto Heater Experimental Setup—3D-model layout of the prototype and schematic
detail of the thermal process.

• The upper part of the equipment, where there is a methacrylate duct, the head of a
3D-printer extruder, and an air fan in front of the hot end. User LEDs, an LCD display,
a user button, and four BNC output connectors to display the main process variables
on an oscilloscope, can be found outside of the enclosure.

• The inner part of the enclosure, where the power supply and all the hardware and
electrical components necessary for the correct operation of the experimental setup
can be found. The connection of the input and output signals to the control hardware
has also been arranged through a standard 34-way IDC connector, which is placed on
one side of the box.

A detailed description of this laboratory equipment, which is named Deusto Heater
Experimental Setup (Deusto HES), can be found in [46].

5.2. Reconfigurable Controlled Process

The thermal process considered in this paper takes place on the upper part of the
prototype. The equipment brings about the thermodynamic process of temperature control
in a 3D-printer extruder head.

It should be noted that the head of the 3D-printer is not a conventional component,
but the dimensions of the heat block have been conveniently modified. The head of the
3D-printer is just used as a heating element (final controlling element) and there is no type
of extrusion process, as takes place in a real 3D-printer.

The control objective in this process is to achieve a temperature in the heat block T(t)
that reaches the value set by the user TSET, despite the disturbances that may take part in
the process.

If it is assumed that the physical properties do not vary, only the effects of the heating
power and the air fan on the controlled variable T(t) should be considered, as shown in
Figure 25. Accordingly, from a thermodynamical point of view, the only source of heat
in the system is represented by the heat conduction originated in the resistor hole, which
exhibits a fractional behavior [47]. On the other hand, another phenomenon that takes
place in the process is the forced convection on the heat block generated by the airflow
due to the air fan [48,49]. As both phenomena can be controlled by the control hardware,
from a control point of view the controlled process configuration can be set using software
components, as will be discussed below.
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In this paper, the heating element is used as the final control element while keeping
constant the speed of the air fan. Figure 26 represents the block diagram of the controlled
process in the selected configuration, while the different components, variables, and units
are listed in Table 23. However, two additional configurations are available with this
equipment, constituting a reconfigurable controlled process, as is explained in detail in [50].
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Figure 26. Block diagram for the considered controlled process configuration.

Table 23. Main process variables and components in the considered controlled process configuration.

Process Variables or Components Controlled Process Configuration #1

Controlled variable Temperature in the heat block T(t) [◦C]
Manipulated variable Power delivered to the heat block by the heating resistance P(t) [W]

Measured variables Temperature measured by the thermistor Tm(t) [V]
Rotational speed of fanωF(t) [V]

Control signal Output of the controller uH(t) [%]
Final control element Heating resistance
Measurement devices Temperature transmitter (TT) and Frequency transmitter (ST)
Disturbances Ambient temperature Ta(t) [◦C] and command signal to air fan uF(t) [%]

5.3. Control Hardware

In this paper, NI myRIO-1900 equipment was used as a control hardware device,
although any other type of microprocessor or hardware device could be easily incorporated.

Figure 27 illustrates the scheme of the hardware architecture used for the opera-
tion of this prototype and for the practical implementation of control and model estima-
tion algorithms. This hardware architecture has been proposed in [50] and the use of
this control hardware for the implementation of integer- and fractional-order PID con-
trollers is explained in detail. In particular, the design and experimental validation of the
fractional-order controllers implemented in several control technologies were applied to
this thermal-based experimental setup in order to demonstrate the effectiveness of the
proposed hardware architecture.
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Figure 27. Scheme of the hardware architecture used for operation and implementation of fractional-
order model identification algorithms applied to the laboratory prototype.

The flexibility required in the industrial context is offered by this control hardware and
the configuration of the proposed control architecture provides the following technologies
for the practical implementation of model identification procedures:

1. DAQ mode;
2. Microprocessor-based mode;
3. FPGA-based mode.

LabVIEW has been used as a programming language in this prototype. LabVIEW,
which has become a de facto standard in industry, especially in the areas of industrial
measurement and control, with the latest and most advanced programming techniques
and transparency in the access to hardware devices, facilitates not only the application of
different modelling techniques, but also the practical implementation of conventional and
advanced control algorithms.

