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Abstract:
integro-differential inclusion with almost sectorial operator. By applying the facts related to fractional

This manuscript focuses on the existence of a mild solution Hilfer fractional neutral

calculus, semigroup, and Martelli’s fixed point theorem, we prove the primary results. In addition,
the application is provided to demonstrate how the major results might be applied.
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1. Introduction

In modern mathematics, the fundamentals surrounding fractional computation and
the fractional differential equation have taken center stage. The idea of fractional com-
putation has now been put to the test in a wide variety of social, physical, signal, image
processing, biological, control theory, engineering, etc., challenges. However, it has been
demonstrated that fractional differential equations may be a valuable tool for describing
a variety of situations. For many different types of realistic applications, fractional-order
models are superior to integer-order models. The research articles [1-15] are concerned with
the theory of fractional differential systems, and readers will find a number of fascinating
findings about fractional dynamical systems. Please refer to [16-21] for more information.

Other fractional derivatives introduced by Hilfer [22] include the R-L derivative and
Caputo fractional derivative. Many scholars have recently shown tremendous interest in
this area, e.g., [23-25]; researchers have established their results with the help of Schauder’s
fixed point theorem. In [26-28], the authors worked on the existence and controllability
of differential inclusions via the fixed point theorem approach. In references [29-31], the
authors discussed the existence of a mild solution by using Martelli’s fixed point theorem.
As a result of these findings, we expand on the literature’s earlier findings to a class of Hilfer
fractional differential (HFD) systems in which the closed operator is almost sectorial.

In [32], M. Zhou, C. Li, and Y. Zhou studied the existence of mild solutions to Hilfer
fractional differential equations with the order A € (0,1) and type v € [0, 1] in the abstract
sense, as follows:

HDyy(t) = Ay(t) +8(t,y(1)), t € (0,T],
ISPy (0) = yo,

here, A denotes the almost sectorial operator of the semigroup and the Schauder fixed
point theorem is used.
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In [33], Zhang and Zhou demonstrated the existence of fractional Cauchy problems
using almost sectorial operators of the type,

EDl x(t) = Ax(t) + f(t,x(t)) t € [0,a],

Iéi_q)x(o) = X,
where LDg+ is the R — L derivative of order g, 0 < g < 1, Iéi*q) is the R — L integral of
order 1 — g, A is an almost sectorial operator on a complex Banach space. We refer the
reader to [34-37] for information. These discoveries led us to extend past findings in the
literature to Hilfer fractional Volterra-Fredholm integro-differential inclusions.

We will examine the following subject in the article: The almost sectorial operators are
contained in the HF neutral integro-differential inclusion,

Dyily(3) = N(G,y(3))] € Ay(3) + Q(z,y(z),/oée(z,s,y(S))dS), 3eJ =(0d], (1)

M () @)

,€

where Dg+ notates the HFD of order x, 0 < x < 1, typee, 0 <& < 1; and A is an almost
sectorial operator of the analytic semigroup {T(3),3 > 0} on Y. State y(-) takes the value in
a Banach space Y with norm | - ||. Let 7 = [0,d], NV : J X Y be the appropriate function,
G:J xYxY — 2Y\{®} be a non-empty, bounded, closed convex multi-valued map,
N:TIxY—=Yande: J xJ xY — Y are the appropriate functions.

This article is structured as follows: In Section 2, we present the fundamentals of
fractional differential systems, semigroup, and closed linear operators. In Section 3, we
present the existence of the required solution. In Section 4, we provide an application to
demonstrate our main arguments and some inferences are established in the end.

2. Preliminaries

Here, we introduce some basic definitions, theorems, and lemmas that are applied to
every part of the paper.

Let C be the collection of all continuous functions from J to Y, where J = [0,d] and
J' = (0,d] withd > 0. Take X = {y € C: lim;_, 3! "¢ *¢y(;) exists and finite }, which
is the Banach space and its norm on || - || v, defined as ||y||x = supaeI,{31’€+K£’K§||y(3) I}
Let y(3) = 3 1Te 7 +%y(3), 3 € (0,d] then,y € X iff y € Cand ||y|x = |ly|. Moreover,
define Bp(J) = {y € C such that ||y|| < P}.

