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Abstract: The mapping relationships between the conductivity properties are not only of great
importance for understanding the transport phenomenon in porous material, but also benefit the
prediction of transport parameters. Therefore, a fractal pore-scale model with capillary bundle is
applied to study the fluid flow and heat conduction as well as gas diffusion through saturated
porous material, and calculate the conductivity properties including effective permeability, thermal
conductivity and diffusion coefficient. The results clearly show that the correlations between the
conductivity properties of saturated porous material are prominent and depend on the way the pore
structure changes. By comparing with available experimental results and 2D numerical simulation
on Sierpinski carpet models, the proposed mapping relationships among transport properties are
validated. The present mapping method provides a new window for understanding the transport
processes through porous material, and sheds light on oil and gas resources, energy storage, carbon
dioxide sequestration and storage as well as fuel cell etc.

Keywords: porous material; fractal geometry; permeability; thermal conductivity; diffusivity; map-
ping relationship

1. Introduction

The conductivity properties including permeability, thermal conductivity and diffu-
sivity are commonly used to characterize the transport processes through porous material,
they are of great significance for oil and gas energy, geothermal resources, nuclear waste
disposal, fuel cells, MEMS design, fibers, building materials, energy storage and drying
technologies, etc. [1,2]. Since these transport properties strongly depend on the microstruc-
tures of porous material, a few theoretical and experimental studies have shown that there is
an evident relationship among the permeability, thermal conductivity and diffusivity [3–5].

Zerrouki et al. [6] studied the petrophysical parameters of dry core samples of the
Hamra quartzite reservoir, and presented a weak correlation for the thermal conductivity
and the permeability via the radial basis function neural network method. Zierfuss et al. [7]
reported that the thermal conductivity of sedimentary rocks with large pores rises with
the increase of the permeability. Anand et al. [8] conducted a regression analysis on the
thermal conductivity and physical properties of dry sandstone, and proposed a quantitative
correlation among the thermal conductivity and porosity, density and permeability of
dry sandstone. Mielke et al. [9] measured the thermal conductivity and permeability of
rock cores from the Willerkai geothermal field in New Zealand, and predicted that the
thermal conductivity and permeability were negatively correlated. Popov et al. [10] used
the measured thermal conductivity to predict the permeability of the rock and its spatial
distribution along the well, and found that the relative change in thermal conductivity of the
rock after water saturation was positively correlated with the logarithm of the permeability,
where the correlation coefficient was between 0.7 and 0.9. While, Duchkov et al. [11]
reported a negative correlation between the thermal conductivity and the logarithm of
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permeability in sandstone with siltstone. Wang et al. [12] proposed a quadratic function for
the thermal conductivity and permeability of water-permeable cement concrete based on
measurement results.

Pant et al. [13] related the permeability tortuosity to the diffusion tortuosity, and
developed a permeability method to estimate the diffusivity. Villani et al. [14] measured
the oxygen permeability and diffusivity of concrete by the oxygen permeability index
method and Lawrence method, respectively. They showed that the oxygen permeability
was almost linearly related to the diffusivity under the same humidity condition for the
same proportion of concrete. Salvoldi et al. [15] presented a linear positive correlation
between the effective diffusivity of carbon dioxide and the oxygen permeability in concrete
with different water-cement ratio. Wang et al. [16] and Li et al. [17] proposed a positive
correlation between the effective diffusion coefficient and permeability of methane in
oil sands. Hosoya et al. [18] observed that the permeability of porous membranes was
positively correlated with diffusivity. Reinecke et al. [19] established an exponent correlation
between the gas permeability of the variable saturated porous material and the Knudsen
diffusivity. Chen et al. [20] stated that the diffusivity was positively correlated with the
permeability, and they found that the increase rate of diffusivity was small under low
permeability and it is large under high permeability.

Although a few empirical and semi-empirical correlations between conductivity prop-
erties were proposed, they are even contradictory with each other and only validated for
specific types of porous materials. In addition, the physical meanings of the empirical
parameters in these correlations are not clearly revealed. Since a lot of studies have shown
that the irregular microstructures of porous material can be finely represented by fractal
scaling laws [1,21–23], and thus the conductivity properties have been analyzed based on
various fractal pore-scale models [24]. Therefore, a fractal pore-scale model with capillary
bundle is employed to explore the mapping correlations between conductivity properties
of saturated porous material.

