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Abstract: Numerous fields, including the physical sciences, social sciences, and earth sciences,
benefit greatly from the application of fractional calculus (FC). The fractional-order derivative is
developed from the integer-order derivative, and in recent years, real-world modeling has performed
better using the fractional-order derivative. Due to the flexibility of B-spline functions and their
capability for very accurate estimation of fractional equations, they have been employed as a solution
interpolating polynomials for the solution of fractional partial differential equations (FPDEs). In
this study, cubic B-spline (CBS) basis functions with new approximations are utilized for numerical
solution of third-order fractional differential equation. Initially, the CBS functions and finite difference
scheme are applied to discretize the spatial and Caputo time fractional derivatives, respectively. The
scheme is convergent numerically and theoretically as well as being unconditionally stable. On a
variety of problems, the validity of the proposed technique is assessed, and the numerical results are
contrasted with those reported in the literature.

Keywords: cubic B-spline functions; third-order time-fractional partial differential equation; Caputo’s
time fractional derivative; stability; convergence; Crank–Nicholson finite difference scheme

1. Introduction

The more generalzed variant of classical calculus is fractional calculus. FC has imple-
mentations in physics, natural science, fluid mechanics, electricity swaption, mathematical
biology, and certain other fields [1,2]. Fractional differential equations have sparked a lot
of interest due to their appearance in various disciplines. Fractional differential equation
(FDE) models are considered to be more reliable for the explanation of particular systems.
Numerous physical models have been expanded in the form of FDEs in the past years.
The FDEs have been discovered to be pertinent models for some physical processes in
astro-physics, fractal networks, signal processing, chaotic dynamics, turbulence, contin-
uum mechanics, and wave propagation [3–7]. FDEs were viewed as a challenge by many
researchers, who discovered numerical solutions. Researchers have focused on finding
numerical and true solutions to FDEs because of their growing applicability. Finding
numerical solutions is necessary since it is difficult to solve an FDE analytically. Numerous
numerical techniques can be found in the literature [8,9].

In this work, we will look into the following problem [10]:
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∂3w(ψ, t)
∂t3 + κ

∂2w(ψ, t)
∂t2 +C

0 Dγ
t w(ψ, t) + w(ψ, t)− υ

∂2w(ψ, t)
∂ψ2 = f (ψ, t), ψ ∈ [0, L], t ∈ [0, T0], (1)

with initial and boundary conditions:{
w(ψ, 0) = g1(ψ), wt(ψ, 0) = g2(ψ), wtt(ψ, 0) = g3(ψ), ψ ∈ [0, L],
w(0, t) = r1(t), w(L, t) = r2(t), t ∈ [0, T0].

(2)

Here, 0 < γ ≤ 1 is a fractional order, κ > 0, υ > 0 are parameters, g1(ψ), g2(ψ), r1(t), r2(t) are
known functions, f (ψ, t) is a source term, and w(ψ, t) is an unknown function. Equation (1)
is called the third-order linear time-varying dynamical system [11] when γ = 1. More-
over, C

0 Dγ
t symbolizes the Caputo fractional derivative (CFD) and is explained as:

C
0 Dγ

t w(ψ, t) =


1

Γ(n−γ)

∫ t
0

∂w(ψ,ξ)
∂ξ

dξ

(t−ξ)γ−n+1 , n− 1 < γ ≤ n, n ∈ N,
∂nw(ψ,t)

∂tn , γ = n.
(3)

where Γ is the Euler’s Gamma function.
Fractional derivatives have a better level of elasticity in the model and yield useful

tool for describing the history of variable and hereditary features in a variety of dynamical
systems. Khalid et al. [12] have examined the computational study of the Caputo time
fractional Allen– Cahn equation. Wu et al. [13] have described the fractional impulsive
differential equations including the analytical solutions and short memory cases. The new
fractional operator in the Caputo perspective is a extension of the conventional proportional
derivative introduced by [14], which has a wide range of advantages in control theory. Ca-
puto has made a significant contribution to fractional calculus and its applications [15,16].
The foremost benefit of Caputo fractional derivatives is its capability to include conven-
tional, initial, and boundary conditions in the problem. The Caputo derivative of a constant
function is zero.

B-spline maintains a high level of smoothness at the domain’s knots. Many re-
searchers have presented novel schemes based on B-splines for the solutions of FPDEs.
Akram et al. [17] applied extended cubic B-spline (ECBS) functions on time-fractional
telegraph equations in the Caputo sense for its numerical modeling. These functions offer
continuous solutions and very accurate approximations to exact solutions over the spatial
domain. A spline function has been employed by numerous researchers to solve the frac-
tional differential equations because of its simplicity, acceptable approximation, compact
support and obtained solutions in piecewise polynomial format having a continuity of
order two [18,19], and it can also approximate the optimal solution of FPDEs of any order.

The proposed study can be arranged as follows: In Section 2, the cubic B-spline basis
functions and new approximation for second derivatives are presented. Discretization of
the time derivative is presented in Section 3. The methodology of the proposed problem is
discussed in Section 4. The stability and convergence of the presented scheme are analyzed
in Section 5. Numerical implementation via two test problems is discussed in Section 5.
Finally, the results of the preferred technique are shown in Section 6.