Depending on the control technology that is being used, the communication technolo-
gies between the control hardware and the local or remote PC are programmed with the
following software components, as indicated in Figure 27 and detailed in [46].

1. LabVIEW;
2. LabVIEW RT;
3. LabVIEW RT and LabVIEW FPGA

Without loss of generality, in this paper only the microprocessor-based hardware mode
has been used to operate the prototype and estimate fractional-order model parameters
applying the proposed identification procedure.

5.4. Model Estimation

For the purposes of this paper, it is enough to deal with the static and dynamic
characteristics of the controlled process, estimating an FFOPDT model from the process
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reaction curve at a certain operating point, as will be considered in this section. To do this,
a LabVIEW-based application has been implemented.

Consider now that an open-loop step-test experiment is applied to the aforementioned
thermal laboratory setup with the controlled process configuration detailed in Figure 26.

Initially, the fan and the control signal to the heating element are at uF = 10% and uH
= 30%, respectively.

At instant t = 0 s, a step change of amplitude ∆uH = 30% is applied, from uH = 30%
to 60%, while the value of uF is kept constant, as shown in Figure 28a. The measured
temperature in the heat block, which ranges from 60.5 to 102.5 ◦C (∆Tm = 42 ◦C), is
recorded in Figure 28b. This output is a noisy signal and that noise is reduced with a
first-order low-pass filter that usually is used for filtering purposes. The sample time used
in this experiment was TS = 100 ms.
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Figure 28. Experimental open-loop step test for determining FFOPDT model parameters: (a) Control
signal uH(t) [%] and command signal to air fan uF(t) [%]; (b) Process reaction curve Tm(t) [◦C]
obtained from an open-loop step-test experiment.

From the filtered output signal shown in Figure 28b, the process information in Table 24
is obtained.

Table 24. Process information for methods #2 and #4, respectively, collected from the process reaction
curve for fractional-order model identification of the thermal process.

Symmetrical Asymmetrical

Method #2:
(10-50-90%)

Method #4:
(10-55-90%)

∆u = ∆uH = 30%

∆y = ∆Tm = 42 ◦C

t10 = 16.8000 s

t50 = 53.3000 s t55 = 59.9000 s

t90 = 174.5000 s

Table 25 contains the different model parameters for the thermal process at the con-
sidered operating point obtained using the identification methods #2 and #4 for FFOPDT
models, using methods proposed by Alfaro in [11] and Vitecková et al. in [14] for FOPDT
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models, and using methods proposed by Stark in [16] and Jahanmiri and Fallahi in [15] for
SOPDT models, respectively.

Table 25. Model parameters for the thermal process at the considered operating point obtained using
the identification methods #2 and #4 for FFOPDT models, using methods proposed by Alfaro and
Vitecková for FOPDT models, and using methods proposed by Stark and Jahanmiri and Fallahi for
SOPDT models, respectively.

Method #2
(10-50-90%)

Method #4
(10-55-90%)

FOPDT [11]
(25–75%)

FOPDT [14]
(33–70%)

SOPDT [16]
(15-45-75%)

SOPDT [15]
(2-70-90%)

K4,1 = 1.40 ◦C/% K4,2 = 1.40 ◦C/% K4,3 = 1.40 ◦C/% K4,4 = 1.40 ◦C/% K4,5 = 1.40 ◦C/% K4,6 = 1.40 ◦C/%

T4,1 = 49.52 s T4,2 = 48.43 s T4,3 = 64.26 s T3,4 = 63.37 s T4a,5 = 59.92 s T3,4 = 70.92 s

L4,1 = 11.51 s L4,2 = 11.64 s L4,3 = 10.20 s L3,4 = 10.25 s T4b,5 = 13.68 s T3,4 = 0.092 s

α4,1 = 0.9462 α4,2 = 0.9430 - - L4,5 = 0.00 s L4,6 = 9.10 s

In this example, the thermal-based experimental setup has been utilized in order
to illustrate the effectivity and applicability of the proposed identification method in an
industrial environment.

The step responses of the estimated models for the symmetrical (10-50-90%) and
asymmetrical (10-55-90%) case, and the ones for FOPDT and SOPDT models obtained
using the considered classical methods, are compared with the process reaction curve and
illustrated in Figures 29–31, respectively. The corresponding representative points are also
displayed in these figures.
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Figure 29 illustrates that the FFOPDT models obtained using methods #2 and #4 give 

a good fit to the thermal process reaction curve in comparison to the results obtained for 

the FOPDT and SOPDT models, which are shown in Figures 30 and 31, respectively. Note 
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with symmetrical set of points (25–75%); (b) Method proposed by Vitecková in [14] with asymmetrical
set of points (33–70%).

