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Abstract: The ability of the Langevin equation to predict coagulation kernels in the transition
regime (ranging from ballistic to diffusive) is not commonly discussed in the literature, and previous
numerical works are lacking a theoretical justification. This work contributes to the conversation to
gain better understanding on how the trajectories of suspended particles determine their collision
frequency. The fundamental link between the Langevin equation and coagulation kernels based
on a simple approximation of the former is discussed. The proposed approximation is compared
to a fractal model from the literature. In addition, a new, simple expression for determining the
coagulation kernels in the transition regime is proposed. The new expression is in good agreement
with existing methods such as the flux-matching approach proposed by Fuchs. The new model
predicts an asymptotic limit for the kinetics of coagulation in the transition regime.

Keywords: Langevin dynamics; coagulation kernels; transition regime; diffusive Knudsen number

1. Introduction

Understanding collision-based nano/micrometer-sized particle growth is relevant
for predicting pollutant formation, nanoparticle synthesis, powder, and nanotechnology.
The latter is important, for example, in the pharmaceutical, mining, cosmetic, and food
industries [1–3]. Indeed, one of the most important mechanisms of aerosol particle growth
is coagulation, whereby particles stick together (aggregation or agglomeration) or experi-
ence total coalescence or sintering after collisions [4,5]. In this context, models for particle
collision frequencies are needed. Current models are commonly restricted to specific con-
ditions, such as particle interaction forces, flow regime (particle–fluid interaction, either
continuum or free molecular), and collision regime (particle–particle interaction, either
diffusive or ballistic) [5,6]. However, aerosol coagulation processes commonly take place in
the transition regime ranging from ballistic to diffusive. This is a natural consequence of
particle growth as larger particles tend to behave more diffusively than smaller ones [7].
However, it has been historically challenging to find expressions for the collision kernels
valid for all the regimes due to the lack of theory. In this context, different types of approx-
imate methods can be found in the literature including the flux-matching method [8,9],
the Fokker–Planck method [10], interpolation formulas [11–13], and the particle trajectory-
based method [14]. As stated in Chapter 7 of Fuchs’s book [8], the introduced flux-matching
model [8] is a simplification of the problem in which the diffusive flux of particles is as-
sumed to be equivalent to the ballistic flux at the so-called limiting sphere depending on
the particle-persistent distance and radii. Although this method has found good agreement
with experiments, we can hardly justify that particles may experience such spontaneous
transition from diffusive to ballistic motion at the interface of the limiting sphere. Dah-
neke [9] proposed an approximation of the limiting sphere based on a kinetic description
of particle collisions but also relied on the flux-matching assumption. Some authors have
suggested solving the Fokker–Planck equation to describe the particle-collision rates, as
this equation is expected to be valid in both diffusive and ballistic regimes [10]. However,
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this equation cannot be solved analytically, and only approximations have been achieved
as thoroughly discussed in Refs. [15,16]. A simpler, yet probably effective, approach con-
sists of simulating particle trajectories by solving the Langevin equation and fitting the
dimensionless collision kernels for different regimes as done in Refs. [11–13]. This method
seems to provide us with an accurate estimation of the coagulation kernels; however, they
usually do not discuss the limits of the Langevin equation itself, and the fundamental
reason why this equation is able to predict collision kernels at different collision regimes
seems elusive. Therefore, theoretical methods are needed to fill this gap of knowledge. In
this sense, an alternative method was proposed by Gmachowski [14], who derived the
collision kernels theoretically from the particles’ trajectories as described by an empirical
fractal model introduced by the same author in a previous work [17]. Unfortunately, such
a fractal model lacks justification, is an empirical approach, and its relationship with the
Langevin equation is not clear. Moreover, to the best of the author’s knowledge, there are
no additional works in the literature discussing the particle trajectory-derived collision
kernels as proposed by Gmachowski [14]. The trajectories of the particles, either diffusive
or ballistic, determine the coagulation kernels because the probability of suspended par-
ticle collisions is proportional to their swept volume. In fact, the coagulation kernels in
both the ballistic and the diffusive regimes can be obtained from the time derivative of
this swept volume when the system of particles is uniform and diluted (vide infra). In
addition, the trajectories of Brownian particles may be predicted based on a fractional
model [18,19], a fractal model [14], random walks [20], or by solving the Langevin equation
with different time steps [21]. The latter is important, as solving the Langevin equation
for numerical simulations of aerosol dynamics is currently computationally expensive
and the choice of time step may influence the particle collision kernels [21]. Therefore,
revealing clearly how the model used for particle trajectory can affect the particle–particle
collision frequencies is needed. The most accuratemethod to describe the trajectories of
suspended nanoparticles in all the collision regimes is likely the Langevin equation [22].
However, the current solutions of this equation found in the literature are not explicit,
making analytical or theoretical works difficult. Consequently, considering the lack of
understanding on particle coagulation at different collision regimes and the complexity
and/or limited accuracy of the existing approaches, the goals of this work are: (1) to better
understand how particle trajectories determine their collision frequency, (2) to explain why
the Langevin equation is able to predict collision kernels under different collision regimes,
(3) to explore simple approximations for solving the Langevin equation and compare it
to fractal models, and (4) to obtain a simple but accurate collision kernel model that may
encounter many applications in aerosol transport problems. In this work, the coagulation
kernels are analytically obtained based on a new, simple but accurate approximation of
the Langevin equation describing the particle’s trajectories. The proposed model predicts
the collision kernels of suspended particles in the transition regime. Most importantly, the
proposed method shows the ability of the Langevin equation to predict collision kernels at
different regimes, and the impact of its parameters is analytically observed in this work as
never done before. In addition, the new model predicts a likely universal asymptotic limit
for the kinetics of coagulation in the transition regime.