Definition 1 ([19]). The left side of the R-L fractional integral of order x with the lower limit d for
function G : [d, 00) — R is presented by

« _ 1 s G(w)
I5,G(3) = 00 /d G —w)l—de' 3>0,xk>0,

provided the right side is pointwise determined on [d, 4+00), I'(-) is the gamma function.

Definition 2 ([19]). The left-sided R-L fractional derivative of order xk > 0, m —1 < x < m,
m € N, for a function G : [d, +o0) — R is presented by

Lk _ 1 am o Gw)
Dd+g(3) - WW/d de, 3> d,

where T'(-) is the gamma function.
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Definition 3 ([19]). The left-sided Caputo derivative of the type of order xk > 0, m —1 < x <
m, m € N for a function G : [d,4+00) — R, is defined as

K 1 3 gm<w) m—xoom
CDd+g(3) = A (3 7 dw = Id+ (3)/ 5> d,

T(m—x) W) =m
where T'(+) is the gamma function.

Definition 4 ([22]). The left-sided HFD of order 0 < x < 1 and type ¢ € [0,1], of function
G :[d,+o0) — R, is defined as

Dy6() = (g D61 ().

Remark 1 ([22]). 1. Ife=0,0 < x < 1,andd = 0, then the HFD corresponds to the classical
R-L fractional derivative:

DG (5) = 310+ “G(3) =" DE.G(3).

2. Ife=1,0<x < 1,andd = 0, then the HFD corresponds to the classical Caputo
fractional derivative:

d

,1 _ 71—
DK g() IO+K£

G(3) = D5 G(3).

Definition 5 ([38]). For0<¢ <1, 0<w < 7, @,° is the family of closed linear operators,
the sector S, = {v € C\{0} with |arg v| < w}, and A: D(A) C Y — Y, which satisfy

(i) o(A) CSy;
(ii)  Forany w < 6 < 1t 3 Ay is a constant, such that,

[0 =271 < Agle| ¢
then A € ©° is called an almost sectorial operator on Y.

Lemma1 ([38]). Let0 < <land0<w < Z, A€ @;'Z(Y). Then

1. T(Gi+32) =TG1) + T(2), forany 31,52 € 5%,(4,;

2. 3 Ag > 0is the constant, such that | T(3)||p < Ao3® !, for any 3 > 0;

3. Therange R(T(3)) of T(3), 3 € Soﬂiw is contained in D(A%). Particularly, R(T(3)) C
2

D(4%) for all 6 € C with Re(8) > 0,
ATy = ZLm /Fy 2" R(z;8)ydz, forally €Y,
and, hence, 3 is a constant A' = N'(B,6) > 0, such that
HABT(Z,)HB(Y) < A3 BRO-1 forall 5 > 0;

4. If9 > 1 — ¢, then D(Ae) CXr={yeY:lim;_ 0  T(3)y =y}
5. =, e e 3T (3)d3, ¥V« € C with Re(x') > 0.
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Consider the operator families {S(3) }3€S%w, {9k (5) }zGSg,w is defined as follows:
Se(s) = [ W) TG v)dv,
0xls) = || (T (v,
where Wy (B) is the Wright-type function:
(=p)"!
We(B) = , eC. 3)
x(B) n%l"(l—;cn)(n—l)! p

Let —1 < 1 < oo, p > 0, the succeeding properties are satisfied.
(@) Wi(0)>0, 3>0;
© r(1+
0 Jo OV(@)d0 = <<1+K'3>
(©) fO 9(K+l B GWK( )d@ = e,px.

Theorem 1 ([19]). Sk(3) and Qx(3) are continuous in the uniform operator topology, for 3 > 0,
for every ¢ > 0, the continuity is uniform on [c, 00).

Definition 6 ([16]). A multi-valued map G is called u.s.c. on Y if for each yy € Y the set G(yo) is
a non-empty, closed subset of Y, and if for each open set U of Y containing G(yo), there exists an
open neighborhood V of yo, such that G(V) C U.