Fractal Fract. 2022, 6, 526 41 of 48 
 

 

  

(a) (b) 

Figure 30. FOPDT model step response using two-point identification methods for the experimental 

setup in a certain operating point and process reaction curve: (a) Method proposed by Alfaro in [11] 

with symmetrical set of points (25–75%); (b) Method proposed by Vitecková in [14] with asymmet-

rical set of points (33–70%). 

  

(a) (b) 

Figure 31. SOPDT model step response using three-point identification methods for the experi-

mental setup in a certain operating point and process reaction curve: (a) Method proposed by Stark 

[16] with symmetrical set of points (15-45-75%); (b) Method proposed by Jahanmiri and Fallahi [15] 

with asymmetrical set of points (5-70-90%). 

Figure 29 illustrates that the FFOPDT models obtained using methods #2 and #4 give 

a good fit to the thermal process reaction curve in comparison to the results obtained for 

the FOPDT and SOPDT models, which are shown in Figures 30 and 31, respectively. Note 

that the computational effort of all the methods considered in this experimental example 

is similar since all are analytical methods based on the process reaction curve. 

Table 26 shows the values of the time-domain performance indexes S(θ̅4,i) and E(θ̅4,i) 

for the different approximated models considered in this example. 

Figure 31. SOPDT model step response using three-point identification methods for the experimental
setup in a certain operating point and process reaction curve: (a) Method proposed by Stark [16]
with symmetrical set of points (15-45-75%); (b) Method proposed by Jahanmiri and Fallahi [15] with
asymmetrical set of points (5-70-90%).

Figure 29 illustrates that the FFOPDT models obtained using methods #2 and #4 give
a good fit to the thermal process reaction curve in comparison to the results obtained for
the FOPDT and SOPDT models, which are shown in Figures 30 and 31, respectively. Note
that the computational effort of all the methods considered in this experimental example is
similar since all are analytical methods based on the process reaction curve.

Table 26 shows the values of the time-domain performance indexes S(θ4,i) and E(θ4,i)
for the different approximated models considered in this example.
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Table 26. Comparison of the approximated models obtained with methods #2 and #4 and models
for FOPDT and SOPDT in terms of time-domain model performance indices for the thermal-based
process at a certain operating point. The number of samples NS is also displayed.

i Identification Method Set of Points S(
¯
θ4,i) E(

¯
θ4,i)

1 FFOPDT Proposed method #2 (10-50-90%) 7.59 × 10−5 6.90 × 10−3

2 FFOPDT Proposed method #4 (10-55-90%) 6.62 × 10−5 6.00 × 10−3

3 FOPDT Alfaro (25-75%) 7.69 × 10−4 2.50 × 10−2

4 FOPDT Vitecková (33-70%) 8.47 × 10−4 2.59 × 10−2

5 SOPDT Stark (15-45-75%) 1.20 × 10−3 3.20 × 10−2

6 SOPDT Jahanmiri and Fallahi (2-70-90%) 8.35 × 10−4 2.51 × 10−2

Number of samples NS = 4001 NS = 4001

In this table, one can observe that the result obtained by method #4 is slightly better in
terms of E than the one obtained using method #2. The results obtained by fractional-order
identification methods outperform those obtained using integer-order models. Specifically,
the E values obtained by using methods #2 and #4 are 3.6, 3.7, 4.6, and 3.6 times lower
than those obtained by using the methods of Alfaro, Vitecková, Stark, and Jahanmiri and
Fallahi, respectively.

LabVIEW-Based Implementation

As discussed previously, a LabVIEW-based application has been developed to operate
the prototype and implement the proposed identification procedure, demonstrating its
applicability on a microprocessor-based hardware device.

Figure 32 illustrates the front panel of the LabVIEW-based application for fractional-
order model estimation using the proposed identification procedure, considering both the
symmetrical and the asymmetrical case.
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Once the identification method has been selected, and according to the identification
procedure, the variation in input signal ∆u and process output ∆y, and times required to
reach x1% (tx1), x2% (tx2), and x3% (tx3) of the total process output change on the reaction
curve, must be taken in order to obtain FFOPDT model parameters θP = {K, T, L, α}.