2. Materials and Methods
2.1. The Population Balance Equation

To numerically simulate the evolution of particle size distribution due to interparti-
cle collisions from a macroscopic perspective, the Smoluckowski or population balance
equation (PBE) is widely used,

dn(v)
dt

=
1
2

∫ v

0
k(v− ṽ, ṽ)n(v− ṽ)n(v̄)dṽ− n(v)

∫ ∞

i=0
k(v, ṽ)n(ṽ)dṽ, (1)

where n(v)dv corresponds to the particle number concentration, the volume of which lies
between v and v + dv at time t. The left-hand side of this equation represents the time
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derivative of the particle number concentration. The first integral on the right-hand side is
a gain term due to collisions between particles whose combined volumes result in v. Due
to the symmetry of this sum, the 1/2 factor is included to avoid double counting. The
second integral represents a loss term due to the collision of particles with volume v with
any other particle. How fast particles combine is determined by the collision kernel k(v, ṽ).
It is defined as the number of collisions per unit of time between particles with volumes v
and ṽ.

2.2. The Collision Kernels

For diluted systems of particles (when interparticle distance is much larger than parti-
cle sizes), the diffusive Knudsen number KnD = λp/a describes the collision regime [12].
Here, λp corresponds to the particles’ persistent distance, i.e., the average distance travelled
by particles before considerably changing direction or relaxing their momentum, and a the
particle radius. There are different expressions in the literature for λp, including Refs. [7–9].
The Fuchs expression is preferred here where λp = τū, τ and ū are the particles’ momentum
relaxation time (τ = m/ f ratio between the particle’s mass m and its friction coefficient
f ), and the average Maxwellian velocity (ū = (8kBT/π/m)1/2, where kB is the Boltzmann
constant, and T is the surrounding fluid temperature), respectively.

Let us consider a system of many particles and imagine that each particle has a
characteristic sphere of radius λp placed on its center of mass. Then, any collision taking
place within this sphere is ballistic. Therefore, as shown in Figure 1 we can distinguish two
extreme cases. First, when λp � a (or KnD � 1) the particle will experience a diffusive
movement, and therefore any collision rate with neighbors will be diffusion-limited. In
this regime, particles approach each other with a diffusive trajectory or curvilinear motion
(see Figure 1a). Secondly, when λp � a (or KnD � 1) the particle will experience a
ballistic motion, and collision with neighbors will be ballistically limited. In this regime,
particles approach each other with a ballistic trajectory or rectilinear motion (see Figure 1b).
However, there is a third case, not represented in this figure, corresponding to the transition
between these two extreme regimes. For the aforementioned coagulation regimes, the
corresponding collision kernels are explained in the following sections.

Diffusive Ballistic

λp

a

λp

a

KnD>>1KnD<<1

a b

Figure 1. The particle-persistent distance λp and the particle’s radius a are shown. The corresponding
diffusive Knudsen numbers KnD = λp/a are indicated along with the trajectories of colliding
monodisperse particles in the (a) diffusive and (b) ballistic coagulation regimes.
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2.2.1. Diffusive Regime

When λp � a (i.e., KnD � 1), the particles experience a diffusive motion and their
relative swept volume Vdiff can be approximated as a Wiener sausage [23],

Vdiff =
4π

3
(ai + aj)

3

(
1 +

6√
π

√
(Di + Dj)t
(ai + aj)2 + 3

(Di + Dj)t
(ai + aj)2

)
, (2)

where ai (or aj) and Di (or Dj) are the particle’s radius and diffusion coefficients, respectively.
In addition, t corresponds to the time between collisions. In the limit t→ ∞ corresponding
to diluted systems, Equation (2) simplifies to

Vdiff = 4π(ai + aj)(Di + Dj)t. (3)

The nanoparticle collision rate in this regime is kdiff = dVdiff/dt,

kdiff = 4π(ai + aj)(Di + Dj). (4)

This equation was originally obtained by Smoluchowski in 1917 by considering a diffusive
flux of particles arriving at the surface of another one and neglecting the transient part
of the flux that may become important under high particle concentrations. This equation
has been recently obtained in a more rigorous way than the Smoluchowski’s approach in
Ref. [24].

2.2.2. Ballistic Regime

When λp � a (i.e., KnD � 1), the particles’ relative swept volume is directly the
product of their cross-section times, their Maxwellian velocity, and both ends of the straight
sausage described by the particle motion,

Vball = π(ai + aj)
2
√

u2
i + u2

j t +
4π

3
(ai + aj)

3. (5)

Here, ui and uj indicate the average Maxwellian velocity of the i’th and j’th particles,
respectively. The corresponding particle collision rate in this regime is kball = dVball/dt,

kball = π(ai + aj)
2
√

u2
i + u2

j . (6)

This kernel is also derived when considering a flux of particles arriving at the surface
of a neighbour as described by the kinetic theory [4].