Definition 7 ([16]). G is said to be completely continuous if G(C) is relatively compact for each
bounded subset C of Y. If a multi-valued map G is completely continuous with non-empty compact
values, then G is upper semi-continuous if and only if G has a closed graph i.e., ym — Y0, 3m — 30,

sm € G(ym) imply 50 € G(yo)-
Definition 8 ([16]). A multi-valued mapping G : Y — 2V is said to be condensing, if for any

bounded subset D C Y with B(D) # 0, we have B(F(D)) < B(D), where B(-) denotes the
Kuratowski measure of non-compactness, defined as follows:

B(D) = inf{d > 0: D covered by a finite number of balls of radius d }.

Lemma 2. System (1)—(2) is equivalent to an integral inclusion given by

y(s) € OO 000 (s y060) + [ 0 N ()

+ 1“(1;<) /;5 (3—w)*! {AY(W) +G (er(w>/ /Ow e(w, S/Y(S))ds> dw] :

Definition 9. By a mild solution of the Cauchy problem (1)~(2), the function y(3) € C(J',Y) satisfies
7(6) =Se) 70 = N (O, y0)] + N 5,76 + [ K — w) AN (a0, y(aw) o

+/03 ,CK(5_w)g<w,y(w)r/Owe(w/S'Y(S))ds>dw’ 3€J,

where Sye(3) = 18" Kk (3), K (3) = 5 Qe (3)-
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Lemma 3 ([32]). For any fixed v > 0, Qx(v), Kx(v) and Sy (v) are linear operators, and for
anyy €Y,

Q)| < L's™ ¢, [Kx(a)yll < L5yl [|See()yll < L3~ HHy],

where
;7 F(C) " _ F(‘:)
F TGy T T ) e
Lemma 4 ([32]). Let {T(3)}5>0 be equicontinuous, then {QK(3)}5>0' {ICK(;,)}PO,and

{Ske(3) }3>0 are strongly continuous, i.e., foranyy € Y and 30 > 31 > 0,

|Qx(32)y — Qx(31)y|| = 0, [|[Kx(32)y — Ki(31)y]| — 0
| Ske(32)y — Ske(31)y]| = 0, as 32 — 31

Proposition 1 ([39]). Let x € (0,1),u € (0,1] and for all y € D(A), there exists a Ay > 0,
such that

kAT (2 — )
KUT(1+ (1 —p))

|a* Ok (3)y] < Iyll, 0 <3 <d.
3

Lemma 5 ([40]). Let J be a compact real interval and Py o, . (Y) be the set of all non-empty,
bounded, convex, and closed subsets of Y. Let G be the L'-Carathéodory multi-valued map, measur-
able to 3 foreachy € Y, u.s.c. toy foreach 3 € C(J,Y), the set

Soy= {5 € 180 € 6(30), [ ewsyo)s) seT), @

is non-empty. Let Ybe the linear continuous function from L'(J,Y) to C, then
Yo Sg :L— Pbd,cv,cl(c)/ y—= (Y © SQ)(Y) = Y(Sg,y)/ %)
is a closed graph operator in G x C.

Lemma 6 (Martelli’s fixed point theorem [17]). Let Y be a Banach space and F : Y —
P coc1(Y) be an upper semi-continuous and condensing map. If the set

M ={y € Y: Ay € F(y) for some A > 1}
is bounded, then F has a fixed point.

3. Existence
We need the succeeding hypotheses:

(H1) The almost sectorial operator A produces an analytic semigroup T(3), where 3 > 0 in
Y and ||T(3)|| < M, for some M > 0.
(Hy) @) LetG :J XY XY = Ppicpa(Y) be measurable to ; for each fixed y € Y,
upper semi-continuous to y for each 3 € 7, and each y € C, take

Sgy = {g e LN(T,Y):8() € G<z>,y(3),/OWE(w,s,y(S))dS>, € J},

is non-empty.