The algorithm illustrated in Algorithm 1 has been developed in order to simplify
software implementation of the identification procedure proposed in this paper.

Algorithm 1. Three-Point Identification Method for FFOPDT Models

Input: Selected symmetrical or asymmetrical method and {∆u, ∆y, tx1, tx2, tx3} collected from the
process reaction curve

Output: Fractional-order model parameters θP = {K, T, L, α}

1: Select the corresponding symmetrical or asymmetrical method.
2: Collect process data {∆u, ∆y, tx1, tx2, tx3} from the process reaction curve.
3: Obtain the process gain K using (18).
4: Obtain the value of the times ratio ∆ by using Equation (21).
5: Obtain the value of α = f1(∆) by using Equation (27).
6: Obtain the value of functions f2(α) and f3(α) by using Equations (28) and (29), respectively.
7: Calculate the value of T using Equation (22).
8: Calculate the value of L using Equation (23).

This application presents the following features, which can be observed in Figure 32:

1. Selection of the identification procedure, which presents the following options:

a. Symmetrical case (x-50-(100−x)%): (5-50-95%), (10-50-90%), or (25-50-75%).
b. Asymmetrical case (x1-x2-x3%): (10-55-90%), (20-60-95%), or (20-75-95%).

2. Determination of process data {∆u, ∆y, tx1, tx2, tx3} from the process reaction curve.
3. Estimation of the FFOPDT model parameters: θP = {K, T, L, α}.
4. Graphs for registering control signal uH(t) [%], command signal to air fan uF(t) [%],

process reaction curve Tm(t) [◦C], representative points of the process reaction curve
{(tx1, yα(tx1)), (tx2, yα(tx2)), (tx3, yα(tx3))}, and step response of the identified model.

5. Export the experimental data in Excel or text-format.

5.5. Remarks and Final Comments

Practical application of the proposed fractional-order model identification algorithm
on laboratory equipment allows gaining experience about practical issues related to its
implementation on industrial control hardware. Some remarks and comments on industrial
practice in this context are discussed below.

Remark 1. Measurement noise. The main disadvantage provided by the use of feedback is that
measurement noise is injected into the loop. Noise generally generates undesirable motion of the
final controlling elements, which may cause wear and possible breakdown.

It is common practice that open-loop model identification procedures use process
information based on a noise-free process reaction curve; see, e.g., [5] for integer-order
systems, and [31] for fractional-order systems. However, it is usual in an industrial envi-
ronment that the controlled process feedback signal includes measurement noise that must
be properly filtered for model identification and control purposes.

It is important to take into account that the filter dynamics will be an integral part
of the controlled process to be identified. As this will influence and add a lag to the
loop dynamics, a measurement filter must be set before any controlled process model
identification and/or controller tuning [18].

In this context, it is very difficult to derive general conclusions about the influence
of measurement noise on the identification procedure, because this will depend on the
measurement noise and filter characteristics.
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The results of the experiment conducted in this section serve to demonstrate the
applicability of the proposed identification method on laboratory equipment and its im-
plementation on industrial control hardware, which presents similarities with the indus-
trial environment.

Remark 2. Model uncertainty. In the industrial context, processes exhibit nonlinearities, i.e., the
dynamic characteristics of the process and therefore those of the identified FFOPDT model—gain,
time constant, apparent dead-time and fractional order—will change with the operating point. The
operating point of a control system may vary due to a change in the setpoint or as a result of the
effect of disturbances.

Therefore, it must be considered that there is an implicit uncertainty in the nomi-
nal model.

In general, there are two approaches in the technical literature when considering the
parametric uncertainty of the plant in an identification method; see, e.g., [39].

• The first approach is to incorporate the uncertainty explicitly into the model. This
typically makes the identification procedure more complicated.

• The second approach consists of taking into account the potential changes in the con-
trolled process dynamics and model uncertainties in the design phase of the controller;
see, e.g., [2] for integer-order controllers and [19] for fractional-order controllers. A
common application of this second approach is to ensure a certain degree of robustness
of the designed control system to guarantee its stability under variations in the process
characteristics.