2. Cubic B-Spline Functions

To describe CBS functions, let us further expand [a,b] to [a− 3h, b+ 3h] with equidistant
knots ψm = a + mh; m = −3,−2, ..., M̃ + 3. The classical CBS functions can be defined
as [20]:
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B∗m(ψ) =
1

6h3



(ψ− ψm−2)
3, ψ ∈ [ψm−2, ψm−1]

h3 + 3h2(ψ− ψm−1) + 3h(ψ− ψm−1)
2 − 3(ψ− ψm−1)

3, ψ ∈ [ψm−1, ψm]

h3 + 3h2(ψm+1 − ψ) + 3h(ψm+1 − ψ)2 − 3h(ψm+1 − ψ)3, ψ ∈ [ψm, ψm+1]

(ψm+2 − ψ)3, ψ ∈ [ψm+1, ψm+2]

0, otherwise,

(4)

where m = −1 : 1 : M̃ + 1. For any twice-differentiable function w(ψ, t), there exists a
unique third-degree B-spline approximate solution W(ψ, t), which can be written as:

W(ψ, t) =
M̃+1

∑
m=−1

$m(t)B∗m(ψ), (5)

where $m(t) are unknowns to be evaluated. We demonstrate the CBS approximation for w
and its first two space derivatives, at mth knot, by Wm, Ẇm, Ẅm, respectively:

Wm =
m+1

∑
p=m−1

$pB∗p(ψm) = (c1$m−1 + c2$m + c1$m+1), (6)

Ẇm =
m+1

∑
p=m−1

$p Ḃ∗p(ψm) = (−c3$m−1 + c3$m+1), (7)

Ẅm =
m+1

∑
p=m−1

$p B̈∗p(ψm) = (c4$m−1 + c5$m + c4$m+1), (8)

where c1 = 1
6 , c2 = 4

6 , c3 = 1
2h , c4 = 1

h2 , c5 = −2
h2 . Moreover, from (6)–(8), we can establish

the following expressions [21]:

Ẇm = w′(ψm)−
h4

180
w(5)(ψm) + ..., (9)

Ẅm = w′′(ψm)−
h2

12
w(4)(ψm) +

h4

360
w(6)(ψm) + ... (10)

New Approximation for Ẅm

The truncation error in Ẅm is O(h2). Therefore, instead of using (8), we shall apply
the following O(h3) approximation for a second-order derivative [22,23]:

Ẅm =
1

12h2


14$−1 − 33$0 + 28$1 − 14$2 + 6$3 − $4, for m = 0,
$m−2 + 8$m−1 − 18$m + 8$m+1 + $m+2, for m = 1 : 1 : M̃− 1,
−$M̃−4 + 6$M̃−3 − 14$M̃−2 + 28$M̃−1 − 33$M̃ + 14$M̃+1, for m = M̃.

(11)

3. Temporal Discretization

By utilizing the forward finite difference approach, the Caputo time fractional deriva-
tive is discretized. Suppose tj = jτ, j = 0, 1, ..., K in which τ = T0

K is the step size in
time direction. The time fractional derivative at knot t = tj in the Caputo sense can be
approximated as [23]:
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∂γw(ψ, tj+1)

∂tγ
=

1
Γ(1− γ)

∫ t

o

∂w(ψ, Υ)
∂Υ

dΥ
(tj+1 − Υ)γ

,

=
1

Γ(1− γ)

j

∑
s=0

∫ (s+1)τ

sτ

∂w(ψ, Υ)
∂Υ

dΥ
(tj+1 − Υ)γ

,

=
1

Γ(1− γ)

j

∑
s=0

w(ψ, ts+1)− w(ψ, ts)

τ

∫ (s+1)τ

sτ

dΥ
(tj+1 − Υ)γ

+ ĕj+2
τ ,

=
1

Γ(1− γ)

j

∑
s=0

w(Υ, tj−s+1)− w(Υ, tj−s)

τ

∫ (s+1)τ

sτ

dΦ
Φγ

+ ĕj+2
τ .

The above expression becomes:

∂γw(ψ, tj+1)

∂tγ
=

1
Γ(2− γ)

j

∑
s=0

ďs
w(ψ, tj−s+1)− w(ψ, tj−s)

τγ
+ ĕj+2

τ ,

where ďs = (s + 1)1−γ − s1−γ. The truncation error ĕj+2
τ is bounded [24], i.e.,

|ĕj+2
τ | = ćτ2−γ, (12)

where ć is the constant.

Lemma 1. The coefficients ďs have the following properties [25]:

• ďs > 0 for s = 0, 1, 2, ..., j;

• ď0 = 1;

• ď0 > ď1 > ď2 > ... > ďs, ďs → 0 as s→ ∞;

• ∑
j
s=0(ďs − ďs+1) + ďj+1 = (1− ď1) + ∑

j−1
s=1(ďs − ďs+1) + ďj = 1.