2. Fractal Theory for Pore Structures

The probability density function (f ) of pore/capillary size (λ) in porous material has
been revealed to follow a fractal law [24]:

f (λ) = DFλDF
minλ−(DF+1) (1)

where DF is the fractal dimension for pore area, λmin represents the minimum sizes. As
the key parameter in fractal geometry, the value of pore area fractal dimension is within
the range of 0 to 2 and 0 to 3 on a 2D area and a 3D volume, respectively. Yu et al. [24]
proposed an analytical relationship between the fractal dimension and the porosity, that
is φ = (λmin/λmax)

DE−DF , where DE is the Euclidean dimension and λmax represents the
maximum sizes. Therefore, the mean pore/capillary size is:

λave =
∫ λmax

λmin

λ f (λ)dλ =
DF

DF − 1
λmin

[
1− φ(DF−1)/(DE−DF)

]
(2)

A fractal model shown in Figure 1 was used to characterize the pore-scale geometrical
structure of a homogenous porous medium. One-dimensional transport through parallel
capillaries in a cubic representative element volume (REV) was assumed. Both the size and
tortuosity of capillaries were assumed to follow fractal scaling laws. The capillary length
indicates self-similar fractal law [24,25].

Lt(λ) = λ1−DT LDT
0 (3)
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The tortuous capillary length Lt is generally longer than the characteristic length L0.
The convoluted extent of capillaries can be characterized by the tortuosity fractal dimension
DT, and the value of which falls between 1 and 2 in a 2D space. It can be calculated based
on the mean tortuosity defined as τave = Lt(λave)/L0:

DT = 1 +
ln τave

ln(L0/λave)
(4)

The mean tortuosity can be estimated by the following analytical formula [24]:

τave =
1
2

[
1 +

1
2

√
1− φ +

√
1− φ

√(
1/
√

1− φ− 1
)2

+
1
4

/
(

1−
√

1− φ
)]

(5)

That is the mean tortuosity can be estimated with the porosity of porous material. On
a 2D cross sectional area shown in Figure 1, the total pore area is:

Ap =
∫ λmax

λmin

π

4
λ2 f (λ)Ntdλ =

π

4
DF

2− DF
(1− φ)λ2

max (6)

where Nt = (λmax/λmin)
DF is pore number on the cross sectional area. Then, the cross

sectional area of the REV can be expressed as:

A =
Ap

φ
=

π

4
DF

2− DF

1− φ

φ
λ2

max (7)

The representative length of the REV can be written as:

L0 =
√

A =

(
π

4
DF

2− DF

1− φ

φ

)1/2
λmax (8)

3. Transport Properties of Porous Material
3.1. Effective Permeability

According to the modified Hagen-Poiseulle equation, the single phase flow rate (q)
in a circular capillary channel depends on the capillary geometry (λ and Lt) and pressure
drop along the capillary (∆P) [24,26]:

q =
π

128
∆P
µ

λ4

Lt(λ)
(9)

where µ is the incompressible Newtonian fluid viscosity. Based on the fractal scaling law
of capillaries (Equations (1) and (3)), the flow rate across a 2D cross sectional area can be
gotten from mass conservation:
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Q =
∫ λmax

λmin

q f (λ)Ntdλ =
π

128

(
4
π

)DT/2 (2− DF)
DT/2

(3 + DT − DF)D(DT−2)/2
F

(
φ

1− φ

)DT/2 ∆P
µ

λ3
max (10)

According to Darcy’s law:

Q = A
K
µ

∆P
L0

(11)

Then, by combining Equations (10) and (11), the effective permeability is gotten as:

K =
1

32

(
4
π

)(DT−1)/2 (2− DF)
(DT+1)/2

D
(DT−1)/2

F (3 + DT − DF)

(
φ

1− φ

)(DT+1)/2
λ2

max (12)

The dimensionless permeability is defined and written as:

K+ =
K

λ2
max

=
1

32

(
4
π

)(DT−1)/2 (2− DF)
(DT+1)/2

D
(DT−1)/2

F (3 + DT − DF)

(
φ

1− φ

)(DT+1)/2
(13)

The effective permeability of the porous material depends on the porosity and fractal
dimensions for pore area and tortuosity, while it is independent of fluid properties and
applied pressure gradient.