In the context of this work, the primary use of the identified fractional-order model is
for control purposes. Consequently, the approach to be used will be the second one.

Rules of thumb in selecting sets of points: In Sections 3.1 and 3.2 some rules of
thumb, which are based on experimentation, have been provided to obtain insight about
the selection of the points for the symmetric and asymmetric case, respectively, in the
context of the proposed identification method.

Based on the results obtained in examples 1–3 in Section 4, a recommendation on the
selection of the set of points for the proposed identification method can be provided:

1. In the symmetrical case, the set of points in method #1 gives the best results in terms
of the performance index E.

2. In the asymmetrical case, the set of points in methods #5 and #6 give quite similar
results in terms of E, although #6 is slightly better.

Final comments and discussion: This section contains a discussion about the use-
fulness of, and the improvement obtained by, using an FFOPDT model instead of an
integer-order model, with FOPDT, DPPDT, and SOPDT models being those most com-
monly used in the industrial context.

In this paper, an identification method for FFOPDT models has been presented. This
method is focused on processes characterized by an S-shaped response (monotonic) that
exhibits a fractional behavior.

There is no exact definition to describe a fractional dynamic behavior in the technical
literature. According to [51], a system has a fractional behavior if its input and output are
linked by a function of the form tυ−1, υ ∈ R, υ < 1.

Although an implicit link exists in the literature between fractional behaviors and
fractional-based models, they are two distinct concepts. One designates a property or a
particular behavior of a physical system, while the other refers to a model class that can
capture fractional behaviors.

Fractional behaviors appear in many physical-, biological-, or thermal-based processes,
among others [19,20]. In spite of the slow dynamics, real processes exhibiting fractional
behavior with values of α in the range proposed in this paper can be found in electrical
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engineering, motion controls, and process control, with thermal-based processes being the
most important type encountered in the process industry [47].

Since these kinds of behaviors are ubiquitous, the existence of methods for identifica-
tion of simple-structure fractional-order models is of significant interest.

The main issue for adopting fractional-order models in industry can be summarized
in the form of the following question: “Is the additional effort to consider a fractional-
order model worth it, in order to obtain a more accurate model and, eventually, a better
control performance?”.

In the industrial context, the apparent benefit of using fractional calculus has been
justified in the literature in terms of a more precise modelling; see, e.g., [20,34,36].

More specifically in the context of this work, the proposed identification method
for symmetrical and asymmetrical sets of points has been compared with several two-
and three-point identification methods for integer-order models, which are based on data
collected from the process reaction curve. It has been illustrated that the proposed method
outperforms significantly methods for integer-order models. In some cases, even better
results are obtained with the estimated fractional-order model than with the optimal
integer-order model.

If the process reaction curve exhibits fractional behavior, the estimated FFOPDT model
will more accurately fit the reaction curve compared to the integer-order model. Note
that the proposed identification method allows characterizing the existence of fractional
behavior in measured data collected from the process reaction curve.

The identification procedure presented in this paper is intended for control purposes,
as considered previously. In the industrial context, large process industries have hundreds
or thousands of control loops. In order for such an identification procedure to have a
significant impact in the industrial environment, simplicity is a fundamental feature.

In the context of this work, there is a trade-off between accuracy and computational
effort. Although this identification procedure provides good results in comparison with
other well-known integer- and fractional-order identification methods, it is possible to find
methods that improve further the accuracy of the estimated fractional-order model at a cost
of more complex algorithms or a higher computational effort. Another aspect to highlight
is that the proposed method is analytical, which facilitates its applicability in terms of a
lower computational effort compared to complicated identification algorithms generally
based on optimization.

6. Conclusions

In this paper, an identification procedure for FFOPDT models, which is based on the
information obtained from three points on the process reaction curve, is presented. This
identification procedure has been validated for both cases, considering three symmetrical
and asymmetrical points on the reaction curve.

Three simulation examples, with processes exhibiting different dynamics, have been
used to verify the simplicity and effectiveness of this identification procedure for the
symmetrical and asymmetrical cases. Good results have been obtained in comparison with
other well-recognized integer- and fractional-order identification methods which are also
based on information taken from the process reaction curve, especially when simplicity
is emphasized.

A thermal process-based experimental setup has also been used, where the proposed
identification procedure has been implemented in a microprocessor-based control hardware,
confirming the applicability of this method in an industrial equipment.