2.2.3. Transition Regime

The already-introduced diffusive Knudsen number can be generalized to any pair of
colliding particles i and j,

KnD =

√
2λp,ij

aij
=

8
√

2(Di + Dj)

π
√

u2
i + u2

j (ai + aj)
. (7)

As mentioned in the introduction, there is a lack of theory for the transition regime. A
practical way of studying it is by introducing a correction function f (KnD) such that,

k = kdiff f (KnD), (8)

i.e., f (KnD) is a function allowing us to calculate the coagulation kernel k for all the
coagulation regimes by knowing one extreme regime, such as the diffusive one [25]. In
the limit KnD → 0, the function f (KnD) → 1 and therefore the total collision kernel is
diffusive k = kdiff. In the limit KnD → ∞, we have f (KnD) = kball/kdiff where the total
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collision kernel is ballistic k = kball. Table 1 summarizes the different methods found in
the literature to calculate the correction function f (KnD). As explained in the introduction,
these methods can be classified into four groups: (1) flux-matching methods [8,9], (2)
Fokker–Planck equation-based methods [10], (3) interpolating formulas [11–13], and (4)
the methods based on particles’ trajectories [14]. The proposed method here belongs to
the latter group where the function f (KnD) is derived from the Langevin equation. This is
explained in the following section.

Table 1. Different approximations of the correction function f (KnD) to calculate the coagulation
kernels in the transition regime. The diffusive Knudsen number is given by Equation (7).

Reference Correction Function f (KnD)

Dahneke [9] 4
√

2+πKnD
2+πKnD(4

√
2+πKnD)

Sahni [10]
(

1 + κ + κ
2

[
π
κ2 −

(
1 + π

κ2

)
erf
(√

π
κ

)])−1

κ = (π/
√

8)KnD

Fuchs [8]
(

π
2
√

2
KnD + [1 + ∆p

√
2]−1

)−1

∆p = (2+KnD)3−(4+Kn2
D)

3/2

12KnD
− 1

Gopalakrishnan et al., [12]

1+c1KnD+c2Kn2
D

1+c3KnD+c4Kn2
D+c5Kn3

D
c1 = 0.911, c2 = 0.8781, c3 = 1.5517,
c4 = 1.4158 and c5 = 0.9754

Polovnikov et al., [13] 1.5+4.69KnD
1.5+2.33KnD+KnD(1+3.13KnD)

Gmachowski [14] 2
√

2
2
√

2+πKnD

This work
(

1 + π2

8 Kn2
D

)−1/2

2.3. Langevin Dynamics

The trajectory followed by an aerosol particle can be accurately described based on
the Langevin equation [22],

m
d~u
dt

= − f~u + ~FB + ∑~Fext. (9)

It is a linear, first-order, inhomogeneous stochastic differential equation corresponding
to Newton’s conservation of linear momentum for a single aerosol particle. The main
assumption of this model is that external forces caused by the surrounding fluid can be
split into a systematic part (i.e., − f~u, corresponding to the drag force) and a stochastic
part (i.e., ~FB, or the Brownian force). The Brownian force ~FB is typically justified as the
result of stochastic collisions of the particle and the fluid molecules. However, as pointed
out by Pomeau and Piasecki [26], if the fluid molecules are modeled as hard spheres then
both the friction and the Brownian forces are due to particle–fluid molecule collisions. The
same authors proposed that on average and at equilibrium the particle velocity fluctuations
predicted by the Langevin equation are symmetrical in time. In addition, the dependence
on the fluid viscosity shows that the random force is due to the fluctuations of the fluid
around the suspended particle, which is a consequence of the discrete or molecular nature
of the fluid. The term ∑~Fext stands for the net external forces such as electric, magnetic,
and interparticle forces not considered in the present work. The Brownian stochastic force
has the following properties,

〈FB(t)〉 = 0, (10a)

〈FB(t)FB(t′)〉 = 6 f kBTδ(t− t′), (10b)

where δ is the Dirac function. This means that the Brownian force is uncorrelated in time and
can be mathematically modeled as a Gaussian noise with moments given by Equations (10a)
and (10b). The Langevin equation is based on the idea that particle–fluid molecular
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collisions have a much shorter characteristic time than the particle momentum relaxation
time, and this may be valid regardless of the particle’s size (in the nano- to micrometer
range), the fluid temperature, and pressure. Based on the fluctuation–dissipation theorem,
we conclude that the Langevin equation is limited to a thermally equilibrated particle–fluid
system. Otherwise, Equation (10b) is no longer valid [27]. For additional discussions on
the limitations of the Langevin equation, the reader is referred to [26,27].

Uhlenbeck and Ornstein [28] obtained the following analytical solution for the particle
average mean squared displacement 〈r2〉,

〈r2〉 = 6Dτ[t/τ − 1 + exp(−t/τ)]. (11)

The following asymptotic limits of Equation (11) can be verified. At t→ 0, we obtain
〈r2〉 = (3D/τ)t2 where

√
3D/τ =

√
3kBT/m is the root mean squared Maxwellian velocity,

meaning that particle movement is ballistic at short time scales. On the other hand, at
t→ ∞ we obtain 〈r2〉 = 6Dt, which is the classical mean squared displacement predicted by
Einstein’s theory of Brownian motion in a three-dimensional system, meaning that particle
movement becomes diffusive for long times. However, this analytical expression is not
explicit, making its application difficult for theoretical analysis; therefore, an approximation
for this expression is proposed in the following section.