4. Description of Numerical Method

By using the new cubic B-spline collocation method, the numerical solution of the
time-fractional differential equation of the third order is obtained. The ϑ-weighted scheme
is applied to (1) in order to obtain the following approximation:

(
∂3w
∂t3 )j + κ(

∂2w
∂t2 )j + (c

0Dγ
t w)j+1 = ϑυ(

∂2w
∂ψ2 )

j+2 − ϑ(w)j+2 + (1− ϑ)υ(
∂2w
∂ψ2 )

j+1 − (1− ϑ)(w)j+1 + f j+2, (13)

where 0 ≤ ϑ ≤ 1 , j, j + 1, and j + 2 are successive time levels j = 0, 1, 2, . . . . By discretizing
the time derivatives and approximation of the third-order fractional derivative used in (12),
we obtain:

W j+2
m − 3W j+1

m + 3W j
m −W j−1

m

τ3 + κ
W j+1

m − 2W j
m + W j−1

m

τ2 +
τ−γ

Γ(2− γ)

j

∑
s=0

ďs

(
W j−s+1

m −W j−s
m

)
= ϑ(υ(Wψψ)

j+2
m −W j+2

m ) + (1− ϑ)(υ(Wψψ)
j+1
m −W j+1

m ) + f j+2, (14)

After some simplification, we have:

W j+2
m − 3W j+1

m + 3W j
m −W j−1

m + κτ(W j+1
m − 2W j

m + W j−1
m ) +

τ3−γ

Γ(2− γ)

j

∑
s=0

b̌s

(
W j−s+1

m −W j−s
m

)
= τ3ϑ(υ(Wψψ)

j+2
m −W j+2

m ) + τ3(1− ϑ)(υ(Wψψ)
j+1
m −W j+1

m ) + τ3 f j+2,
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where r = τ3−γ

Γ(2−γ)
. The above equation can be rewritten as:

(1 + τ3ϑ)W j+2
m − υτ3ϑ(Wψψ)

j+2
m = (3− τκ− τ3(1− ϑ)− r)W j+1

m + υτ3(1− ϑ)(Wψψ)
j+1
m

+ (2κτ − 3 + r)W j
m + (1− κτ)W j−1

m − r
j

∑
s=1

ďs

(
W j−s+1

m −W j−s
m

)
+ τ3 f j+2.

It is noted that the scheme is explicit when ϑ = 0, the scheme is fully implicit for ϑ = 1,
and for ϑ = 1

2 , the approach is the Crank–Nicholson approach. Here, we use the Crank–
Nicholson scheme:

(1 +
τ3

2
)W j+2

m − υ
τ3

2
(Wψψ)

j+2
m = (3− τκ − τ3

2
− r)W j+1

m + υ
τ3

2
(Wψψ)

j+1
m

+ (2κτ − 3 + r)W j
m + (1− κτ)W j−1

m − r
j

∑
s=1

ďs

(
W j−s+1

m −W j−s
m

)
+ τ3 f j+2. (15)

We use (6), (7), and (11) in (15) for m = 0, 1, 2, 3, . . . , M̃. This method includes (M̃ + 1) linear
equations with (M̃ + 3) unknowns. In order to obtain the two additional equations and the
unique solution to the problem, we employ the boundary conditions. This (M̃ + 3)× (M̃ + 3)
dimension matrix structure is a tridiagonal matrix.
For m = 0, we have:

(1 +
τ3

2
)

(
1
6

$
j+2
−1 +

4
6

$
j+2
0 +

1
6

$
j+2
1

)
− υ

τ3

2

(
14$

j+2
−1 − 33$

j+2
0 + 28$

j+2
1 − 14$

j+2
2 + 6$

j+2
3 − $

j+2
4

)
=

(
3− κτ − τ3

2
− r
)(

1
6

$
j+1
−1 +

4
6

$
j+1
0 +

1
6

$
j+1
1

)
+ υ

τ3

2

(
14$

j+1
−1 − 33$

j+1
0 + 28$

j+1
1 − 14$

j+1
2 + 6$

j+1
3 − $

j+1
4

)
+ (2κτ − 3 + r)

(
1
6

$
j
−1 +

4
6

$
j
0 +

1
6

$
j
1

)
+ (1− κτ)

(
1
6

$
j−1
−1 +

4
6

$
j−1
0 +

1
6

$
j−1
1

)
− r

j

∑
s=1

ďs

[(
1
6

$
j−s+1
−1 +

4
6

$
j−s+1
0 +

1
6

$
j−s+1
1

)
−
(

1
6

$
j−s
−1 +

4
6

$
j−s
0 +

1
6

$
j−s
1

)]
+ τ3 f j+2,

(16)

For m = 1, 2, 3, . . . , M̃− 1, we have:

(1 +
τ3

2
)

(
1
6

$
j+2
m−1 +

4
6

$
j+2
m +

1
6

$
j+2
m+1

)
− υ

τ3

2

(
$

j+2
m−2 + 8$

j+2
m−1 − 18$

j+2
m + 8$

j+2
m+1 + $

j+2
m+2

)
=

(
3− κτ − τ3

2
− r
)(

1
6

$
j+1
m−1 +

4
6

$
j+1
m +

1
6

$
j+1
m+1

)
+ υ

τ3

2

(
$

j+1
m−2 + 8$

j+1
m−1 − 18$

j+1
m + 8$

j+1
m+1 + $

j+1
m+2

)
+

(
2κτ − 3 + r

)(
1
6

$
j
m−1 +

4
6

$
j
m +

1
6

$
j
m+1

)
+ (1− κτ)

(
1
6

$
j−1
m−1 +

4
6

$
j−1
m +

1
6

$
j−1
m+1

)
− r

j

∑
s=1

ďs

[(
1
6

$
j−s+1
m−1 +

4
6

$
j−s+1
m +

1
6

$
j−s+1
m+1

)
−
(

1
6

$
j−s
m−1 +

4
6

$
j−s
m +

1
6

$
j−s
m+1

)]
+ τ3 f j+2,

(17)

For m = M̃, we have:
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(1 +
τ3

2
)