Besides effectiveness, the main characteristic exhibited by this method is simplicity.
This feature is of significant importance in the industrial context, where easy-to-implement
identification methods are required.

Some comments and reflections have been offered in the context of industrial practice.
It is worth pointing out that the identification method proposed in this paper is

restricted to values of the fractional order in the range 0.5 ≤ α ≤ 1.0, and as a future
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work, this method is being extended using the same methodology for processes with
underdamped step response, extending the range of the fractional order to 1.0 ≤ α ≤ 2.0.

Author Contributions: Conceptualization, J.J.G. and P.G.B.; methodology, J.J.G. and P.G.B.; software,
J.J.G.; investigation, J.J.G.; writing—original draft preparation, J.J.G.; writing—review and editing,
J.J.G. and P.G.B.; supervision, J.J.G. and P.G.B.; project administration, P.G.B.; funding acquisition,
P.G.B. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Basque Government for its partial funding sup-
port through the TRUSTIND ELKARTEK R&D (ref. KK-2020/00054) and REMEDY (ref. KK-
2021/00091) projects.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The support of Unai Conejo as Lab Assistant in the construction of the Deusto
HES prototype is acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Franklin, G.F.; Powell, J.D.; Emami-Naeini, E. Feedback Control of Dynamic Systems, 8th ed.; Pearson Education Limited: Harlow,

UK, 2019.
2. Åström, K.J.; Hägglund, T. Advanced PID Control; The Instrumentation, Systems, and Automation Society ISA: Research Triangle

Park, NC, USA, 2006.
3. Åström, K.J.; Hägglund, T. Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 2004, 14,

635–650. [CrossRef]
4. Garpinger, O.; Hägglund, T.; Åström, K.J. Performance and robustness trade-offs in PID control. J. Process Control 2014, 24,

568–577. [CrossRef]
5. Liu, T.; Gao, F. Industrial Process Identification and Control Design. Step-Test and Relay-Experiment-Based Methods; Springer-Verlag

London Limited: London, UK, 2012.
6. Huang, H.P.; Jeng, J.C. Process reaction curve and relay methods identification and PID tuning. In PID Control: New Identification

and Design Methods; Johnson, M.A., Moradi, M.H., Eds.; Springer-Verlag London Limited: London, UK, 2005; pp. 297–337.
7. Ljung, L. Identification for control: Simple process models. In Proceedings of the 41st IEEE Conference on Decision and Control,

Las Vegas, NV, USA, 10–13 December 2002.
8. Tan, K.K.; Wang, Q.G.; Hang, C.C.; Hägglund, T. Advances in PID Control; Springer-Verlag London Limited: London, UK, 1999.
9. Rangaiah, G.P.; Krishnaswamy, P.R. Estimating second-order dead time parameters from underdamped process transients. Chem.

Eng. Sci. 1996, 51, 1149–1155. [CrossRef]
10. Huang, H.P.; Lee, M.W.; Chen, C.L. A System of Procedures for Identification of Simple Models Using Transient Step Response.

Ind. Eng. Chem. Res. 2001, 40, 1903–1915. [CrossRef]
11. Alfaro, V.M. Low-order models’ identification from the process reaction curve. Cienc. Y Tecnol. 2006, 24, 197–216.
12. Ho, W.K.; Hang, C.C.; Cao, L.S. Tuning PID controllers based on gain and phase margin specifications. Automatica 1995, 31,

497–502. [CrossRef]
13. Smith, C.L. Digital Computer Process Control; International Textbook Educational Publishers: Oahu, HI, USA, 1972.
14. Vitecková, M.; Vitecek, A.; Smutny, L. Simple PI and PID controllers tuning for monotone self-regulation plants. IFAC Proc. Vol.

2000, 33, 259–264.
15. Jahanmiri, A.H.; Fallahi, H.R. New methods for process identification and design of feedback controllers. Chem. Eng. Res. Des.