(b) For;€ J,G(,-,) : YXY =Y, e(35,) : Y = Y are continuous functions
and for each y € C, Q(-,y,fe) :J = Tande(-,-,y):ZxJ — Y are strongly
measurable.
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(c)  There exists a function ¢(3) € C(J',R™) satisfying

lim 3178+K57K(§Ig§¢(3) -0

3—0t

19(3132) | =sup {1911 66) € 6 (5,500), [ e(o5,9(5))s) |
< ¢@)@(llall + llz2l1)-

for ae. 3 € J and 31,32 € Y, where ® : Rt — (0,00) is a continuous,
additive, and non-decreasing function, satisfying ®(v1(3)(y)) < 11()®(y),
where vy € C(J',R™).

(d)  Thereexists € C(J’,R"), such that

3
| [ etosyen| < wio)lyl foreachs € 7, y e .

(H3) For any 3 € J, multi-valued map N : J XY — Y is a continuous function and
there exists 4 € (0,1), such that V' € D(A") and ally € Y, 3 € J, A¥N (3, -) satisfy
the following:

AN (3,5()) || < Mg(1+35" 5" |y(3)]|) and |[A"|| < Mo, (5,7) € T x Y.

(Hg) N is completely continuous, and for any bounded set D C C, theset {3 — N(3,7(3)), v €
D} is equicontinuous in Y.

Theorem 2. Assume that (Hy) — (Hy) hold. Then the HF system (1)—(2) has a mild solution on
J, provided

" du

L/ /O"’ (3—w)7'p() (1 + 9(3))dw < '/M* S
where

My = dletrese {L”d””ﬁ”é (yo — MoMg) + MMy (1 + p)]

and yo € D(A%) with § > 1 — €.
Proof. We define the multi-valued operator ¥ : X — P(X) by
Fr(9) = {2 € 2 206) =51 [50406) [ = V050 + A (3,3(2)
+ /03(;, —w)* 1O (3 — w)AN (w, y(w))dw
#1601 0u - )6 (w0 y(), [ el y(9)ds) |, 5 € (0.1}

w

To show that the fixed point of ¥ exists.
Step:1 Convexity of ¥(y) Vy € Bp(J).
Let zy,z0 € {Y¥y(3)} and hy, by € Sg g such that 3 € J. We know
2 =3 G (5) 0~ N (0,3(0))] + A5, 3(6)

+ /03 (G—w)*1Qu(3 — w)AN (w, y(w))dw + /03(3 —w)* 10y (3 — w)hi(w)dw|, i=1,2.
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Let 0 < A < 1; then for each of 3 € J, we have
Azy 4 (1= A)zp(3) =5' e ™e (Sx,s(a) [yo = N(0,5(0))] + N (5,5())
+ [16= w105~ WA y(w))dw

+317€+K€7K§ /05 (— w)xfl Qi3 — w) [/\hl (w)+(1— /\)hz(ZU)]dw.

We know that \V has a convex value, then Sg ; is convex. So, Ahy 4 (1 — A)hy € Sg .
Therefore,

Az1+ (1= A)zp € ¥y(3),
hence ¥ is convex.

Step 2: Boundness of ¥ on Bp(J). Consider, V'y € Bp(J ), we have

12(3)]] < sup3' || Se(3) [yo — N (0,5(0))] + N (3,¥(3))

+ [0 010wl — AN (w,y(w))dw

1008 (e, s

< dl—s+Ks—K§ (sup

Ske(3) [yo — N(0,3(0))] H + NG yG) |

8 xk—1
+ sup/O 3—w)

KO, (s w)H

VN (w, y(w)) Hdw

0u(s =)0 (wvtw), [ et ya)is ) )

< Jloetrexg {L”lereKHKé (YO — MOMg) + MOMg(l + P)]

+ 3 _ x—1
sup (5 w)

—etxe— d"T(1+ ) e
1—e+xe—x( I
+d (Al (sl 7)) + L)) 1 +9(6))
)kl d**T(1+ p)
< * e(1—x)—ké—1
= Miwd [(A”’ TR +P))>
/ dr¢
LWL+ plo)) s |

From Lemma 2 and hypotheses (H3), we have the boundness of the operators. Hence, it
is bounded.
Step 3: Next, we show that the z(3) bounded maps are set to the equicontinuous set of
Bp(J).