(
1
6

$
j+2
M̃−1

+
4
6

$
j+2
M̃ +

1
6

$
j+2
M̃+1

)
− υ

τ3

2

(
− $

j+2
M̃−4

+ 6$
j+2
M̃−3
− 14$

j+2
M̃−2

+ 28$
j+2
M̃−1
− 33$

j+2
M̃ + 14$

j+2
M̃+1

)
=

(
3− κτ − τ3

2
− r
)(

1
6

$
j+1
M̃−1

+
4
6

$
j+1
M̃ +

1
6

$
j+1
M̃+1

)
+ υ

τ3

2

(
− $

j+1
M̃−4

+ 6$
j+1
M̃−3
− 14$

j+1
M̃−2

+ 28$
j+1
M̃−1
− 33$

j+1
M̃

+ 14$
j+1
M̃+1

)
+ (2κτ − 3 + r)

(
1
6

$
j
M̃−1

+
4
6

$
j
M̃ +

1
6

$
j
M̃+1

)
+ (1− κτ)

(
1
6

$
j−1
M̃−1

+
4
6

$
j−1
M̃ +

1
6

$
j−1
M̃+1

)
− r

j

∑
s=1

ďs

[(
1
6

$
j−s+1
M̃−1

+
4
6

$
j−s+1
M̃ +

1
6

$
j−s+1
M̃+1

)
−
(

1
6

$
j−s
M̃−1

+
4
6

$
j−s
M̃ +

1
6

$
j−s
M̃+1

)]
+ τ3 f j+2.

(18)

Initial Vector

For the iteration process, the initial solution vectors must be identified at the two
boundaries with the help of the initial conditions and their derivatives:

1. (W0
n)ψ = d

dψ g1(ψm), m = 0;

2. W0
n = g1(ψm), m = 0, 1, . . . M̃;

3. (W0
n)ψ = d

dψ g1(ψm), m = M̃.

For j = 0, this yields a (M̃ + 3)× (M̃ + 3) matrix system of the form:

Q̀$0 = d, (19)

where

$0 =

[
$0
−3, $0

−2, $0
−1, ..., $0

M̃−1

]T

, d =

[
g′1(ψ0), g1(ψ0), ..., g1(ψM̃), g′1(ψM̃)

]T

,

and Q̀ denotes the coefficient matrix of order (M̃ + 3)× (M̃ + 3), which can be written as:

−c3 0 c3 ... ... ... ... 0

c1 c2 c1
. . . ... ... ... 0

0 c1 c2 c1
. . . ... ...

...
...

. . . . . . . . . . . . . . . ...
...

... ...
. . . . . . . . . . . . . . .

...
... ... ... ...

. . . c1 c2 c1
0 ... ... ... ... −c3 0 c3


.

From the other initial conditions, by using finite forward difference scheme, we obtain:
(Wt)0

m = g2(ψm), m = 0, 1, ...M̃,

(Wt)0
m = (W)1

m−(W)0
m

τ ,
(W)1

m−(W)0
m

τ = g2(ψm),
(W)1

m = τg2(ψm) + (W)0
m.

(20)

Similarly, 
(Wtt)0

m = g3(ψm),

(Wtt)0
m = (W)2

m−2(W)1
m+(W)0

m
τ2 = g3(ψm),

(W)2
m = τ2g3(ψm) + (2(W)1

m − (W)0
m).

(21)

We obtain $j =

[
$

j
−3, $

j
−2, $

j
−1, ..., $

j
M̃−1

]
for j = 1, 2 from Equations (20) and (21), respectively.
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5. Stability and Convergence Analyses

In this section, stability and convergence analyses of the proposed technique are presented.

5.1. Stability Analysis

To analyze the stability of existing method, the von Neumann technique is used.
Assume that the Fourier series representing the different expression is:

φ
j
l = w(ψl , tj)−W j

l = ςj expilϕh, (22)

where i =
√
−1. ϕ and h are the mode number and moving scale in space direction,

respectively. We obtain the following relation by applying (22) in (15):

(1 +
τ3

2
)ϕ

j+2
l − υ

τ3

2
(ϕψψ)

j+2
l = (3− κτ − τ3

2
− r)ϕ

j+1
l + υ

τ3

2
(ϕψψ)

j+1
l

+ (2κτ − 3 + r)ϕ
j
l + (1− κτ)ϕ

j−1
l − r

j

∑
s=1

ďs

(
ϕ

j−s+1
l − φ

j−s
l

)
. (23)

The Equation (23) is explained as:

(1 +
τ3

2
)ςj+2

(
1
6

ei(l−1)ϕh +
4
6

ei(l)ϕh +
1
6

ei(l+1)ϕh
)
− υ

τ3

2
ςj+2

(
ei(l−2)ϕh + 8ei(l−1)ϕh − 18ei(l)ϕh

+ 8ei(l+1)ϕh + ei(l+2)ϕh
)
=

(
3− κτ − τ3

2
− r
)

ςj+1
(

1
6

ei(l−1)ϕh +
4
6

ei(l)ϕh +
1
6

ei(l+1)ϕh
)
+ υ

τ3

2

ςj+1
(

ei(l−2)ϕh + 8ei(l−1)ϕh − 18ei(l)ϕh + 8ei(l+1)ϕh + ei(l+2)ϕh
)
+

(
2κτ − 3 + r

)
ςj
(

1
6

ei(l−1)ϕh+

4
6

ei(l)ϕh +
1
6

ei(l+1)ϕh
)
+ (1− κτ)ςj−1

(
1
6

ei(l−1)ϕh +
4
6

ei(l)ϕh +
1
6

ei(l+1)ϕh
)

− r
j

∑
s=1

ďs

[
ςj−s+1

(
1
6

ei(l−1)ϕh +
4
6

ei(l)ϕh +
1
6

ei(l+1)ϕh
)
− ςj−s

(
1
6

ei(l−1)ϕh +
4
6

ei(l)ϕh +
1
6

ei(l+1)ϕh
)]

.