1997, 75, 519–522. [CrossRef]
16. Mollenkamp, R.A. Introduction to Automatic Process Control; Instrument Society of America: Research Triangle Park, NC, USA, 1984.
17. Rangaiah, G.P.; Krishnaswamy, P.R. Estimating second-order plus dead time model parameters. Ind. Eng. Chem. Res. 1994, 33,

1867–1871. [CrossRef]
18. Alfaro, V.M.; Vilanova, R. Control of high-order processes: Repeated-pole plus dead-time models’ identification. Int. J. Control

2021. [CrossRef]
19. Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-order Systems and Controls. Fundamentals and Applications;

Springer-Verlag London Limited: London, UK, 2010.
20. Tepljakov, A. Fractional-Order Modeling and Control of Dynamic Systems; Springer International Publishing: Berlin/Heidelberg,

Germany, 2017.
21. Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.A.; HosseinNia, S.H.; Petlenkov, E. FOPID Controllers and Their Industrial

Applications: A Survey of Recent Results. IFAC Proc. Vol. 2018, 51, 25–30.

http://doi.org/10.1016/j.jprocont.2004.01.002
http://doi.org/10.1016/j.jprocont.2014.02.020
http://doi.org/10.1016/0009-2509(95)00361-4
http://doi.org/10.1021/ie0005001
http://doi.org/10.1016/0005-1098(94)00130-B
http://doi.org/10.1205/026387697524038
http://doi.org/10.1021/ie00031a029
http://doi.org/10.1080/00207179.2021.1954240


Fractal Fract. 2022, 6, 526 46 of 46

22. Birs, I.; Muresan, C.I.; Nascu, I.; Ionescu, C.M. A Survey of Recent Advances in Fractional Order Control for Time Delay Systems.
IEEE Access 2019, 7, 30951–30965. [CrossRef]

23. Dastjerdi, A.A.; Vinagre, B.M.; Chen, Y.Q.; HosseinNia, S.H. Linear fractional order controllers: A survey in the frequency domain.
Annu. Rev. Control 2019, 47, 51–70. [CrossRef]

24. Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [CrossRef]
25. Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y.Q. Tuning and auto-tuning of fractional order controllers for industry applications.

Control Eng. Pract. 2008, 16, 798–812. [CrossRef]
26. Luo, Y.; Chen, Y.Q.; Wang, C.Y.; Pi, Y.G. Tuning fractional order proportional integral controllers for fractional order systems.

J. Process Control 2010, 20, 823–831. [CrossRef]
27. Li, H.; Luo, Y.; Chen, Y.Q. A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and

Experiments. IEEE Trans. Control Syst. Technol. 2010, 18, 516–520. [CrossRef]
28. Tavakoli-Kakhki, M.; Haeri, H. Fractional order model reduction approach based on retention of the dominant dynamics:

Application in IMC based tuning of FOPI and FOPID controllers. ISA Trans. 2011, 50, 432–442. [CrossRef]
29. Gude, J.J.; Kahoraho, E. Simple tuning rules for fractional PI controllers. In Proceedings of the IEEE 14th Conference on Emerging

Technologies & Factory Automation (ETFA 2009), Palma de Mallorca, Spain, 22–25 April 2009.
30. Gude, J.J.; Kahoraho, E. Modified Ziegler-Nichols method for fractional PI controllers. In Proceedings of the IEEE 15th Conference

on Emerging Technologies & Factory Automation (ETFA 2010), Bilbao, Spain, 14–16 September 2010.
31. Tavakoli-Kakhki, M.; Haeri, M.; Tavazoei, M.S. Simple fractional order model structures and their applications in control system

design. Eur. J. Control 2010, 16, 680–694. [CrossRef]
32. Tavakoli-Kakhki, M.; Tavazoei, M.S. Estimation of the order and parameters of a fractional order model from a noisy step response

data. ASME J. Dyn. Sys. Meas. Control 2014, 136, 031020. [CrossRef]
33. Tavakoli-Kakhki, M.; Tavazoei, M.S.; Mesbahi, A. Parameter and order estimation from noisy step response data. IFAC Proc. Vol.

2013, 46, 492–497. [CrossRef]
34. Guevara, E.; Meneses, H.; Arrieta, O.; Vilanova, R.; Visioli, A.; Padula, F. Fractional order model identification: Computational

optimization. In Proceedings of the IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA 2015),
Luxembourg, 8–11 September 2015.