Consider0 < 31 <3 <dand 3G € Sgy, we have
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z(32) — z(51)

<

et [smw [¥o — N (0,5(0))] + N (52 7(2))

+ /032 (32 — )" 1 Qx (30 — w)AN (w, y(w))dw

+ [0 0t~ w6 (@), [ el y(6))ds )]
—yy TR [s (31) [yo = N (0,3(0))] + N (31, ¥(31))

[ 61— 0 Qulsr — AN (w0, 3(w)) o

+/ (31— (31 — )g<w,y(w),/OWE(w,S,y(s))ds>dw] H

g\[ayswsx,( 2) 3} Sl o - N 030
T (R T B )]
1—e+xe—«x& 31 xk—1
e / (52— )" Qu (52— w)AN (w0, y(w)) o
—e+Ke— Kf,/ K 1QK 32_ )AN(w,y(W))dw
- 1 e+Ke— K@/ K 1QK 31 ( )dw
1 e+Kke— Ké/ 32_ QK 52—10)9 w,y( )/ (w,s,y(s))ds)dw

+ahmere xé.‘/ (G2 — ) 1Qu (30 —w)G [ w,y(w e(w,s,y(s ))ds)dw

o
9

[zéferKs—ngK/ ( ) 731 e+Ke— KéS } [YO 7‘/\/ ))} H

— e "5/ (31— )" Q31 — w)G w,y(w e(w,s,y(s ))ds)dw

S ‘

+ oy TN G2y (s ))—3%7”“45]\/(31’5'(51))”
—etre—xg [? K—

+l5n " g‘/z,lz(éz—w) ' Q32 — w)N (w, y(w)) dw
1—etxe—xg [31 k=1

+ 132 / (52 — )" Qe (32 — w)AN (w, y(w)) dw

731 e+Ke— Kéf/ ) 1QK (32 — )AN(w,y(w))dw

+ 1 R /31 - QK 52_ )A/\[(w,y(w))dw

a1 M (1= ) Qe — w)AN (0, y () duo
e [ w0 = )6 (o), [ s v(6)ds )|
e [ 0 0t - 00 (w@), [ el 306
S [ 0y - @G (), [ e v6)is e
st [ =010t = 006 (), [ el y(6)) s

S [ 10t 06 (), [ w5 v090) )]

Il
el

Il
—

L.
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Since Sy¢(3) (yo — MoMy) is strong-continuous, we have
I tends to 0 as 35 — 31.
The equicontinuity of A/ ensures that

I tends to 0, as 3p — 31.

Iz =

s [ w10, (3 — W)AN(W/Y(W))"Z“’H

31

_ _ I'(1+
< 3; e KgAl—yMg(l + P)M(ﬁz —31)"

Then, I3 tends 0 as 35 — 31-

14_ ; etxe—xl 31 )K 1QK(32*w)AN(w,y(w))dw

. 1 —e+Ke— Ké/ﬁl K lQK(Zaz— )AN(w,y(w))de

T(1+p)

31
L (7 oy =0 G ) Vi

We have, 14 tends 0 as 30 — 31. Also,

1 etKe— KC/‘“( ) lQK(ZZ_ )AN(w’Y(w))

X

I =

— (1 —w) Q31 — w)AN(w,y(w)))de

Cetxe—xE [31 _
< MM+ P)s} 7 [ 61— 0) [ [@els2 = w) — Qulsr — )] .
By Theorem 1 and strong continuity of Qx(3), Is tends to 0,as 32 — 31.