2.4. Approximating Langevin Dynamics

An approximation for Equation (11) was proposed by Gmachowski [14] based the
following fractal model,

〈r2〉 =
λ2

p

4

(
−h +

√
h2 + 4h

t
τ

)2

, (12)

where h = 3π/4. This fractal model is based on the idea that in the limit t→ 0 the particle
moves ballistically, and its trajectory can be described as a fractal object with a fractal
dimension close to 1. Moreover, in the limit t→ ∞ the particle moves diffusively, and its
trajectory corresponds to a random walk and exhibits a fractal dimension of 2. The reader
is referred to [17] for additional details on this model. In addition, it is worth mentioning
that previous works have explored a generalization of Brownian dynamics based on
fractional Brownian motion [29,30], and on a fractional Langevin model [18,19]. Fractional
Brownian motion allows for lifting the property of time uncorrelation in the Brownian
force as described in Equation (10b) and therefore offers a more general framework to
study Brownian motion. Taking time correlation into account may be important to study
aerosol dynamics when the time between consecutive collisions is too short for the particle
to reach thermal equilibrium with the surrounding fluid, which is the case at high particle
concentrations [31], or when particles are diluted but the turbulence of the fluid induces
correlation in time [32]. Moreover, an alternative approximation of this trajectory is to use
random walks in which the length of the walk path may be taken to the persistent distance;
however, a different persistent distance than the one used in this work has to be introduced
to accurately approximate the Langevin equation as discussed in Ref. [20]. In this work, an
alternative approach is proposed based on the following explicit equation (see Appendix A
for additional details):

〈r2〉 = 6Dτ

−3π

8
+

√(
3π

8

)2
+

(
t
τ

)2
. (13)

Equation (13) has similar asymptotic limits as Equation (11), i.e., at t→ 0 Equation (13)
leads to 〈r2〉 = (8D/τ/π)t2 where

√
8D/τ/π = u is the average Maxwellian velocity,

meaning that particle movement is ballistic at short times. On the limit t→ ∞, Equation (13)
leads to 〈r2〉 = 6Dt, meaning that particle movement becomes diffusive at long times. The
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MSD predicted by Equation (13) as compared to Equation (11) obtained by [28] is shown
in Figure 2 as a function of the dimensionless time. The MSD is normalized by the Fuchs
persistent distance λ2

p = 8Dτ/π, and time is normalized by the momentum relaxation
time τ. In the range of time considered here (from 0.01τ to 100τ), the proposed model
shows a maximum error of 10% as compared to Uhlenbeck and Ornstein’s equation [28].
In addition, the fractal model given by Equation (12) exhibits an increasing error that goes
up to 38% in the studied range. Note that fitting the fractal model to find the best h to be
in agreement with the method proposed in this work gives the value h = 2.854, which is
larger than the h = 3π/4 ≈ 2.356 proposed by [14] and still exhibits difficulty in describing
the MSD for times t/τ ∼ 2. This means that approximating the Langevin equation based
on a fractal model based on a single fractal dimension has limited accuracy.

dimensionless time t/

d
im

en
si

o
n
le

ss
 m

sd
, 
〈r

2
〉/

p2

10
2

10
1

10
0

10
1

10
2

10
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Uhlenbeck & Ornstein (1930)

Fractal Model

Present work

Figure 2. Approximation of the normalized mean squared displacement (MSD) normalized by the
squared Fuch’s persistent distance λ2

p = 8Dτ/π as a function of the dimensionless time where τ is
the momentum relaxation time. The proposed method given by Equation (13) is compared with [28]
given by Equation (11) and the fractal model proposed by [14].

3. Results
3.1. Derivation of the Coagulation Kernel

Following the approach of Gmachowski [14] and considering that particles’ relative
swept volume can be described by Equations (3) and (5) for the diffusive and ballistic
regimes, respectively, we can reach our conclusion. In addition, considering that particles
MSD are 〈r2

i 〉 = 6Dit and 〈r2
i 〉 ≈ (uit)2 in the diffusive and ballistic regimes, respectively,

the coagulation kernels can be rewritten as,

kdiff = 4π(ai + aj)
〈r2

i 〉+ 〈r2
j 〉

6t
, (14a)

kball = π(ai + aj)
2

√
〈r2

i 〉+ 〈r2
j 〉

t
. (14b)

Having Equations (2) and (5) in mind, then Equations (14a) and (14b) are interpreted as
the time derivative of the particles’ swept volume defined by their mean squared trajectories.
Moreover, in the transition regime we may expect k = kdiff = kball, which is valid when
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the mean squared displacements and particles’ radii are related according to the following
equation,

〈r2
i 〉+ 〈r2

j 〉 =
9
4
(ai + aj)

2, (15)

where the mean squared displacements 〈r2
i 〉 and 〈r2

j 〉 can be expressed in terms of the
proposed approximation of Langevin dynamics given by Equation (13):

6Diτi

−3π

8
+

√(
3π

8

)2
+

(
t
τi

)2
+ 6Djτj

−3π

8
+

√√√√(3π

8

)2
+

(
t
τj

)2
 =

9
4
(ai + aj)

2. (16)

In the case of monodisperse particles, this expression is reduced to

− 3π

8
+

√(
3π

8

)2
+

(
t
τ

)2
=

3a2

4Dτ
,

where the approaching time t for two colliding particles is direcly obtained:

t
τ
=

√(
3a2

4Dτ
+

3π

8

)2

−
(

3π

8

)2
. (17)

The collision kernel in the transition regime can be expresed as follows,

k
kdiff

=
〈r2〉
6Dt

, (18)

where t is the approaching time for two colliding particles based on Equation (17). Based
on Equation (15), we arrive at the proposed coagulation kernel approximation

k
kdiff

=
1√

1 + πτD
a2

.