35. Malek, H.; Luo, Y.; Chen, Y.Q. Identification and tuning fractional order proportional integral controllers for time delayed systems
with a fractional pole. Mechatronics 2013, 23, 746–754. [CrossRef]

36. Alagoz, B.B.; Tepljakov, A.; Ates, A.; Petlenkov, E.; Yeroglu, C. Time-domain identification of one noninteger order plus time
delay models from step response measurements. Int. J. Modeling Simul. Sci. Comput. 2019, 10, 1941011. [CrossRef]

37. Ahmed, S. Parameter and delay estimation of fractional order models from step response. IFAC Pap. 2015, 48, 942–947. [CrossRef]
38. Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.A.; HosseinNia, S.H.; Petlenkov, E.; Ates, A.; Cech, M. Towards industrializa-

tion of FOPID controllers: A survey on milestones of fractional-order control and pathways for future developments. IEEE Access
2021, 9, 21016–21042. [CrossRef]

39. Gude, J.J.; García Bringas, P. Influence of the Selection of Reaction Curve’s Representative Points on the Accuracy of the Identified
Fractional-Order Model. J. Math. 2022, 2022, 7185131. [CrossRef]

40. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
41. Das, S. Functional Fractional Calculus for System Identification and Controls; Springer: Berlin/Heidelberg, Germany, 2010.
42. Muresan, C.I.; Ionescu, C.M. Generalization of the FOPDT Model for Identification and Control Purposes. Processes 2020, 8, 682.

[CrossRef]
43. Chen, Y.Q.; Petras, I.; Xue, D. Fractional order control—a tutorial. In Proceedings of the American Control Conference (ACC

2009), St. Louis, MO, USA, 10–12 June 2009.
44. Xue, D. Fractional-Order Control Systems: Fundamentals and Numerical Implementations; De Gruyter: Berlin, Germany, 2017.
45. Åström, K.J.; Hägglund, T. Benchmark Systems for PID Control. IFAC Proc. Vol. 2000, 33, 165–166. [CrossRef]
46. Gude, J.J.; García Bringas, P. A novel control hardware architecture for implementation of fractional-order identification and

control algorithms applied to a temperature prototype. IEEE Access 2022. submitted.
47. Yuan, J.; Ding, Y.; Fei, S.; Chen, Y.Q. Identification and parameter sensitivity analyses of time-delay with single-fractional-pole

systems under actuator rate limit effect. Mech. Syst. Signal Process. 2022, 163, 108111. [CrossRef]
48. Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 8th ed.; Wiley: Hoboken, NJ, USA, 2017.
49. Skogestad, S. Chemical and Energy Process Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009.
50. Gude, J.J.; García Bringas, P. Proposal of a control hardware architecture for implementation of fractional-order controllers. In

Proceedings of the 16th International Conference Dynamical Systems Theory and Applications (DSTA 2021), Lodz, Poland,
6–9 December 2021.

51. Sabatier, J. Modelling fractional behaviours without fractional models. Front. Control Eng. 2021, 2, 716110. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2902567
http://doi.org/10.1016/j.arcontrol.2019.03.008
http://doi.org/10.1016/j.mechatronics.2016.06.005
http://doi.org/10.1016/j.conengprac.2007.08.006
http://doi.org/10.1016/j.jprocont.2010.04.011
http://doi.org/10.1109/TCST.2009.2019120
http://doi.org/10.1016/j.isatra.2011.02.002
http://doi.org/10.3166/ejc.16.680-694
http://doi.org/10.1115/1.4026345
http://doi.org/10.3182/20130204-3-FR-4032.00033
http://doi.org/10.1016/j.mechatronics.2013.02.005
http://doi.org/10.1142/S1793962319410113
http://doi.org/10.1016/j.ifacol.2015.09.091
http://doi.org/10.1109/ACCESS.2021.3055117
http://doi.org/10.1155/2022/7185131
http://doi.org/10.3390/pr8060682
http://doi.org/10.1016/S1474-6670(17)38238-1
http://doi.org/10.1016/j.ymssp.2021.108111
http://doi.org/10.3389/fcteg.2021.716110

	Introduction 
	Preliminaries and Theoretical Background 
	Fractional First-Order Plus Dead-Time Model Identification 
	Symmetrical Set of Points (x-50-(100 - x)%) 
	Asymmetrical Set of Points (x1-x2-x3%) 

	Simulation Results 
	Example 1 
	Example 2 
	Example 3 

	Experimental Results 
	Description of the Prototype 
	Reconfigurable Controlled Process 
	Control Hardware 
	Model Estimation 
	Remarks and Final Comments 

	Conclusions 
	References