shEReRt " (52— )1 Qs (32 — )G (w,Y(w)/ /Ow e(w, s,Y(S))dS) de

Ig =

31

<L

B _ 32

3; e+Ke—Ké A (52 . w)”5*1¢(w)<b(y) [1 + 1/;(5)]1170‘
31 —e+KeE—K KG— K X K6~

< L'/o [5% PR (1 — )l I (5 )t 1}

X p(w)D(y) [1+ p(3)]dw

Then I, tends to 0 as 3p — 31 by using (Hz) and the Lebesgue-dominated convergent theorem.
—e+Kke—Kl 2’1 1 w
[ 2= w00t = w6 (w0 y(w0), [ el y(s))ds o
0
1 et+ke—x{ 31 ) 1 w
- / Ox(32 —w)G W,y(w),/o e(w,s,y(s))ds |dw

1—8+K€—K§( )

< /0 (32 — w) *TRE |3,
x ¢(w)@(y)[1+y(5)]dw

I7

x—1 l—£+Ks—K§( . x—1

p-w) =5 31— w)
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and [ 2351“@)(17'{) (31 — W) 1p(w)P(y)[1 + P (3)]dw exists (w € (0,31]), then from
Lebesgue’s dominated convergence theorem, we obtain

31 _ K+K§
[N —w)

1 e+Ke— K{;'( x—1 1—e+xe—xg

W) =5 (31— w)*

P(w)@(y) [1+ p(3)]dw

—0asjz — 31,

so we conclude lim;, ;, I = 0.
For any € > 0, we have

-

/031 51T Q32 — w) — Ox(31 — w)] (31 —w)* G (w,y(w), /Ow e(w, s,y(S))ds) de

<oy I Y — g ()@() 1+ 9w
x sup || Qx(32 —w) — Qx(31 — w)|

we0,31—€]

+2L’ /;’ie 5%7€+K8+K§ (31 — w)Kgfl(P(w)q)(y) [1 + 1/}(3)] dw

From Theorem (1) and lim;, 5, Iy = 0, we have I — 0 independently of y € Bp(J) as
32 — 31, € — 0. Hence, ||z(32) —2(31)|| — 0 independently of y € Bp(J) as 32 — 31
Therefore, {¥y(3) : y € Bp(J)} is equicontinuous onJ.
Step 4: Show the relative compact of V(3) = {z(3) : z € ¥(Bp(J))} for; € J.

Let0 < a < 3, and thereis a posmve value ¢, assume an operator z'(3) on Bp(J ) by

Zhg(3) = 3! e {Sx,e (3)[yo = N(0,5(0))] + N (5,¥(3))
+/3 ' (G—w)* 1 Qx(5 — w)AN (w, y(w )dw
+/06 “(57w)K71QK(3*w)Q( e w,s,y(s ))ds)dw}

_ jietrexd {SK’S (5)[yo — N'(0,5(0)] + N (3,5())

O\

+ ,/oH /qoo KOMy(6) (3 — )" T((3 — w) 0)AN (w, y(w) ) dew
[ o006 =) 1T = w0)0 (0 y(a), [ el y(6))ds o]
=g {Sx,s @) [yo — M (0,3(0))] +N(5'Y(3))]
—etKe—K K o .
+ T (o ”/)/0 /67 N

X T((3 — w)*6 — a*q) [AN (w, y(w)) + G (w,y(w), /(;U e(w, s,y(s))) dodw.
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From the compactness of T(a"q), we note that V, z(5) = {(244(3))7(3) : v € Bp(J)} is
pre-compactin Y. Vy € Bp(J), we have

z(3) *Z&,q(z)H

< xstmerree [* [ona(o)(s — )T~ w)"e)
{W(w,y(w}) +G (w,y(w),/owe(w, s,y(s))ds)]d()dw”
+ K317€+K£7K§/ / K 19M 9) (( _ w)K@)

{AN’(w,y(w)) +G (w,y(w),/owe(w, s,y(s))ds)]dewH
< gyl ( [ eMu@) = w0y s - wyeref !
X [MoMg(1+4 P) + ¢p(w)@(y)[1 + 1(3)]] dodw
076w oMy 0T (MM (14 )+ () (5) 1+ 9)] )
j—avq
< xA051—€+’<€—Ké‘(/05(;,—w)Ké‘—l[M{)Mg(1+P)+¢(w) (¥)[1+ () dw/ 6% M, (6)d6
[ (35— ) [M{Mg(1+ P) + ¢p(w)D(y)[1 + (5) dw/ 0° My ( e)de)
3«

< KAOg,l*”“*"g(/(:(gfw)"g*l[Mf)Mg(lJrP)Jr(,b(w) (1 +9G) dw/ 6% My (6)d0

P RAD (g (MM P) gl + )

— 0 as « tends to 0, q tends to 0.