3.2. Thermal Conductivity

1D heat conduction and single phase fluid were assumed in this section. The thermal
resistance can be calculated according to the Fourier heat transfer method [27].

r f =
4LDT

0
πk f λ1+DT

(14)

where kf is the fluid thermal conductivity. According to the parallel fractal capillary model
shown in Figure 1, the thermal resistance for the fluid phase can be calculated as:

1/R f =
∫ λmax

λmin

(
1/r f

)
f (λ)Ntdλ = k f

(
4
π

)DT/2 (2−DF)
DT /2

(1+DT−DF)D
(DT−2)/2
F

(
φ

1−φ

)DT/2[
1− φ(1+DT−DF)/(DE−DF)

]
λmax (15)

By the thermoelectric simulation method, the effective thermal conductivity can be
expressed as:

ke =
L0

A

(
1

R f
+

1
Rs

)
(16)

where the solid thermal resistance is generally estimated with:

Rs =
L0

ks(1− φ)A
(17)

Therefore, by combining Equations (7) and (15)–(17), the effective thermal conductivity
is obtained:

ke = k f

(
4
π

)(DT−1)/2 (2− DF)
(DT+1)/2

D
(DT+1)/2

F (1 + DT − DF)

(
φ

1− φ

)(DT+1)/2[
1− φ(1+DT−DF)/(DE−DF)

]
+ ks(1− φ) (18)

Then, the dimensionless thermal conductivity is:

k+e =
ke

k f
=

(
4
π

)(DT−1)/2 (2− DF)
(DT+1)/2

D
(DT−1)/2

F (1 + DT − DF)

(
φ

1− φ

)(DT+1)/2[
1− φ(1+DT−DF)/(DE−DF)

]
+

ks

k f
(1− φ) (19)
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The effective thermal conductivity depends not only on pore structure (porosity,
pore area fractal dimension and tortuosity fractal dimension) but also on the thermal
conductivities of solid and fluid phases.

3.3. Diffusivity

The molecular diffusion under a concentration gradient (∆C) through porous material
was taken into account here. Thus, the gas diffusion flux through a capillary can be written
as [28]:

j(λ) =
πλ2

4
Db

∆C
Lt(λ)

(20)

where Db is the bulk diffusion coefficient. Therefore, the diffusion flux through a cross
section area in the REV is:

J =
∫ λmax

λmin
j(λ) f (λ)Ntdλ = Db∆C

(
4
π

)(DT−2)/2 (2−DF)
DT /2

(1+DT−DF)D
(DT−2)/2
F

(
φ

1−φ

)DT/2[
1− φ(1+DT−DF)/(DE−DF)

]
λmax (21)

Applying Fick’s law on a porous sample results in:

J = De A
∆C
L0

(22)

Therefore, the effective gas diffusion coefficient can be deduced from Equations (7),
(21) and (22) as:

De = Db

(
4
π

)(DT−1)/2 (2− DF)
(DT+1)/2

D
(DT−1)/2

F (1 + DT − DF)

(
φ

1− φ

)(DT+1)/2[
1− φ(1+DT−DF)/(DE−DF)

]
(23)

The dimensionless diffusivity is:

D+
e =

De

Db
=

(
4
π

)(DT−1)/2 (2− DF)
(DT+1)/2

D
(DT−1)/2

F (1 + DT − DF)

(
φ

1− φ

)(DT+1)/2[
1− φ(1+DT−DF)/(DE−DF)

]
(24)

The diffusivity is a function of porosity and fractal dimensions for pore area and
tortuosity. It is similar to the permeability that the diffusivity only depends on the pore
structures and it is independent of fluid properties and applied conditions.