Finally, it can be expressed in terms of the diffusive Knudsen number KnD = λp/a
based on the Fuchs persistent distance λ2

p = 8Dτ/π:

k
kdiff

=
1√

1 + Kn2
D

π2

8

. (19)

3.2. Proposed Coagulation Kernels

Based on the expressions derived in the previous section, the proposed transition
regime correction for the coagulation kernel is

f (KnD) =

(
1 +

π2

8
Kn2

D

)−1/2

. (20)

In Figure 3, the proposed kernel corrective function, given by Equation (20), is com-
pared with other methods found in the literature. In both extreme regimes, i.e., ballistic
(KnD → ∞) and diffusive (KnD → 0), the agreement with the literature is excellent which
shows the ability of the Langevin equation to predict both extreme regimes. This can
be mathematically checked by evaluating both limits in Equation (20). Moreover, in the
transition regime, the agreement is very good in the near-ballistic regime (when KnD ∼ 10).
However, the proposed method seems to attain the diffusive regime (as KnD decreases)
much more quickly than the methods proposed in the literature; that is, the correction
function f (KnD) is larger than the values proposed in the literature for the near-diffusive
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regime (when KnD ∼ 0.5). Overall, as discussed later, the error is still less than 18% re-
garding the interpolation equations from Refs. [8,12,13]. It is interesting to note that the
improvements in the accuracy of predicting particle trajectories introduced in this work
have more important consequences on collision kernels in the near-ballistic regime. Indeed,
some sensitivity analysis on the parameter 3π/8 of Equation (13) shows a direct impact on
the ballistic and near-ballistic regime. Moreover, replacing this value by 1 as we may obtain
based on the approximation of the Langevin equation proposed by Trzeciak [33], results
in an overestimation of the collision kernels in the ballistic limit. This is explained by the
fact that Equation (14b) relies on an approximation of the mean squared displacement. It is
also interesting to note that, as observed in Figure 3, the kernel based on the fractal model
proposed by Gmachowski [14] gives exactly the same result as the harmonic mean method
which is derived in Appendix B. In addition, as discussed by Trzeciak [33], the harmonic
mean collision kernel can be derived from the flux-matching approach developed by Fuchs
when the size of the limiting sphere is collapsed to the physical size of particles.

+ + + + +
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+
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+
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+ + + + + + + +

diff. Knudsen number, Kn
D
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present work

harmonic mean

Dahneke (1983)

Fuchs (1989)

Sahani (1983)

Gmachowski (2013a)

Polovnikov et al. (2016)

Gopalakrishnan et al. (2011)

+

Figure 3. Coagulation kernel correction function f (KnD) as a function of the diffusive Knudsen
number KnD. The proposed model, given by Equation (20) is compared with the literature. Fuchs
(1989) [8], Dahneke (1983) [9], Sahni (1983) [10], Gopalakrishnan et al. (2011) [12], Polovnikov et al.
(2016) [13], Gmachowski (2013a) [14].

In this context, a natural question is about the role played by the Cunningham cor-
rection factor and what is the maximum KnD up to which the diffusive kernel (corrected
by the Cunningham factor) is still accurate when the change in coagulation regime is
induced by a change in the flow regime (from continuum to free molecular). Figure 4a
compares the proposed coagulation kernel calculated from Equations (8) and (20) with the
literature and the asymptotic values, namely ballistic given by Equation (6) and diffusive
given by Equation (4). In the latter, the diffusion coefficient is determined as D = kBT/ f
where f = 6πηa/Cc(Kng) is the friction coefficient, η is the surrounding gas viscosity, and
Cc(Kng) is the Cunningham slip correction factor [34],

Cc(Kng) = 1 + Kng(1.257 + 0.4 exp[−1.1/Kng]), (21)

where Kng = λg/a is the classical gas Knudsen number, consisting of the ratio between
the gas mean free path λg and the particle’s radius a. When Kng → 0, the particle is in the
continuum flow regime and the friction coefficient is given by the Stokes relation ( f ∝ a);
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however, when Kng → ∞, the particle is in the free molecular flow regime and the friction
coefficient is given by the Epstein relation ( f ∝ a2). For spherical particles, the Cunningham
slip factor allows for simulation of the transition between both flow regimes. To study this
dependency, the coagulation kernels based on Equation (8) and the correction functions
(presented in Table 1) are determined. The results are presented in Figure 4, where the
surrounding gas is air at a constant temperature of 1700 K and pressure of 101.3 kPa. The
mass density of the particles is 1.8 g/cm3, and diameters range from 1 nm to 1000 µm.