S0, Vaq(3) = {zaq(3) : 3 € Bp(J)} are arbitrary closed to V(3) = {z(3) : 5 € Bp(Z)}.
Therefore, {z(3) : 3 € Bp(J)} is relatively compact by the Arzela—Ascoh theorem. Thus,
the continuity of z(3) and relative compactness of {z(3) : 3 € Bp(J)} imply that z(3) is a
completely continuous operator.
Step 5: ¥ has a closed graph.

Take y, — y« asn — 00,2,(3) € ¥(yn) and z,, — z, as n — o0, we have to show that
zx € ¥(y«). Since z, € ¥(yu) then 3 a function G, € Sg y,, such that

zn(3) = 3! ETRERE {Sx,e(é) [yo = N(0,5(0))] + N (3,7:(3))

+ /0.?j (6—w) 1 Qx(5 — w)AN (w, yu(w) ) dw + /0-3 (G—w)"1Qx(; — w)Qn(w)dw].
We need to show that 3 G, € Sg,y*f such that
2.(3) = plered [sm:,) [¥0—~ N(0,5(0))] + N (3,7:(5))

+/ ) Qx5 — w)AN (w, y« (w dW+/ ) 1Ok(3— )g*(w)dw}.
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Clearly,

[2006) =3 (S0e9) 30 + N 0,3(0))] = N 6, 3(5)
- [16- 01 0uls - WA (w3 (w) o) |
- {Z* R (Sx,s (3)[y0 = N (0,3(0))] = N (5, 3+ (5))
— /05(5 —w)3 Q5 — w)AN(w,y*(w))dw)} H — 0asn — oo.
Next, we define the operator Y : L'(7,Y) — X,
YE0) = 600l =)0 (wy(w), [ efaos,y(w)ds )
We have (by (5)) that Y o Sg ; is a closed graph operator. So, by referring to ypsilon, we know
{Zn (3) —g'ermere (SK,e (3)[y0 + N (0,5(0))] = N (5,2(3))
— /0;j (3—w)3 1Qx(3 — w)AN (w, yn(w))dwﬂ € Y(Sgy,)
since G, — G, we follow from (5) that
2.0) =5 (S0 10~ N (0,5(0)] N 5,5.6)
~ [ 6w 0l — )N v ) )| € (56,0,

Therefore, ¥ is a closed graph.
Step:6 Set A is bounded.

A= {y€0Bp(J): Ay =¥(y) for some A > 1}.

Lety € A. Then Aw € ¥(y) for some A > 1. Thus, there exists G € Sg,, in ways that for
each ; € [0,d] and ||A'7#|| < M{, we have

y(3) = Alglereed [s,(,g@ Yo — N'(0,5(0))] + N (5,¥(3)

+ [ =01 Quls — w)AN (w,y(w))duw

+/ 10— w (w,y(w),./(;we(w,s,y(s))ds)}dw.

By assumptions (H,) — (H4), we have



Fractal Fract. 2022, 6, 532 13 of 16

(60 = 1510 S ) o — M0, 3(0))] +4(5,3(5)
+/ w) Qx5 — w)AN (w, y(w) ) dw
+ [ -0 - 06 (wyw), [ e(ws, v(6)is ) du

< dl—s+K€—K§ [sup ’

8:£)l30 - N 030)] [ + W e300

s - s (st oo ) o]

< Jl-etre—xg [L”d—l‘*‘s—’“""“: (yo — MoMg) + MoMg (1 + P)}

bty [ o MM(1 4 P) + g(@) @y ()] (1 + ()] o

< M+ UM +d L [ )ty ()] (1 + (w) o

where Mj = dl=e+re=x¢ [L”d‘“s_’““é (yo — MoMg) + MoM;(1 + P)