4. The Numerical Simulation

The exactly self-similar Sierpinski carpet model was applied here, which can be
generated by iterating over a square. As shown in Figure 2, the initial square of length L is
equally divided into 9 squares, and then 2 parts are randomly removed. Same procedure
is recursively applied on the remaining squares in the next stage. The porosity and pore
fractal dimension are respectively φi = (7/9)i and DF = ln 7/ln 3 = 1.77124, where i is the
stage. For the incompressible Newtonian fluid flow through a 2D Sierpinski carpet, the
inertial term in the Navier-Stokes equation can be neglected if the Reynolds number is low
and the governing equations are:

ρ∇·u = 0 (25)

∇·
[

PI + µ(∇u + (∇u))T
]
+ F = 0 (26)

ρCpu·∇T = ∇·(k∇T) (27)

u·∇Cj = Rj +∇·
(

Dj∇Cj
)

(28)
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and black areas represent pore and solid phases, respectively).

The symbols ρ, P, k, T, Cp, Cj, Rj, Dj, u, F, I are fluid density, pressure, thermal conduc-
tivity, temperature, specific heat capacity, concentration, molar flux, diffusion coefficient,
velocity vector, volume force vector, unit diagonal matrix, respectively.

Numerical simulations of the single-phase percolation, heat conduction and gas diffu-
sion were carried out using COMSOL Multiphysics based on the finite element method.
The creeping flow module, heat transfer in solids module and diluted species transport
module were employed to solve the gas flow, heat conduction, and gas diffusion in
steady state through the 2D Sierpinski carpet model, respectively. Oxygen with den-
sity ρf = 1.429 kg/m3, viscosity µf = 2.05506 × 10−5 Pa·s, intrinsic thermal conductivity
kf = 0.024 W/(m·K), specific heat capacity Cp,f = 918 J/(kg·K), and the gaseous-diffusion
coefficient Dj = 1 × 10−9 m2/s was adopted as the flow medium. Sandstone with density
ρs = 2600 kg/m3, intrinsic thermal conductivity kf = 2.95 W/(m·K), and specific heat capac-
ity Cs,f = 800 J/(kg·K) was used as solid substrate. The pressure difference, temperature
difference and concentration difference between the inlet and outlet were set to be 0.5 Pa,
10 K and 5 mol/m3, respectively. The symmetric boundary condition was used for the up-
per and lower layers. The mesh was controlled by a physical mesh, and the independency
of grid density was also examined.

5. Results and Discussion

Available researches showed that the transport parameters of porous material are
strongly dependent on multiple microstructure parameters including not only porosity
but also fractal dimension as well as the self-similar range of pore size (ratio of minimum
to maximum pore size) etc. The numerical results summarized in Table 1 show that the
porosity decreases continuously with increased iteration stage i and the proportion of solid
phase increases, which enhances the thermal conductivity of porous material and improves
temperature uniformity. However, the increased flow and diffusion tortuosity will increase
the resistance of the porous material, thus, the flow velocity and diffusion velocity decrease
with the decrease of porosity.
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Table 1. The velocity, temperature and concentration fields of Sierpinski carpet models.

Order Porosity (%) τave u (m/s) T (K) C (mol/m3)

i = 1 77.78 1.16529
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The effective permeability, thermal conductivity and diffusivity were estimated by
Darcy’s law, Fourier’s law and Fick’s first law, respectively. Figure 3 shows the relationships
among the effective permeability, thermal conductivity and gas diffusivity by fractal model
(Equations (12), (19) and (24)) and numerical simulation (Equations (25)–(28)). The thermal
conductivity and gas diffusivity respectively indicates negative and positive correlations
with the effective permeability of porous material with variable porosity (36.60–77.78%),
which are consistent with experimental results [6,8–12,14–18,20]. As illustrated in Figure 3,
the predicted results by the current model are in acceptable agreement with that by the
numerical simulation. The predicted relationships among the effective permeability, ther-
mal conductivity and gas diffusivity were compared with those by experiments [6,7,14–17]
and empirical formulas [8,11,12,14,18–20]. Figure 4 shows that the predictions by the
present model show fair agreement with experimental results comparing with available
empirical formulas.
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e ∼ K+.