In Figure 4a, the different coagulation kernels are compared with the diffusive one
corrected by the Cunningham slip factor (dashed line). In addition, the ballistic kernel
(dash-dotted line) is included to clearly show the change of regime. In this figure, we
observe that the proposed method stays closer to the diffusive kernel (corrected by the
Cunningham slip factor) up to larger values of KnD than other methods from the literature.
However, the proposed equation never goes beyond these limits, and the difficulty of
accurately predicting the transition regime seems to be related to the different assumptions
made on the derivation of the new f (KnD) function.
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Figure 4. (a) Coagulation kernels k as a function of the diffusive Knudsen number KnD. (b) Rel-
ative coagulation kernel compared with kGop proposed by [12]. The proposed method, given by
Equation (20) is compared with the literature. Fuchs (1989) [8], Dahneke (1983) [9], Gopalakrish-
nan et al. (2011) [12], Polovnikov et al. (2016) [13], Gmachowski (2013a) [14].

Figure 4b represents the relative variation of the coagulation kernels (from the present
work and others from the literature) with kGop proposed by [12]. The latter is considered as
the reference because it comes from Langevin simulations and was found to be in good
agreement with both numerical and experimental works [7,13]. As observed here, the pro-
posed method overestimates in a maximum of 18% of the referenced one (i.e., kGop) when
KnD ∼ 1. Remarkably, Gmachowski [14] or, equivalently, the harmonic mean methods,
deviate in almost the same order of magnitude. However, both methods systematically un-
derestimate the coagulation kernel. In this context, the simplicity of the proposed method
in comparison with those found in the literature is highlighted.

4. Discussion
4.1. Comparison with Experiments

The classical method introduced by Fuchs [8], although it is found to be in very good
agreement with more recent works, has not been exempt of criticism, especially in the near-
diffusive regime. Davies [35] reviewed the experimentally measured coagulation kernels
of eight articles and concluded that Fuchs’ [8] interpolation method can underestimate
the real coagulation kernels in the near-diffusive regime. Subsequently, Lee and Chen [36]
suggested that this difference with experimental data may be explained by particles’ poly-
dispersity. The results of Kim et al. [37] show a slightly larger collision kernels than those
predicted by Fuchs [8] and Dahneke [9]. Additionally, Kerker et al. [38] obtained slightly
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smaller kernels than Fuchs [8] in the same regime. Despite these sources of uncertainties,
the Fuchs [8] method is widely accepted [12]. Indeed, in the following section, the practical
effects of using one of the aforementioned methods for the coagulation kernels in the
transition regime are discussed.

4.2. The Effect on the PSD and the Kinetics of Coagulation

An important question that naturally arises here is What are the practical effects on
the particle size distribution (PSD) and also the kinetics of coagulation when selecting one
of the previously mentioned methods to evaluate the coagulation kernels? To answer this
question, a new version of the NGDE code, originally developed by Prakash et al. [39] is
developed (see Appendix C). In this context, the PBE (1) is discretized into θ nodes as

dnk
dt

=
1
2

θ

∑
i=1

θ

∑
j=1

χijkki,jninj − nk

θ

∑
i=1

ki,kni, (22)

where two particles of volumes vi and vj collide with frequency kij to form a third one of
volume vi + vj. To take into account that this volume may fall between two consecutive
nodes i.e. vk−1 and vk (or vk and vk+1), the size-splitting operator χijk is used:

χijk =


vk+1−(vi+vj)

vk+1−vk
, if vk ≤ vi + vj ≤ vk+1

(vi+vj)−vk−1
vk−vk−1

, if vk−1 ≤ vi + vj ≤ vk

0, otherwise

. (23)

Different methods by which to evaluate the coagulation kernels kij in Equation (22) are
evaluated, studying the transition regime without considering nucleation or surface growth.
Only in references [12] and [14] is the harmonic mean discussed, and the proposed methods
are considered to be representative of the four groups of methods discussed before. A total
of θ = 40 nodes for discretizing the PSD, and the same thermodynamic and particle properties
used in the previous section are considered here. In addition, the initial number concentration
was adapted for each case to simulate a constant particle volume fraction of 0.1%. In this case,
the corrections for high volume fraction are negligible [31,40–42]. Moreover, Equation (22) is
solved based on a forward Euler method with time step ∆t = α/(kminntot), where α = 10−3

is a constant value, kmin = mini,j
{

kij
}

is the minimum collision kernel among all pairs of
particles (i, j) in the system, and ntot(t) = ∑θ

i ni is the total particle number concentration
at time t. In these simulations, the collision kernels kij are determined by combining
Equations (4), (7), (8) and (20).

Figure 5a–c presents the time-evolving, volume-based geometric mean dgeo,v and
geometric standard deviation σgeo,v as a function of time (bottom horizontal axis) and as a
function of the diffusive Knudsen number KnD (top horizontal axis). Different coagulation
regimes, namely KnD,0 = 10 (near ballistic), KnD,0 = 1.49 (intermediate), and KnD,0 = 0.1
(near diffusive) are simulated. Here, KnD,0 stands for the initial diffusive Knudsen number.
These diffusive Knudsen numbers are calculated based on the volume equivalent mean
diameter. Both dgeo,v and σgeo,v values are calculated as described in Appendix D. In all
simulations, as time evolves, the particles grow due to stochastic collisions with neighbors.
Note that the diffusive Knudsen number is always smaller at the end of the simulation
compared to the beginning as larger particles experience a more diffusive motion [7,43].
Geometric mean volume equivalent diameters are always increasing in time due to coagu-
lation, and only a small difference is found between the different methods. The geometric
σgeo,v values are increasing from the initial monodisperse particles (σgeo,v = 1) reaching
asymptotic values between 1.31 and 1.34 corresponding to the diffusive and ballistic limits,
respectively. The increase in polydispersity in time is a natural consequence of coagulation,
and σgeo,v is larger in the ballistic regime due to the size dependence of the coagulation
kernel, which is not found in the diffusive regime. These simulations are in good agreement
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with the limits for the corresponding diffusive and ballistic self-preserving size distribution
regime found in the literature [25,44].
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Figure 5. The figures (a–c) represent the geometric mean (left-hand side vertical axis) and geometric
standard deviation (right-hand side vertical axis) as a function of time (bottom horizontal axis) and as
a function of the diffusive Knudsen number KnD (top horizontal axis). The proposed method (blue
dash line) is compared with [12] (black continuous line) and the harmonic mean method, equivalent
to [14] (green dash-dotted line).