Rearranging the above equation, we obtain:(
1 +

τ3

2

)
ςj+2

(
2
6

cos(ϕh) +
4
6

)
− υ

τ3

2
ςj+2

(
2 cos(2ϕh) + 16 cos(ϕh)− 18

)
=

(
3− κτ − τ3

2
− r
)

ςj+1
(

2
6

cos(ϕh) +
4
6

)
+ υ

τ3

2
ςj+1

(
2 cos(2ϕh) + 16 cos(ϕh)− 18

)
+

(
2κτ − 3 + r

)
ζ j
(

2
6

cos(ϕh) +
4
6

)
+

(
1− κτ

)
ςj−1

(
2
6

cos(ϕh) +
4
6

)
− r

j

∑
s=1

ďs

[
ςj−s+1

(
2
6

cos(ϕh) +
4
6

)
− ςj−s

(
2
6

cos(ϕh) +
4
6

)]
.

After simplification, we obtain the following relation:

ςj+2 =
1
σ
(3− κτ −v)ςj+1 +

1
σ
(2κτ − 3 + r)ςj +

1
σ
(1− κτ)ςj−1 − r

σ

j

∑
s=1

ďs

[
ςj−s+1 − ςj−s

]
, (24)

where

σ = 1 +
τ3

2
− υ

τ3

2
2 cos(2ϕh) + 16 cos(ϕh) + 18

2
6 cos(ϕh) + 4

6
,

v = (
τ3

2
+ r) + υ

τ3

2
2 cos(2ϕh) + 16 cos(ϕh) + 18

2
6 cos(ϕh) + 4

6
.
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Clearly, σ > 1.

Proposition 1. Let ςj+1, j = 0, 1, 2, . . . T0 × L be the solution of the proposed scheme. We
then have:

|ςj+2| < 3|ς1|.

Proof. Here, we use the mathematical induction to prove the result. Substituting j = 0 in
(24), we obtain:

ς2 < 3ς1,

|ς2| < 3|ς1|.

Suppose |ςj+1| < 3|ς1| is true for j = 0, 1, 2, . . . T0 × L− 1:

ςj+2 =
1
σ
(3− κτ−v)ςj+1 +

1
σ
(2κτ− 3+ r)ςj +

1
σ
(1− κτ)ςj−1− r

σ

j

∑
s=1

ďs

(
ςj−s+1− ςj−s

)
,

ςj+2 <
3
σ
(3− κτ −v)ς1 +

3
σ
(2κτ − 3 + r)ς1 +

3
σ
(1− κτ)ζ1 − r

σ

j

∑
s=1

ďs

(
3ς1 − 3ς1

)
,

ςj+2 <
3
σ

(
(3− κτ −v) + (2κτ − 3 + r) + (1− κτ)

)
ς1 =

3
σ
(1 + r−v)ς1,

|ςj+2| < 3
σ
|ς1|,

|ςj+2| < 3|ς1|.

From the above proposition, it can declared that for every j, the error of the recommended
scheme at level j does not increase the initial error. Hence, the proposed scheme is stable
unconditionally.

5.2. Convergence Analysis

Theorem 1. Let w(ψm, tj) be the analytical solution of the Equations (1) and (2) and W j be the
approximate solution of the assumed problem. Then,

||Ĕj+2|| ≤ S̃ + ćτ2−γ, (25)

where S̃ is constant and Ĕj+2 = w(ψm, tj+2)−W j+2.

Proof. From the difference between the analytical and approximate solutions, we obtain:

(1 +
τ3

2
)Ĕj+2 − υ

τ3

2
(Ĕψψ)

j+2 = (3− κτ − τ3

2
− r)Ĕj+1 + υ

τ3

2
(Ĕψψ)

j+1 + (2κτ − 3 + r)Ĕj

+ (1− κτ)Ĕj−1 − r
j

∑
s=1

ďs

(
Ĕj−s+1 − Ĕj−s

)
+ ĕj+2

τ . (26)

Equation (26) can be rewritten as:

(1 +
τ3

2
)Ĕj+2 − υ

τ3

2
(Ĕψψ)

j+2 = (3− τκ − τ3

2
− r)Ĕj+1 + υ

τ3

2
(Ĕψψ)

j+1 + (2κτ − 3)Ĕj

+ (1− κτ)Ĕj−1 + rďjĔ0 + r
j−1

∑
s=0

(
ďs − ďs+1

)
Ĕj−s + ĕj+2

τ . (27)
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For j = 0, Equation (27) implies:

(1 +
τ3

2
)Ĕ2 − υ

τ3

2
(Ĕψψ)

2 = (3− κτ − τ3

2
− r)Ĕ1 + υ

τ3

2
(Ĕψψ)

1 + (2κτ − 3)Ĕ0 + ĕ2
τ .