The influences of these parameters on the correlations of conductivity properties were
also examined. Figure 5 indicates that the pore size range has important effect on the
mapping correlations between transport parameters of porous material. As mentioned
above, both the effective permeability and gas diffusivity increase with the increase of
porosity, while the effective thermal conductivity decreases as the porosity increases. Thus,
the thermal conductivity and gas diffusivity respectively show the negative and positive
correlations with permeability of porous material with variable porosity. However, under
certain porosity, the pore size range which causes the fractal dimension changing [27],
may induce the changes of transport parameters. It can be clearly seen from Figure 6 that
both effective thermal conductivity and gas diffusivity show positive correlation with the
effective permeability of porous material with a certain porosity.
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Figure 6. The mapping correlations of effective permeability, thermal conductivity, and diffusivity of
porous material under certain porosity of (a) 0.2 and (b) 0.6.

Further calculations indicate that the effective thermal conductivity and effective
permeability of porous material follow an exponential function:

k+e = y0 + A1e−K+/t1 (29)

where y0, A1, t1 are the fitting coefficients for the exponential function. Table 2 summarizes
the fitting parameters in the exponential function for the cases shown in Figures 5 and 6,
where the fitting correlation R2 > 0.99. The ranges of porosity and pore size are 0~1 and
10−2~10−6, respectively.

The gas diffusivity and effective permeability of porous material were found to con-
form a power law function:

D+
e = a

(
K+
)b (30)

where a and b are the fitting coefficients of the power law function. Table 3 summarizes
the fitting parameters in the power function between the gas diffusivity and effective
permeability, and the fitting correlation R2 > 0.99. The ranges of porosity and pore size are
the same as that of Table 2.
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Table 2. The parameters in the mapping correlation between thermal conductivity and
effective permeability.

φ λmin/λmax y0 A1 t1 R2

0~1
10−2 114.34104 −46.54972 −0.00378 0.99998
10−3 108.81465 −41.10519 −0.00233 0.99998
10−4 106.67414 −39.04452 −0.00169 0.99997

0.2
10−6~10−2

54.87881 −0.11576 5.61052 × 10−4 0.99996
0.4 49.39195 −0.18928 7.93047 × 10−4 0.99990
0.6 27.92030 −0.18524 0.00104 0.99990

Table 3. The parameters in the mapping correlation between gas diffusivity and the
effective permeability.

φ λmin/λmax a b R2

0~1
10−2 7.71754 × 103 1.57728 0.99947
10−3 3.32852 × 104 1.71317 0.99932
10−4 1.07199 × 105 1.82005 0.99921

0.2
10−6~10−2

1.28611 0.32057 0.99973
0.4 1.10299 0.18885 0.99330
0.6 1.02776 0.10570 0.99440

6. Concluding Remarks

A pore-scale fractal model has been employed to study the transport process through
porous material, and 2D numerical simulations have been also carried out on the Sierpinski
carpet models by the finite element method. It has been found that the correlation between
thermal conductivity and effective permeability follows an exponential function. They
show a negative correlation with the change of the porosity of porous material, while they
may indicate the positive correlation with invariable porosity and variable pore area fractal
dimension. The gas diffusion coefficient positively correlated with the effective permeability
of porous material, and they obey a power law function. The correlations between the
transport properties of porous material are strongly dependent on the microstructures (i.e.,
porosity, fractal dimension and pore size range etc).

The proposed mapping relationship among the permeability, thermal conductivity
and diffusivity can reveal the physical mechanisms of transport phenomenon in porous
material, and this relationship can be also applied to predict the transport properties. For
example, the thermal conductivity can be estimated from geophysical logs by the proposed
correlation, since measuring thermal conductivity is generally difficult and time consuming.
The present results may shed light on oil and gas resources, energy storage, carbon dioxide
sequestration and storage, and fuel cell etc. However, it should be noted that the closed
and non-communicative pores, variable cross-sectional area of capillary, contact thermal
resistance etc. should be included in order to improve the prediction accuracy of the model.
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