In Figure 6a–c, the particle number concentrations as a function of time are presented.
For all the cases studied here, the PSD is not considerably affected by the particular method
used for coagulation kernels determination. When analyzing individual PSD (not shown
here), a very good agreement is observed for larger particle volumes, and only a minor
difference is reached for smaller particle volumes. However, focusing on the total number
concentration is a simplified and too macroscopic a view of the problem. A more relevant
effect is observed in terms of the kinetics of coagulation, which is discussed in more detail
as follows.
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Figure 6. The figures (a–c) represent the particle number concentration as a function of time. The
proposed method (blue dash line) is compared with [12] (black continuous line) and the harmonic
mean method, equivalent to [14] (green dash-dotted line).

4.3. The Asymptotic Size Distribution and Collision Kinetics

As observed in the previous section, the proposed method seems accurate in sim-
ulating the coagulation process. However, a systematic analysis is needed to show its
ability to predict the asymptotic limit t� τc of particle coagulation, where τc = 2/(n0k0)
is the characteristic time of collisions based on the initial average collision kernel k0 and
the initial particle number concentration n0 = n(0). The kinetic exponents z, calculated
as the exponent of the power law 1/n(t)− 1/n(0) = tz, where n(t) is the total particle
number concentration at time t is studied. This is done for a set of simulations of spherical
particle coagulation with initially monodisperse (Figure 7a) and polydiserse (Figure 7b) size
distribution under the same thermodynamic conditions and particle diameters as presented
in previous sections. These particle diameters are indicated for each individual simulation
in Figure 7. All simulations start at values z→ 0, which are reported to enlighten how the
asymptotic values are reached regardless of the initial condition. As highlighted by the
red-dashed line, all simulations nicely converge to an asymptotic limit that may be linked
to a self-preserving size-distribution regime. This is a remarkable observation suggesting
that the kinetics of coagulation may be universal in the asymptotic limit t� τc. Note that
previous works [7,45–47] have only revealed isolated kinetic exponents of the asymptotic
ballistic z = 1.2, transition z = 0.8, and a diffusive regime z = 1 of initially monodisperse
particles. However, they have not revealed the whole asymptotic curve as shown here. In
addition, previous works have not observed that even when the initial size distribution
is polydisperse the system still attains the same asymptotic z function. Observing the
asymptotic z curve, we note that coagulation is faster (z is higher) in the ballistic limit.
Indeed, smaller particles, despite having a lower collision cross section, move much faster
than larger ones, and this results in higher collision rates with neighbors (see Figure 4).
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Moreover, the kinetics are slower in the transition regime due to the more prominent role of
particle friction due to the lower Cunningham correction factor overcoming the increase in
collision rate that we may expect as the particles are larger in size. This Cunningham factor
reaches an asymptotic value for larger particle sizes, explaining why the symptotic z is
constant for diffusive Knudsen numbers ≤10−2. In addition, for all the studied conditions
and for all collision regimes, the proposed model shows a maximum error of ∼3% on the
kinetic exponent as compared to the reference method [12] (see Figure S1 in the Supple-
mentary Materials). This maximum deviation is observed in the near-ballistic regime and a
negligible error is observed in both the ballistic and the diffusive limits.

Figure 7. The kinetic exponent (z) of coagulating monodisperse (a) and polydisperse (b) spherical
particles as a function of the diffusive Knudsen number. The volume-equivalent diameter geometric
standard deviation for initially σgeo,v = 1 monodisperse (c) and σgeo,v = 1.5 polydisperse (d) particles
is also shown. Gray filled symbols represent the z for all simulation in time. The particle diameter is
indicated for each curve. The asymptotic red-dashed curve obtained by the reference method [12] is
compared to the cyan continuous line obtained by using the proposed approach.

On the other hand, as shown in Figure 7c,d, the asymptotic σgeo,v are observed for
particle collisions over the entire range of diffusive Knudsen numbers ranging from dif-
fusive to ballistic. To accurately predict σgeo,v, the number of nodes in the NGDE code is
increased to θ = 100. The long time asymptotic limit of σgeo,v has been previously observed
by different authors for initially monodisperse particles [5,48] where σgeo,v = 1.30 was
observed in the diffusive, σgeo,v = 1.27 in the transition, and σgeo,v = 1.34 in the ballistic
regime. Notably, the same asymptotic values are also observed when the initial particle
size distribution is considered lognormal with σgeo,v = 1.50. Intriguingly, as opposed to the
case of initial monodisperse particles, the σgeo,v in this case is decreasing in time to reach
the asymptotic self-preserving values mentioned above. This is found to be consistent for
particles over the whole range of diffusive Knudsen numbers. These values are in excellent
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agreement with current simulations. In Figure 7, the continuous cyan line is the asymptotic
curve retrieved based on the proposed approach. The proposed model shows a maximum
error of ∼ 1% on the σgeo,v as compared to the reference method [12] (see Figure S2 in
the Supplementary Materials). This maximum deviation is observed in the near-ballistic
regime and a negligible error is observed in both the ballistic and the diffusive regimes.