As Ĕ0 = 0, we obtain:

(1 +
τ3

2
)〈Ĕ2, Ĕ2〉 − υ

τ3

2
〈Ĕ2

ψψ, Ĕ2〉 = (3− κτ − τ3

2
− r)〈Ĕ1, Ĕ2〉+ λ

τ3

2
〈Ĕ1

ψψ, Ĕ2〉+ 〈ĕ2
τ , Ĕ2〉.

Using 〈ãxx, ã〉 = −〈ãx, ãx〉, 〈ã, ã〉 = ||ã||2, 〈ãx, ã〉 = −〈ã, ãx〉, and 〈ã, ã1〉 ≤ ||ã||||ã1||,
we obtain:

ε||Ĕ2||2 ≤ ||Ĕ1||||Ĕ2||+ ||ĕ2
τ ||||Ĕ2||,

where ε = (1 + τ3

2 ).

||Ĕ2|| ≤ 1
ε
||Ĕ1||+ 1

ε
||ĕ2

τ ||,

||Ĕ|| ≤ ||Ĕ1||+ ||ĕ2
τ || ≤ S̃ + ćτ2−γ. (28)

Assume that (29) is true for j = 0, 1, . . . , K. Taking the inner product of Equation (27) with
Ĕj+2, we have:

(1 +
τ3

2
)〈Ĕj+2, Ĕj+2〉 − υ

τ3

2
〈Ĕj+2

ψψ , Ĕj+2〉 = (3− κτ − τ3

2
− r)〈Ĕj+1, Ĕj+2〉+ υ

τ3

2
〈Ĕj+1

ψψ , Ĕj+2〉+

(2κτ − 3)〈Ĕj, Ĕj+2〉+ (1− κτ)〈Ĕj−1, Ĕj+2〉+ r
j−1

∑
s=0

(
ďs − ďs+1

)
〈Ĕj−s, Ĕj+2〉+ 〈ĕj+2

τ , Ĕj+2〉.

Using 〈ãxx, ã〉 = −〈ãx, ãx〉, 〈ãx, ã〉 = −〈ã, ãx〉, we have:

(1 +
τ3

2
)〈Ĕj+2, Ĕj+2〉 = −υ

τ3

2
〈Ĕj+2

ψ , Ĕj+2
ψ 〉 − υ

τ3

2
〈Ĕj+1

ψ , Ĕj+2
ψ 〉+ (3− κτ − τ3

2
− r)〈Ĕj+1, Ĕj+2〉

+ (2κτ − 3)〈Ĕj, Ĕj+2〉+ (1− κτ)〈Ĕj−1, Ĕj+2〉+ r
j−1

∑
s=0

(
ďs − ďs+1

)
〈Ĕj−s, Ĕj+2〉+ 〈ĕj+2

τ , Ĕj+2〉.

Moreover, using 〈ã, ã〉 = ||ã||2, 〈ã, ã1〉 ≤ ||ã||||ã1||, we have:

(1 +
τ3

2
)||Ĕj+2|| ≤ (1− τ3

2
− r)(ćτ2−γ) + r

j−1

∑
s=0

(
ďs − ďs+1

)
||Ĕj−s||+ ||ĕj+2

τ ||,

||Ĕj+2|| ≤ D1

j−1

∑
s=0

(
ďs − ďs+1

)
||Ĕj−s||+ ||ĕj+2

τ ||,

where S̃j = max
0≤s≤j−1

||Ĕj−s|| and ε = (1 + τ3

2 ).

||Ĕj+2|| < +S̃j(1− ďj) + ||ĕ
j+2
τ ||,

||Ĕj+2|| < S̃ + ćτ2−γ

where S̃ = max
0≤j≤K

S̃j and (1− ďj) < 1.
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6. Numerical Implementation

In this section, two examples are performed in order to show the competency
of the proposed scheme. The outcomes of example 1 are compared with [10]. Errors are
computed using the error norm described below. The absolute error L∞ is defined by:

L∞ = max
0≤m≤L

| wm −Wm |,

where wm and Wm are the analytical and approximate solutions, respectively.
To compute the order of convergence ρ , the following formula can be employed:

ρ =
log(L∞(Ki))− log(L∞(Ki+1))

log(2)
,

where L∞(Ki) and L∞(Ki+1)) are the norms at knots Ki and Ki+1, respectively.

Example 1. Consider the following third-order fractional differential equation in the Caputo
sense [10]: 

∂3w(ψ,t)
∂t3 + κ

∂2w(ψ,t)
∂t2 +C

0 Dγ
t w(ψ, t) + w(ψ, t)− υ

∂2w(ψ,t)
∂ψ2 = f (ψ, t),

w(ψ, 0) = wt(ψ, 0) = wtt(ψ, 0) = 0, 0 ≤ t ≤ 1,
w(0, t) = w(π, t) = 0, 0 ≤ ψ ≤ π,
0 < γ < 1, κ > 0, υ > 0.

(29)

The analytic solution of this problem is:

w(ψ, t) = (
1− γ

B(γ)
t3 +

6γ

Γ(γ + 4)B(γ)
tγ+3) sin ψ,

where B(γ) = 1− γ + γ
Γ(γ) .