MM (1 + P)
Kl '

Consider the RHS of the above inequality as (3). Then, we have

and Mj; = d'—¢(1+x0)

7(0) =My, Iyl < (), 5 €[0,4d],
Y (3) = d"EEL (w — 5) o (5)@([ly () I) (1 + 9 (3)).-

By the non-decreasing character of ®, we obtain

Y'(5) = d L (= 5) () (1(3)) (1 +9(6)).
Then the above inequality implies (for each 3 € J) that

vG)  du , (3 e N
/y(O) D(u) <L /0 (3 — w) e 14’(3)(1 +9(3))dw < Jus: )

This inequality implies that there exists a constant £, such that y(3) < £, 3 € J, and, hence,
y(3) < L. From this we notice that set A is bounded. Therefore, by [17], Martelli’s fixed
point theorem ¥ has a fixed point, which is the mild solution of the system (1)—(2). O

4. Example

As an idea of how our findings may be used, think about the following Hilfer fractional
neutral integro-differential inclusion,

4 2
DI [A3,0) =N (3,A(3,0)] € ;;A(a,v) +G(3,8(3,0),(EA)(3,0))3 € (0,d],0 € [0, 7],
A(3,0) = A3, 1) = 05 € [0,4d], (6)
10=90-9y(w,0) = yo(v),0 € [0, 7],
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4
where Dgf is the HFD of order 47, type e, I (1-7)(1=9) js the Riemann-Liouville integral
of order 3(1 —¢), G(3,A(3,0), (EA)(3,0)), (EA)(3,0), and N'(3,A(3,v)) are the required
functions.

To write the system (6) in the abstract form of (1)—(2), we chose the space Y = L?[0, ).
Define an almost sectorial operator A by AA = A;; with the domain

IA I*A
DA)=<AcY:—,—5 €Y:A =A =0,.
= {aev: 298 a0 = a6m -0

Then A produces a compact semigroup that is analytic and self-adjoint, T(3); > 0. Ad-
ditionally, the discrete spectrum of A contains eigenvalues of k%, k € N and orthogonal

eigenvectors (i (z) = \/% sin(kz), then
Az =Y Kz, 0k) ke
k=0

Moreover, we have eachv € Y, T(3)v = Y 324 ¢ k%3 (v, )Lk Inparticular, T(-) is uniformly
stable semigroup and ||T(3)|| < M, which satisfies (H).

y(3)(v) = AG,v),3 € T =1[0,d],v € [0,7]. Takey € Y = L?[0, 7], v € [0, 7], we
consider the multi-valued mapping G : J XY xY =Y,

G(3yG), (Ey)(3) =G(5,AG,0), (EA)(3,0))
o3

=1 5 sin (w(g, v) + /03 cos(38)A(s, v)ds),

where

(Ey)(3)(v) = /5 (3,5, A(s,0))ds = /05 cos(3s)A(s,v)ds.

e
0
Since, mapping G is measurable, upper semi-continuous, and strongly measurable,
G(3,8G,0), (EA)(3,0)) < M.

So G is satisfied (Hp). Additionally, N : J x Y — Y must have completely continuous
mapping, which is defined as N (3, u(3)) = N (3,A(3,v)), satisfying the necessary hypothe-
ses. Therefore, the required mapping satisfied all hypotheses. As a result, the nonlocal
Cauchy problem (1)—(2) may be used to rephrase the fractional system (6). It is clear that
the boundary of G (3, A(3, 1), (EA)(3,u)) is uniform. The problem has a mild solution on 7,

according to Theorem 2 .

5. Conclusions

In this study, Martelli’s fixed point theorem was used to examine the possibility of
a mild solution for an abstract Hilfer fractional differential system via almost sectorial
operators. Adequate criteria were applied to the present findings and were satisfied. The
controllability of the Hilfer fractional neutral derivative (via almost sectorial operators) will
be investigated in the future using a fixed point technique.
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