5. Conclusions

From this work, the following conclusions are drawn.

• As theoretically shown in this work, the accuracy involved in solving the Langevin
equation has a direct impact on modeling the suspended particles’ collision frequency.

• A new and accurate approximation of the mean squared displacement of the Langevin
equation in the absence of external forces is proposed. This is an explicit equation that
may be used for future theoretical works involving the Langevin equation.

• The new approximation of the Langevin equation allows us to obtain a new equation
to predict the collision kernels in the transition regime. This new equation is simple
and accurate. For example, it shows less than a 3% error in predicting the coagulation
kinetics and less than a 1% error in predicting the particle size distribution along
different regimes. It may be used for different applications involving aerosol transport
processes such as coagulation and condensation.

• This work brings us additional understanding on the properties of the Langevin
equation that have a direct impact on predicting collision kernels. Despite differ-
ent works in the literature have derived collision frequencies based on Langevin
dynamics simulations, discussing the hability of the Langevin equation to predict this
phenomena from a theoretical perspective is rarely seen. To the best of the author’s
knowledge, there are no previous works deriving the collision kernels theoretically
from the Langevin equation, as is the case here.

• The proposed model predicts a likely universal asymptotic kinetics of coagulation
in the limit t � τc independent of the initial condition (e.g., different particle size
or polydispersity). It is suggested that such a limit is due to the self-preserving
size distribution as found to be correlated with the asymptotic polydispersity limit.
This supports the idea that the physics of coagulation in the diluted regime is well
parametrized by the diffusive Knudsen number. It also means that coagulation reaches
an asymptotic limit in time with predictable consequences not only for the size distri-
bution but also for the coagulation kinetics.

• The analysis presented in this work may be applied to theoretically study the accuracy
of discrete element methods to predict coagulation kernels whether they solve the
Langevin equation explicitly [49] or based on Monte Carlo methods [7]. Moreover,
this work shows the importance of an accurate solution of the Langevin equation to
predict collision kernels successfully. This is significant for choosing a time step in
numerical simulations of aerosol dynamics [21].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fractalfract6090529/s1, Figure S1: The relative error calculated as
(σOur − σGop)/σGop where σOur and σGop are the geometric standard deviation determined by our,
and the reference method, respectively. They are determined for initially monodisperse (a) and poly-
disperse (b) spherical particles. Figure S2: The relative error calculated as (zOur − zGop)/zGop where
zOur and zGop are the kinetic exponents determined by our, and the reference method, respectively.
They are determined for initially monodisperse (a) and polydisperse (b) spherical particles.
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Appendix A. Derivation of Equation (13)

When we try to obtain the dimensionless time t/τ from Equation (11) derived by [28]
we arrive to,

t
τ
= W

(
− exp

[
〈r2〉
6Dτ

− 1
])

+
〈r2〉
6Dτ

, (A1)

where W corresponds to the Lambert, Omega or product logarithm function defined as
the inverse of the function f (w) = w exp(w). Trzeciak [33] proposed to approximate it
to obtain,

t
τ
=

√
〈r2〉
6Dτ

(
〈r2〉
6Dτ

+ 2
)

, (A2)

however, as we show in the present work, better agreement with Langevin Dynamics is
found based on the following equation,

t
τ
=

√
〈r2〉
6Dτ

(
〈r2〉
6Dτ

+
3π

4

)
, (A3)

where 3π/4 ∼ 2.35, which is close to the previous expression but not equivalent.

Appendix B. Derivation of the Harmonic Mean Collision Kernel Approximation

The Harmonic mean method simply suggests to approximate the collision kernel in
the transition regime as the harmonic mean of thos in the ballistic and diffusive,

k =
kdiffkball

kdiff + kball
(A4)

Therefore, the corresponding transition regime correction function is,

f (KnD) =
k

kdiff
=

kball
kdiff + kball

. (A5)

where, for monodisperse particle collisions we have kdiff = 16πaD and kball = 4
√

2πa2D
then replacing in Equation (A5) leads to,

f (KnD) =
4
√

2πa2D
16πaD + 4

√
2πa2D

. (A6)

Then considering the diffusive Knudsen number KnD
2 = 8Dτ/(πa2) we finally obtain,

f (KnD) =
1

1 + π
2
√

2
KnD

. (A7)

Appendix C. Population Balance Code

Population balance simulations have been conducted by using a developed C++ code,
which is available under the following Git repository https://gitlab.com/jmoranc1/ngde_
cpp.git.

https://gitlab.com/jmoranc1/ngde_cpp.git
https://gitlab.com/jmoranc1/ngde_cpp.git
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Appendix D. Volume-Based Geometric Mean and Standard Deviation

dgeo,v = exp

(
θ

∑
i=1

nivi
vtot

ln(di)

)
, vtot =

θ

∑
i=1

vini (A8a)

σgeo,v = exp

[ θ

∑
i=1

nivi
vtot

ln2
(

di
dgeo,v

)]1/2
 (A8b)
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