Tables 1–3 demonstrate the L∞ error norm for γ = 0.001, 0.37, 0.5, 0.69, 0.81, 0.999
and also for various values of M and K. The value of κ is different for each γ, and we
choose a small parameter υ = 0.0001 for all γ. Such values of κ give minimum errors,
the errors will start to increase when we increase or decrease the value of κ. Tables 1 and 2
display the comparison of errors of proposed technique with the Crank–Nicholson finite
difference method [10] for M̃ = K = 20 and 80, respectively. It seems that the outcomes
of proposed scheme are much better than results of [10]. The order of convergence can
be calculated numerically and is tabulated in Tables 4 and 5 along with the temporal and
spatial directions, respectively. It is concluded that the order of convergence is almost two.
The absolute error at different values of γ is displayed in Figure 1. Figure 2 depicts the
3D space–time plot of analytical and approximate solutions when γ = 0.37, M̃ = K = 80.
In Figures 3–5, the comparison of the 3D numerical and exact solutions of proposed
technique with Crank–Nicholson finite difference method (CNFDM) [10] for M̃ = K = 20
are shown, and it is concluded that the numerical solutions of the proposed scheme are
more accurate than the scheme in [10]. We may conclude that the computational findings
are in good agreement with the exact solutions, demonstrating that this scheme is capable
of solving the problem effectively.
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Table 1. Maximum error profile for Example 1 when τ = 1
20 and h = π

20 .

(γ, κ) Proposed Scheme CNFDM [10]

(0.001, 1.44) 0.000105357 0.312670659474578
(0.01, 1.44) 0.000202811 0.316417368682664
(0.37, 0.9) 0.002552621 0.334981685094574

(0.5, 0.529) 0.000015823 0.279273735484124
(0.69, 0.001) 0.007735142 0.162639876741267
(0.81, 0.01) 0.034280707 0.089140237979957
(0.99, 0.001) 0.060474991 0.001420279481709

(0.999, 0.001) 0.061439270 0.002189298564374

Table 2. Absolute error profile for Example 1 when τ = 1
80 and h = π

80 .

(γ, κ) Proposed Scheme CNFDM [10]

(0.001, 1.33) 0.0000555127 0.482603146665670
(0.01, 1.33) 0.0000263275 0.487508672577419
(0.37, 0.648) 0.0000123132 0.529939808763533
(0.5, 0.280) 0.0000677856 0.460492617848428
(0.69, 0.010) 0.0065096011 0.310451668381897
(0.81, 0.010) 0.0123053210 0.213389947812387
(0.99, 0.001) 0.0176068321 0.089828130903143

(0.999, 0.001) 0.0177875443 0.084419821469902

Table 3. Error analysis for Example 1 when τ = 1
K , h = π

M̃ .

γ κ K = 160 & M̃ = 160 κ K = 10 & M̃ = 100

0.001 1.317 3.6850× 10−6 1.600 0.0007427322
0.01 1.315 5.9170× 10−7 1.600 0.0005669441
0.37 0.579 4.4978× 10−6 1.080 0.0001260830
0.5 0.208 1.6306× 10−6 0.753 0.0000141738

0.69 0.001 3.8884× 10−3 0.141 0.0000326901
0.81 0.001 6.5879× 10−3 0.001 0.0375041110
0.99 0.001 9.0213× 10−3 0.001 0.0963445443

0.999 0.001 9.1037× 10−3 0.001 0.0986054113

Table 4. The L∞ error norm and order of convergence ρ of Example 1 when M̃ = 160.

(γ, κ) τ L∞ ρ

(0.5, 1.400) 1
4 0.0338561 ...

(0.5, 0.900) 1
8 0.0066860 2.3402

(0.5, 0.573) 1
16 0.0016284 2.0376

(0.5, 0.432) 1
32 0.0003274 2.3142

Table 5. The L∞ error norm and ρ of Example 1 when K = 160.

(γ, κ) h L∞ ρ

(0.5, 0.4348) π
16 0.00252197 ...

(0.5, 0.2580) π
32 0.00058506 2.10789

(0.5, 0.1970) π
64 0.00013258 2.14163

(0.5, 0.2105) π
128 0.00002803 2.24156
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Γ = 0.690

Γ = 0.810

Γ = 0.99

0.5 1.0 1.5 2.0 2.5 3.0
Ψ

0.002

0.004

0.006

0.008

Absolute Error

Γ = 0.01

Γ = 0.50

Γ = 0.37

0.5 1.0 1.5 2.0 2.5 3.0
Ψ

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

Absolute Error

Figure 1. Absolute error plot of Example 1 when M̃ = K = 160.

Figure 2. Three-dimensional space–time plot of analytical and approximate solutions when
γ = 0.37, M̃ = K = 80.

(a) 3D Analytical solution (b) 3D Approximate solution

(c) 3D Approximate solution (Akgül and
Modanli, 2019)

Figure 3. Comparison between 3D analytical, proposed approximate, and approximate [10] solutions
of Example 1 for γ = 0.37 and M̃ = K = 20.
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(a) 3D Analytical solution (b) 3D Approximate solution

(c) 3D Approximate solution (Akgül
and Modanli, 2019)

Figure 4. Comparison between 3D analytical, proposed approximate, and approximate [10] solutions
of example 1 for γ = 0.69 and M̃ = K = 20.

(a) 3D Analytical solution (b) 3D Approximate solution

(c) 3D Approximate solution (Akgül
and Modanli, 2019)

Figure 5. Comparison between 3D analytical, proposed approximate, and approximate [10] solutions
of example 1 for γ = 0.81 and M̃ = K = 20.

Example 2. Use the third-order FPDE (1) with

w(ψ, 0) = wt(ψ, 0) = wtt(ψ, 0) = 0, 0 ≤ t ≤ 1 = T0,

w(0, t) = w(1, t) = 0, 0 ≤ ψ ≤ 1.
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The exact solution is taken as w(ψ, t) = (1 + t
5
2 )ψ2(1− ψ)2, and the force function

f (ψ, t) can be calculated with its help. The computational results of this example are
given in the tables and figures at different parameter values. The absolute errors norm
L∞ is tabulated in Tables 6 and 7 at different values of τ, h, K, M̃, γ and κ. The order of
convergence can be calculated numerically and is tabulated in Tables 8 and 9 along with the
temporal and spatial directions, respectively. It is concluded that the order of convergence
is almost two. Figure 6 displays the error plot for different values of fractional order γ.
The 3D space–time graphs of the exact and numerical solutions are depicted in Figures 7–9
by setting the different values of K and M̃. We can conclude that the results obtained by the
proposed scheme are well suited with the exact solution. In addition, from these figures,
we can observe that the numerical results of the present method and the exact solutions at
different time stages are much closer to each other.

Table 6. Absolute error norm for Example 2 when τ = 1
K , h = 1

M̃ .

γ κ K = 20 & M̃ = 20 κ K = 80 & M̃ = 80

0.001 45.911 2.2547× 10−4 12.500 4.7365× 10−6

0.01 45.900 2.2537× 10−4 12.490 2.7841× 10−6

0.37 45.900 2.1356× 10−4 12.425 2.6412× 10−6

0.5 45.900 2.0327× 10−4 12.393 2.5157× 10−6

0.69 45.898 1.7814× 10−4 12.330 1.8088× 10−6

0.81 45.897 1.5408× 10−4 12.247 9.8607× 10−7

0.99 45.897 1.0387× 10−4 12.127 9.4807× 10−7

0.999 45.896 1.0092× 10−4 11.977 2.1244× 10−7

Table 7. Maximum errors for Example 2 when τ = 1
K , h = 1

M̃ .

γ κ K = 160 & M̃ = 160 κ K = 10 & M̃ = 100

0.001 16.800 2.4679× 10−6 6.600 5.0317× 10−5

0.01 16.798 2.3974× 10−6 6.600 4.6002× 10−5

0.37 16.735 2.1848× 10−6 6.533 4.1762× 10−5

0.5 16.701 1.7302× 10−6 6.433 2.7052× 10−5

0.69 16.646 1.7059× 10−6 6.312 8.9207× 10−6

0.81 16.595 1.4919× 10−6 6.275 4.60065× 10−6

0.99 16.467 8.7779× 10−7 6.234 2.2419× 10−6

0.999 16.447 1.6216× 10−7 6.165 1.87417× 10−6

Table 8. The L∞ error norm and ρ of Example 2 for M̃ = 160.

(γ, κ) τ L∞ ρ

(0.5, 4.440) 1
4 0.00999346 ...

(0.5, 5.380) 1
8 0.00259925 1.94289

(0.5, 6.600) 1
16 0.00064034 2.02117

(0.5, 8.475) 1
32 0.00015437 2.04902

Table 9. The L∞ errors and ρ of Example 2 when K = 160.

(γ, κ) h L∞ ρ

(0.5, 5.00) 1
16 0.00297106 ...

(0.5, 10.50) 1
32 0.00086012 1.78836

(0.5, 14.33) 1
64 0.00024807 1.79378

(0.5, 17.49) 1
128 0.00007100 1.80472
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Γ = 0.001

Γ = 0.999

Γ = 0.690

0.5 1.0 1.5 2.0 2.5 3.0
Ψ

0.00002

0.00004

0.00006

0.00008

Absolute Error

Γ = 0.99

Γ = 0.37

Γ = 0.50

0.5 1.0 1.5 2.0 2.5 3.0
Ψ

0.00002

0.00004

0.00006

0.00008

Absolute Error

Figure 6. Absolute error of Example 2 obtained by the proposed scheme when M̃ = 100, K = 10.

Figure 7. Three-dimensional analytic and approximate solutions of Example 2 obtained by the
proposed scheme when γ = 0.001 and M̃ = 100, K = 10.

Figure 8. Three-dimensional space–time analytic and approximate solutions of Example 2 obtained
by the proposed scheme when γ = 0.001, M̃ = K = 80.

Figure 9. Three-dimensional exact and approximate solutions graphs of Example 2 obtained by the
proposed scheme for γ = 0.001, M̃ = K = 160.
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7. Conclusions

In the present study, we have presented cubic B-spline solutions of third-order, time-
fractional, partial differential equations. The CFD has been applied to discretize the
time-fractional derivative. A new approximation for the second derivative of cubic B-spline
functions has been utilized in the space dimension. The given numerical algorithm has been
proven to be convergent and unconditionally stable. To determine whether the presented
technique is effective, two numerical test problems have been considered. Numerical
results have been compared with CNFDM [10] and found that the obtained results are
more accurate than [10].

The proposed method has been corroborated by certain numerical examples, which
show that this new estimation is more accurate, appropriate, and valuable than previously
published methods. The suggested scheme in the present study is innovative and offers a
respectable level of accuracy. On the other hand, the present method will be applied on
two-dimensional time fractional partial differential equations and also it is simple to use
when applied to variable-order and higher-order fractional partial differential equations.
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